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Abstract

Intelligent solar tracking systems to track the trajectory

of the sun across the sky has been actively studied and

proposed nowadays. Several low performance in-

telligent solar tracking systems have been designed and

implemented. Multilayer perceptron (MLP) is one of

the common controllers that used to drive solar

tracking systems. However, when the input data are

complex for neural network, neural network would not

well explain the relationship between these data. Thus,

it performed worse than when the input data are

simple. Using a premapping of relationship between

samples of data as input to neural network along with

the original input data could probably a strong guide to

help neural network to reach the desired goal and

predict the output variables faster and more accurate.

It is found that using the output of logistic regression as

input to neural network would faster the process of

finding the predicted output by neural network. Thus,

this study aims to propose new efficient and low

complexity single and dual axis solar tracking systems

by integrating supervised logistic regression (LR) and

supervised MLP or cascade multilayer perceptron

(CMLP). LR models are trained by using one of un-

supervised clustering techniques (k‐means, fuzzy

c‐means, and hierarchical clustering algorithms). The
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proposed models were used to predict both tilt and

orientation angles by two different data sets (month,

day, and time variables data set) and (month, day, time,

Isc, Voc, and power radiation variables data sets). The

results revealed that the proposed MLP/CMLP‐LR
systems are able to increase the prediction rate and

decrease the mean square error rate as compared to

conventional models in both single and dual axis solar

tracking systems. The new developed intelligent sys-

tems achieved less number of overall connections, less

number of neurons, and less time complexity. The

finding suggests that the proposed intelligent solar

tracking systems has a great potential to be applied for

real‐world applications (i.e., solar heating systems, so-

lar lightening systems, factories, and solar powered

ventilation.

KEYWORD S
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1 | INTRODUCTION

Positioning the solar photovoltaic modules toward the position of the sun across the sky is very
important issue nowadays. Solar tracking system is a device that can be implemented to follow
the trajectory of the sun across the sky efficiently. Solar tracking system is used to minimize the
angle of incidence between the incoming solar beam and the photovoltaic module surface.
Therefore, it helps in increasing the amount of generated energy by using solar photovoltaic
modules. Several driving and controlling methods have been used in solar tracking systems to
track the sun globally. One of the most efficient techniques that played an important role in
increasing the efficiency of solar tracking systems is using artificial neural network (ANN)
controllers.1,2

ANN is an important technology that currently used to improve the old driving methods of
solar tracking systems. Numerous solar tracking systems that used ANN technology have been
proposed and implemented to enhance the efficiency of solar energy generation, and to
eliminate the current limitations. Intelligent solar tracking systems are promising technology
to increase the advantages of solar tracking systems based on their characteristics compared to
other technologies. Nowadays, several research are focusing on developing and proposing
different solar tracking systems to track the sun efficiently. Numerous intelligent‐based ANN
systems have been developed to increase the performance of solar tracking systems.

Zaki et al. have implemented neural networks control system to predict the output voltage
of the photovoltaic module by using both solar irradiation and five different temperature
variables.3 Back‐propagation algorithm based on gradient descendent algorithm was used to
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implement the proposed control system. A modified error function has been used to increase
the performance of conventional back‐propagation algorithm that has slow convergence. Three
variables have been used as input attributes namely solar array temperature, solar irradiance,
and maximum voltage reference value. Four hidden nodes constitute the hidden layer,
while one output of maximum power point constitutes the output layer. The results that
obtained from the proposed controller showed that the neural network with modified error
function had better convergence rate. Moreover, only few iterations were needed to reach the
maximum reference voltage compared to conventional neural network. However, the proposed
controller was only tested by simulation, and the value of the maximum voltage was selected
based on a look‐up table. Using simulation test and look‐up table did not cover the real
environmental conditions. In addition, using 10 samples as a data set with high variation
between temperatures has produced outlier cases, therefore, inaccurate performance.

Panait et al. have designed a simple dual‐axis solar tracking system based on using neural
network training. Reducing the cost and the complexity of the conventional neural network
based solar tracking systems are the main aims of the proposed model.4 The proposed neural
network contains four hidden nodes in a hidden layer. The proposed neural network used two
tube‐cased instruments to measure the solar radiation and spectral composition of light as
inputs while the output is the next position of the solar prototype. A Lab‐View simulator that
used the capacitor and resistor variable trimmers to find the output response of the solar
tracker has been used to test and evaluate the proposed model.

Al‐Rousan et al. have developed new efficient single and dual axis solar tracking system
controllers using adaptive neural fuzzy inference system (ANFIS).5 ANFIS controllers used to
implement efficient single and dual‐axis solar trackers that can increase the performance of
solar trackers and predict the trajectory of the sun. Month, day, and time variables were used to
predict the orientation angle in single‐axis solar tracking system, and both tilt and orientation
angles in dual‐axis solar tracking system. Three, four, and five membership functions of Sugeno
inference were tested and evaluated. The developed controllers were evaluated using MATLAB
framework simulation. The results showed that using fuzzy logic model integrated with neural
networks can be used sufficiently to control solar tracking systems better than using fuzzy logic
and neural networks principles separately. Besides, using five membership functions obtained
the optimum efficiency to predict tilt and orientation angles. However, although using ANFIS
controllers obtained superior performance, but ANFIS model needs too long processing time
since it consists of five hidden layers.

Cheikh et al. have used artificial neural network to increase the solar photovoltaic gained
power.6 The inputs for the proposed neural network system are solar insolation, junction
temperature, and dynamics of charging voltage, while the output is the output power of the
photovoltaic module. A battery was used to represent the sun source in the proposed system.
Multilayer perceptron (MLP) and a back‐propagation MLP neural network with gradient‐
descent, sigmoid activation function, and mean square error (MSE) as performance function
were used as a construction of the proposed model. The simulation results of the proposed
model and the maximum power point (MPPT) tracking model were compared together. The
results revealed that the proposed model could particularly affected on a complex and non-
linear system. The results showed that the data that generated by simulation is not accurate in
evaluating the proposed system.

Essefi et al. have proposed an intelligent controller based on neural network to track the
MPPT under rapid changes of climatic conditions.7 A simulation study by using a DC load was
implemented to validate the proposed controller system. The proposed neural network used the
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photovoltaic array temperature and solar radiation as inputs to predict the optimum voltage
that detect the MPPT. Linear neural network that consists of input, hidden, and output layers
was used. One hundred hidden nodes constitute the hidden layers with identity activation
function constructed the architecture of linear neural network. Sum squared error (SSE) was
used as performance function. By using MATLAB/Simulink software, the simulated controller
showed that the developed MPPT controller has fast convergence, efficient, robust, had neg-
ligible oscillations around the MPPT, and its possibility to implement easily. However, the
proposed controller was implemented by using a linear neural network structure. In addition,
100 hidden neurons need long processing time and consume more energy.

Tahir et al. have proposed a new solar tracking system based on new neural network
principle.8 A model reference neural network controller (MRNNC) with back‐propagation
learning algorithm was used to implement the proposed solar tracking system. The idea from
the proposed MRNNC is to use input variables including time, current, and reference value to
predict the voltage that represent the speed of the motor and voltage that represent the tra-
jectory. The proposed neural network model consists input, hidden, and output layers. Thirteen
hidden nodes were used to build the hidden layer with sigmoid activation function, while linear
activation function was used for output layer. The MSE was used as a performance function.
The proposed MRNNC is superior in dealing with dynamic problems. It could reduce the
complexity without sacrificing performance efficiency as well as reduce the disadvantages of
conventional systems. However, the proposed system was also implemented based on simu-
lation using MATLAB/Simulink, and some chattering appeared on the ridges of the response
signal.

Rabee et al. have developed three predictor systems based on using three different neural
network architectures.9 Predicting the daily average solar radiation is the main idea of the
proposed models. Actual average solar radiation obtained from five different locations were
used as input variables to the proposed models. Multilayer feed forward neural networks have
been used to implement the three proposed models. Gradient descent method was used to
implement the first model. One hidden layer with 10 neurons with hyperbolic activation
function for both hidden and output layers were used. On the other hand, Levenberg‐
Marquart algorithm with Gaussian activation functions in hidden layer and purelin activation
function in output layer were used to implement the second and the third neural network
models. One hidden layer with 10 neurons were used in the second network, while one
hidden layer with 1460 neurons were used in the third network. The mean absolute per-
centage error (MAPE) was used as a performance function for the proposed models. The
results showed that the third proposed model with large number of neurons is highly non-
linear, attempts to follow all the points around the trend, and able to cope with nonlinear
data. Moreover, actual data from five different locations were used as training data which give
the work more value because it could represent the real‐time environment. However, the
solution that proposed to solve the maintain generalization of the forecaster, and overfitting
problems was to use large number of neurons which will take too long processing time and
will consume more energy in reality.

Kayri et al. have proposed two single axis solar tracking systems based on intelligent neural
network controller.10 The proposed neural network systems were implemented to increase the
accuracy rate of the predicted values. Several variables including wind speed, wind direction,
solar elevation angle, air temperature, relative humidity, and global radiation were used as
input variables, while the output was the output power. Feed forward back propagation neural
network algorithm was used to implement both of the proposed networks. Two different error
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optimization methods were used namely Levenberg Marquardt and Bayesian Regularization.
Both neural networks have 15 neurons in each hidden layer. MSE, root MSE, MAPE, relative
absolute error, root relative square error, and correlation coefficient (R) were used to evaluate
the performance of the proposed systems. The proposed systems were tested for both cloudy
and sunny days separately, and the measurements for 3 different days were used to build the
proposed systems. Testing the proposed models relived that using the error optimization
method would increase the performance of the proposed neural network‐based systems. In
addition, hardware implementation gave the work more value. However, using data for 3 days
only in cloudy weather, and 3 days only in sunny weather could not cover the whole conditions
and weather changes.

Yang et al. have proposed artificial neural network vector control system by using
adaptive dynamic programming for MPPT control and grid integration of a solar photovoltaic
array through an LCL‐filter based inverter.11 The idea of the proposed model is to evaluate
using neural network learning technique in photovoltaic systems. Feed forward back‐
propagation neural network with two hidden layers and six neurons in each layer was used to
build the proposed controller. Marquart levenberg optimization algorithm, and hyperbolic
activation functions were adopted to implement the proposed controller. The performance of
the proposed system was evaluated by using both practical implementing in laboratory and
MATLAB Simulink simulation. The idea of the proposed model is to predict the DC–DC
convertor output. The proposed intelligent controller has improved the performance of the
photovoltaic module systems. It was more reliable, and efficient to gain more output power,
and it was able to get stable DC voltage although it was not able to cover all the current
transient conditions, and it tested in laboratory.

Abdallah et al. have proposed a multilevel world comprehensive neural network model to
predict optimum orientation and tilt angles for photovoltaic (PV) panels in all countries
worldwide.12 Meteorological data collected by the photovoltaic geographic information system
(PVGIS) in 2019 are used to develop an efficient and accurate feed‐forward neural network
prediction model.

The idea of multilevel world comprehensive neural network model is to use two stages of
neural network to predict the optimum tilt and orientation angles that obtain the maximum
solar energy.

The first stage is to use longitude and latitude as input variables to predict orientation and
tilt angles. While the second stage is to use the output of the first stage (orientation and tilt
angles) along with longitude and latitude to predict three cases of annual radiation. Different
topologies of the proposed predictor were tested and evaluated to select the optimum archi-
tecture. Two feed forward neural networks with one hidden layer and 350 hidden nodes of
Tanh activation function were adopted for both first and second stages. The data set that used
were divided into 90% for training and validation, and 10% for testing.

The developed predictive neural model reflected very high accuracy in predicting the PV
panels' optimal tilt and orientation angles worldwide.

Şahin, has proposed artificial neural network model to predict the optimum tilt angle of
fixed solar panels in Turkey.13 A multilayer feed forward artificial neural network model was
used to develop the proposed predictor. A total of 126 input variables divided into seven groups
namely, number of months, monthly sunshine duration in Turkey, monthly sunshine duration
in provinces, latitude of Turkey, longitude of Turkey, latitude degrees of provinces, and
longitude degrees of provinces were used to predict 84 output variables of optimum tilt angles
in all provinces of Turkey.
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The data set used in developing the proposed model were collected from solar panels. The
idea is to adjust the solar panels manually according to monthly average optimum tilt angles
that predicted by artificial neural network.

Multivariable regression analysis was made by means of PASW Statistics 18 program. The
results revealed that the solar panel systems adjusted every month are 34% more efficient than
the solar panel systems adjusted according to a fixed angle yearly.

Kim et al. have proposed a solar panel tilt angle optimization model using five different
machine learning algorithms.14 The idea is to use machine learning models to predict the
optimum tilt angles that can maximize the converted energy of PV systems.

LR, least absolute shrinkage and selection operator (LASSO), random forest (RF), support
vector machine (SVM), and gradient boosting (GB) algorithms were assessed to develop the
proposed model in Daegu city, South Korea.

A total of 173,568 records of solar power generation data were collected from fixed 22 PV
modules in Daegu city from January 2016 to March 2018. This collected data consists of several
features such as module capacity, installation location, module azimuth angle, and panel angle.

Twenty‐two features of meteorological data were collected through Meteorological
Agency's Open Weather Portal (i.e., temperature, precipitation, wind speed, humidity, and
sunshine, etc.).

The record of Solar Power Generation data, along with the collected meteorological data
and other variables related to Sun Position data (i.e., declination, hour angle, zenith angle,
elevation angle, azimuth angle, the average daily beam radiation, and daily diffuse radiation on
a tilted surface.) were used as as input variables to predict the solar panels tilt angles.

Correlation analysis was used to find the optimum input variables among all the 31 col-
lected variables. It is found that 14 of these variables can be adopted to develop the prediction
models namely, ratio of beam radiation, ratio of diffuse radiation, humidity, cloud amount,
temperature, visibility, wind speed, wind direction, cloud height, microdust, precipitation,
snow, and aerosol.

Training and testing the selected machine learning models proved that gradient boosting
performed better compared to other learning algorithms. Besides, adjusting solar panels based
on the predicted results could increase the amount of solar energy generated by PV modules
compared to fixed panels.

AL‐Rousan et al. have developed intelligent models to predict optimum orientation and tilt
angles of solar PV module.2 Real‐time data collected from PV modules installed in Irbid city,
Jordan were used to predict tilt and orientation angles using linear regression, MLP and CMLP
intelligent models.

The idea is to investigate and evaluate several solar variables to select the most effective and
dominant variables on adjusting both dual and single‐axis solar PV modules. Correlation
analysis was used to select the most appropriate variables to develop the proposed models.

MATLAB mathematical framework was used to evaluate the proposed models, and one,
two, and three hidden layers with 15 hidden neurons were tested in both MLP and CMLP
models.

The correlation analysis results revealed that month, day, and time are the most effective
variables for horizontal single‐axis and dual‐axis solar tracking systems. Using these variables
in MLP and CMLP produced high performance while linear regression predicted less than 70%
of the given data in most cases.

Table 1 shows a comparison between different research that used artificial neural network
principle to build intelligent solar tracking systems.
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As shown in Table 1, several research have focused on proposing, developing, and building
simulated solar tracking systems. Several intelligent controllers have been used to drive solar
tracking systems. Neural network controllers are widely used to predict several criteria such as
solar radiation in a specific region, maximum power point, trajectory of the photovoltaic
modules systems, or duty cycle.

Besides, intelligent controllers are used to control the solar photovoltaic motions by pre-
dicting the next suitable position of solar panels toward the position of the sun. Intelligent
driver systems are proposed to solve the problems of other driving methods by using the
training process which can faster the process to find the next trajectory of the sun across
the sky, therefore, decrease the amount of consumed energy. In addition, it can also increase
the performance of solar tracking systems by minimizing the error rate and increasing the
prediction rate. However, designing adaptive intelligent solar driving controllers that can be
used globally is very difficult due to the difficulty to obtain a high prediction rate, and also a
very low error rate with low time complexity.

On the other hand, the collected data and the solar variables that used to train and test the
implemented solar tracking systems play a major role to propose an efficient, simple, adaptive,
and high performance intelligent based solar tracking system controllers that can predict the
trajectory of the sun across the sky accurately.

As shown in literature review, several research are carried out by developing the conven-
tional neural network by changing the selected variables,2,13 modifying the error optimization
function,3 using a reference value to the neural network inputs,3,8 finding new generation of
neural network,4,10,12 or increasing the number of neurons in the hidden layers.7,9 Artificial
neural network proved that it is sufficient to be used as solar tracking systems controller, and
effective in complex and nonlinear systems.2,5 Although solar tracking systems based artificial
neural network are better than conventional solar tracking systems, but these systems suffer
from many problems including slow convergence to reach the desired goal, high cost, high
complexity, and outlier cases when a variation in data is used. Using intelligent controllers
could improve the efficiency of solar systems, minimize energy loss, reduce time response, and
eliminated fluctuations around the outputs. Based on a literature review, several solutions were
proposed to improve the efficiency of solar tracking controllers. Modifying the error optimi-
zation function was used to increase the performance of conventional feed forward back‐
propagation algorithm that has slow convergence.

In contrast, changing the architecture of the proposed solar tracking systems, adding new
devices, and changing the selected variables cannot guarantee solving the disadvantages of the
conventional neural networks controllers, and obtaining a high efficiency solar tacking system.

Moreover, several research have used the conventional neural network to implement dif-
ferent types of intelligent controllers.2,5,6,9 However, to use neural network principle, the input
data are fed directly to neural network to train them. The performance of a neural network
model fully depends on the input data nature. In some cases, increasing the complexity of input
data could lead to produce low performance models. This is because when the input data are
complex for neural network, neural network would not well explain the relationship between
these data. Thus, it performed worse than when the input data are simple. Therefore, using
high nonlinear and complex intelligent controllers in driving solar tracking systems will cause
many problems. It will slow down the process of predicting tilt and orientation angles, and
increase the complexity of the solar trackers, thus, increase the consumed energy.

To solve this problem, many works increased the number of hidden layers in the network or
the number of neurons in the hidden layers which obtain highly nonlinear neural network
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which could improve the generalization of the forecaster, and reduce the overfitting problems,
but, it would increase the time complexity of the intelligent neural network based controller
systems compared to conventional systems.

However, the main target of using artificial neural network to drive and control solar
tracking systems is to simplify the current process of predicting the next trajectory of the sun
and faster the process of moving solar tracking systems. Thus, the current intelligent solar
tracking systems based neural network should be improved by minimizing the high level of
nonlinearity (i.e., number of hidden layers and number of neurons) to decrease cost, processing
time, and energy loss.

One of the best methods to decrease the high level of nonlinearity in neural network
without effecting on its performance is to modify the error optimization function using a
reference value as an input to neural network along with original input data. This reference
value could premap the relationship between the data samples and guide neural network to
reach the desired goal and predict the output variables faster and more accurate without the
needing to increase the high level of nonlinearity.

Moreover, it is found that logistic regression (LR) classifier is more robust to find the
relationship between samples of data compared to other statistical models.15,16 This is due to its
characteristics that LR classifier is appropriate for developing a probabilistic framework.17,18

This is because it can easily adjust the classification threshold to find confidence classes.18 LR
classifier can easily incorporate new training data into the model as well.19 However, LR can
deal with nonlinear relationship similar to linear relationship between dependent and in-
dependent variables.20 This characteristic is very important when unknown relationships exist
between dependent and independent variables. These advantages lead to select LR classifier to
enhance the performance of conventional neural network principles.

Solving the problems of the current solar tracking systems based on intelligent artificial
neural networks is the main motivation globally. Thus, this study aims to solve the problems of
using conventional neural networks principle by developing new single and dual axis solar
tracking systems. The idea is to use a reference value as input variable along with original input
data. This reference value could premap the relationship between the data samples. Premap-
ping the relationship between the data samples could guide the neural network to faster predict
the desired goal without the needing to increase the high level of nonlinearity. This can be done
by integrating both LR model and conventional neural network principles. The output of both
binomial logistic regression (BLR) and multinomial logistic regression (MLR) models are
adopted as reference values to premap the data of both conventional MLP and CMLP neural
networks respectively. In addition, the outputs of Both BLR and MLR are trained by using one
of unsupervised clustering algorithms namely k‐means, fuzzy c‐means, and hierarchical clus-
tering algorithms. Integration of MLP and CMLP principles with a trained LR model could
produce new generation of intelligent solar tracking systems, achieve the target of this study,
and improve to the field of intelligent solar tracking systems by minimizing the high level of
nonlinearity and decreasing the complexity of used MLP controllers.

Besides, to the best of the authors' knowledge, there are no reported studies that developed the
performance of MLP and CMLP by using a reference value that could premap the relationship
between the data samples and guide the neural network to faster predict the desired goal without the
needing to increase the high level of nonlinearity. On the other hand, this article will introduce a
MLP structure with a single hidden layer that acts and performs better than MLP network with three
hidden layers, also it aims to compare between the proposed models in this article and the most
recent published articles in the field. This would show the capability and the robustness of the
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proposed models compared to other published articles, besides, it will present the time complexity
analysis between recent published algorithms besides to other parameters and principles. Developing
the proposed models, and solving the problems of conventional neural network using the reference
value would contribute to the fields of solar energy and intelligent solar tracking systems, and it will
make this study excellent reference to the audience in the field.

The contribution in this paper is to (i) develop a new structure of neural networks where a
single hidden layer performs better than three hidden layers in conventional multilayer per-
ceptron (MLP), (ii) develop new generation of intelligent solar tracking systems where the level
of nonlinearity is minimized and the time complexity and estimation time are decreased, (iii)
developed the performance of MLP and CMLP by using a reference value that could premap
the relationship between the data samples and guide the neural network to faster find the
relationship between variables, and then faster predict the desired goal, (iv) present both MLP
and CMLP models in details, which would make this article as a good reference to those who
will use such models, (v) compare between the proposed models in this article and the most
recent published articles in the field which will highlight the main drawbacks in the published
intelligent models used to predict tilt and orientation angles, and (vi) this is the first article that
focuses on minimizing the time complexity of MLP and CMLP models by adding a well‐
designed reference value rather than increasing the number of hidden layers and hidden nodes.

Integrating MLP/CMLP with LR models to minimize the linearity of the adopted neural
networks is a novel and superior idea and can enhance the efficiency of the used applications,
besides, it can decrease the estimation time to obtain the results.

2 | PRELIMINARIES AND DEFINITIONS

This section explains the main mechanisms and preliminaries that used to build the proposed solar
tracking systems. This section is divided into three parts namely clustering algorithms, LR models,
and artificial neural network. The first part focuses on explaining the clustering algorithms including
k‐means clustering, fuzzy c‐means clustering, and hierarchal clustering algorithms. The second part
presents the LR models including BLR and MLR, while the third part discusses the artificial neural
network including both MLP and cascade multilayer perceptron (CMLP).

2.1 | Clustering algorithms

Clustering is the most important unsupervised learning technique that used to find the structure of a
collection of data to group the data that have the similar characteristics together in one cluster.21 The
clustering process aims to increase the similarity in intra‐cluster and to decrease the similarity
between the clusters. Moreover, the clustering technique is divided into mainly three groups namely
exclusive clustering, overlapping clustering, and hierarchical clustering. In exclusive clustering, the
data point should belong to one cluster such as K‐means clustering algorithm. In overlapping
clustering, the data point can belong to multiple clusters in the same time such as Fuzzy C‐Means.22

In hierarchical clustering, the data point is organized as a tree which allows each cluster to have sub
clusters such as hierarchical clustering. In this study, three learning techniques will be tested to
implement the developed solar tracking systems including k‐means clustering, hierarchical clustering
and fuzzy c‐means clustering. These clustering algorithms are the most common used clustering
algorithms in different fields because of their efficiency compared to other algorithms.21,23–27
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2.1.1 | K‐means clustering

K‐means is a clustering algorithm that introduced in 1967 by MacQueen.28 The procedure to
cluster the data is based on defining a certain number of clusters (K). The algorithm will define
k centroids for each cluster randomly from the data set to use them as a head for each cluster to
assign a data point to each one of cluster heads. The next step is to take each point and associate
it to the nearest centroid using the Euclidean distance equation (d) between each centroids (c)
and each data point (x) as follow:28

d x c x c( , ) = | − |
i

K

i i

=1

2
2 ∑ (1)

Euclidean distance equation is the length of a line segment between two points. It can be
calculated from the Cartesian coordinates of the points using the Pythagorean Theorem, and it
is normally called the Pythagorean distance.

Once all the data is attached to one of the K‐centroids, the first step of the algorithm is
completed. At this point, to improve the performance of the clusters, new centroids are re-
calculated by using Equation (1) as follows:7

c
c x

M
=

+ ( )
j

j m

M
m−1 =1

∑
(2)

where cj−1 and cj are the old and new mean values for the cluster head, respectively, xm is the
data point ofmth index data that attached to cluster cj−1, and M is the number of data attached
to cluster cj−1. The steps will be repeated until no more changes are appeared. In other words,
no points will move from one cluster to another. Finally, the execution of the algorithm will
stop if the maximum iteration is reached or squared error function is minimized. Therefore, the
objective function (J) in this case is a squared error function which defined as follows:22

J d x c= ( , )
i

K

m

M

i m i

=1 =1

2
,∑∑ (3)

where ci is the cluster head, xi,m is the data point m in cluster i, M , and K are the total number
of data point in cluster i, and total number of cluster heads, respectively, where, the squared
error function for a point x with respect to its cluster center c is the distance between P and c
squared; that is, x c( − )i i

2 + x c( − )y y
2.

2.1.2 | Hierarchical clustering

The first version of hierarchical clustering is introduced in 1967 by Johnson.22 The procedure to
cluster the data is based on building a tree of clusters. Strategies for hierarchical clustering is
divided mainly into two types including the bottom up approach and the top down approach.
In bottom up approach, each data starts in its own cluster, and every pairs of clusters are
merged together as one moves up the hierarchy to create a tree. In top down approach, all the
data is considered in one cluster, and splitting is used to build a tree. Moreover, to build the
clusters using hierarchical clustering algorithm, the number of clusters should be defined first
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(i.e., K). The algorithm starts by assigning each item to its own cluster, and then for each pair of
clusters in data set, the closest pair of clusters is found and merged into a single cluster using
Euclidean distance between two clusters.29 The distance between clusters is calculated using
the average‐linked clustering equation which is the mean distance between elements of each
cluster as follows:30

D C C
F E

d a b( , ) =
1

( , )e f

a C b C,e f

∑
∗

∈ ∈

(4)

where d (.) is the Euclidean distance function, Ce and Cf are clusters which contain the
members, F and E are the number of members in clusters Ce and Cf , respectively, a and b are
the members of clusters Ce and Cf respectively. Finally, the process of merging the clusters
based on average‐linked distance equation will be repeated until all data are clustered into a
single cluster that contains all samples of data.

2.1.3 | Fuzzy C‐means clustering

Fuzzy C‐means is a clustering algorithm that developed by Dunn,31 and improved by
Bezdek.32 The aim of using Fuzzy C‐means clustering is to allow each data to belong to two
or more clusters each time by assigning different degrees of membership to each data point.
Data point in C‐means clustering is assigned membership to each cluster center, therefore,
data point may belong to more than one cluster center. The algorithm starts by assigning
primary centroids C to the predefined number of clusters based on the user definition.
Then, the degree of membership (u) of all feature vectors in all the clusters will be com-
puted to be used in updating the cluster head. The membership can be computed by using
the following formula:32

( )
u =

1
ij

k

C d x c

d x c=1

( , )

( , )

i j

i k

m
2
−1

∑
(5)

where d(.) is the Euclidean distance, cj is the D‐dimension center of the cluster of jth index, ck
is cluster centers of kth index, xi is the ith of D‐dimensional measured data, uij is the degree of
membership of xi in the cluster j, m is any real number greater than 1. Fuzzy c‐means
clustering algorithm will use the degree of membership of xi in the cluster j to calculate the
new cluster head for cluster j, and the new cluster head is calculated by finding the centroid of
the cluster j using the following formula:32

c
u x

u
=j

i

N
ij
m

i

i

N
ij
m

=1

=1

∑ ∗

∑
(6)

where ci is the D‐dimension center of the cluster of jth index, xi is the membership of cluster of
index jth, N is the number of membership of cluster of index jth.

The algorithm will stop executing when the condition of the termination is reached. The
termination condition is reached when the distance between degree of membership func-
tion in two consecutive steps (i.e., s and s + 1) is less than ε (d (uij, ûij) < ε). The ε is a
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termination condition between 0 and 1. If the condition is not met, the algorithm will
calculate the new clusters and the new degree of membership function and the process will
be repeated until the condition is met. Fuzzy c‐means clustering algorithm is based on
minimization of the objective function (J). The objective function is the sum of weighed
distances in Euclidean metrics from the data samples to the cluster head in each cluster as
shown in the following formula:32

J u d x c= ( , )
i

N

j

C

ij
m

i j

=1 =1

2∑∑ (7)

The clustering algorithm is used to divide the data into predefined number of groups,
therefore, find the cluster number of specific data point. The process should be repeated using
all data points to find a solution.

2.1.4 | Clustering algorithms comparison

To compare between the clustering algorithms, seven metrics can be used including the data set
size, the number of clusters, the algorithm speed, the parametric/nonparametric test, the hard/
soft clustering, the clustering technique and the Big‐O analysis for the complexity. Table 2
shows the comparison between the clustering algorithms.

As shown in Table 2, the K‐means clustering is the fastest algorithm, while the hierarchical
clustering is slowest because it uses merging/splitting to reach the top of the tree. However,
there is no proof to show which algorithm have a high capability of clustering the data more
efficiently.37–39

2.2 | Logistic regression

Several researchers recommended the basic guidelines for statistical rules of building a sta-
tistical regression models.40–42 These rules can be summarized in Table 3.

LR is a model that can find the association between a categorical dependent variable and a
set of independent variables.9 LR is a supervised learning technique that uses the independent
variables (inputs) to predict the dependent variable (output). If the dependent variable has two
categories, then it is called a BLR, otherwise if the number of categories is greater than two then
it is called a MLR.43 The LR aims to build a classifier model based on the trained data to predict
the new data points of the system. To implement LR, the coefficients (Bi where i≥ 0) of the LR
in Equation (8) should be computed first.

Equation (8) is defined as an estimated LR equation which formulated as follows:40

f β β x= +
i

K

i i0

=1

∑ ∗ (8)

where f is the MLR/BLR equation, β0 is the constant, βi is the coefficient of ith variable, xi is
the ith variable and K is the number of variables.

For BLR K is equal to two and for MLR, K is greater than 2. To calculate the coefficients of
MLR and BLR, first set N , p and K as number of samples, number of variables, and number of
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clusters respectively. β is the coefficients vector with size equal to K p( − 1) ∗ and the last
cluster K is considered as a reference for other clusters. X is denoted as vector contains the
variables xi (Equation 8) with size equal to K and the first element is equal to 1 to represent the
constant in the Equation (8) (i.e., β0). Moreover, gi and yi contain number of clusters (from 1 to
K) without reference variable and number of clusters (from 1 to K− 1) with reference variable,
respectively. p x β( , )i is the event probability that calculated using log odds of event success
which is a linear function of the predictors where, the coefficient (b1) is the amount the logit
(log odds) changes with a unit change in x as follows:44

p

p
β β xln

1 −
= +

i

K

i i0

=1

⎛
⎝⎜

⎞
⎠⎟ ∑ ∗ (9)

equivalently to

p x β
e

e

e

e
( , ) =

1 +
=
1 +

i

f

f

β β x

β β x

+

+

i
K

i i

i
K

i i

0 =1

0 =1

∑ ∗

∑ ∗
(10)

where β is a vector of LR coefficients, and xi is the vector of ith variable as follows:
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=
.
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⎠

⎟⎟⎟⎟

Then to find the optimal values for, the maximum log likelihood function in Equation (11)
should be maximized. To maximize the function Newton–Raphson will be used. Newton–Raphson

TABLE 3 The statistical rule for building most suitable regression models

Number of dependent
variables

Nature of independent
variables

Nature of dependent
variable(s) Test

1 1 or more interval and/or Categorical (multilevels) Multinomial logistic

1 or more categorical Regression

1 1 or more interval and/or Categorical (two‐
levels only)

Binomial logistic

1 or more categorical Regression

1 1 interval Interval and normal Linear

Regression
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is a way to quickly find a good approximation for the root of a real‐valued function f x( ) = 0 as
shown in the following equation.44

l β p x β( ) = log ( , )
i

N

g i

=1
i

∑ (11)

As a result of applying Newton–Raphson method, the coefficients vector (β) of MLR and
BLR are calculated in Equations (12) and (13), respectively.45,46

β β X X X y p= + (
~
) ( − )new old T T−1 (12)

β β X WX X y p= + (
~ ~

)
~

( − )new old T T−1 (13)

where βnew and βold are the coefficients vector of the current iteration and previous iteration
respectively. X ̃ is a diagonal matrix with X ‐vector, y is the concatenated indicator vector of
dimension N K( − 1)∗ which explained as follows:46
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(14)

where I (.) is indicator function equal to 1 if the argument is true and otherwise 0. The p vector
is defined as fitted probabilities vector with size equal to N K( − 1)∗ . To calculate p the
following formula is used:
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p
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Finally, W is square matrix that calculated its elements using the probability in Equation
(10), square matrix can be calculated as follows:

W

W W W

W W W

W W

W W W
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. . . . .

. . . . .

. . . . . .
. . . . . . . .
. . . . . . . .

. . . . .
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K K K

11 12 1( −1)

21 22 2( −1)

31 3( −1)

( −1)1 21 ( −1)( −1)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(16)

where each element is calculated based on the condition as follows:46

W
p x β p x β k m

p x β p x β k m
=

( , )(1 − ( , )), if =

− ( , ) ( , ), if
km

k i
old

k i
old

k i
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m i
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⎪⎧⎨
⎩ ≠

(17)
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To calculate probability as a vector Equation (10) can be written as follows:37

p x β
e

e
( , ) =

1 +
k i

β x

β x

T
i

T
i

(18)

The MLR and BLR will repeat the process of finding optimal coefficients vector (β) until one
of the termination conditions is reached including absolute convergence criterion for β, ab-
solute convergence criterion for log‐likelihood, or maximum allowable number of iterations.45

After finding the optimal equation for the estimate logistic function (Equation 8) the training
phase is completed.

Moreover, to classify the new data point to the predefined clusters, LR uses the probability
formula (Equation 10) to calculate the probability between each cluster and the new data point
and then the maximum probability that attached to the cluster number will be assigned to the
new data point. The time that taken to classify the data set can be calculated by finding the time
complexity of LR model by using big O notation as follows:47

Complexity O n v c= ( × × )LR
2 (19)

where n denotes the number of training samples, v denotes the number of attributes, and
c denotes the number of output variables.

2.3 | Artificial neural network

computing system that learned to do a task using a number of simple highly interconnected
processing elements (called neurons) which process the information through connections (called
weights) between layers.48 The main and simplest basic element in the neural network is called
neuron as shown in Figure 1. The perceptron is the simplest network possible that uses single
neuron and use a computational model to process one or more inputs to produce a single output.
The inputs of each neuron should contain the input (i.e., xn), the weight (i.e., wn), and sometimes
an addition connection (i.e., bias) is added to improve the performance of the neuron.47 To find the
output of the neuron each input will be multiplied with the connected weight and then the
summation for all terms is considered as the output of the neuron. The result of the summation will
be forwarded to the activation function f (.) to calculate the output of the neuron, usually the
activation function is nonlinear function. Moreover, neural networks use different activation
functions. The hyperbolic tangent transfer function has been selected to calculate the output of the
hidden layers nodes. The hyperbolic tangent transfer function can produce outputs in scale of [−1
+1] because it is a continuous function and can produce output for every x value as follows:49

∑ (. )

w

w2

wn

x1

x
2

x
n

Bias

y

FIGURE 1 The single perceptron of artificial neural network
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f z
e

( ) =
2

1 +
− 1

z−2
(20)

where z is the inputs of the neuron.
On the other hand, identity transfer function has been used to find the output of the output

layer node. Identity transfer function is a linear activation function where the output of the
functions will not be confined between any range as represented in Equation (21):49

f z z( ) = (21)

2.3.1 | MLP and CMLP neural network

Neural network can be classified based on the signal flow which are feed forward and recurrent
(cascade) networks. Other classification could be based on the existence of the hidden neurons
(i.e., neurons which is not in the input or output layer) which are either MLP or single layer
perceptron. In this study, two types of the networks will be considered including MLP and
CMLP as shown in Figures 2 and 3, respectively. MLP is an artificial neural network wherein
connections between the units do not form a cycle. The architecture of conventional MLP that
consists of one hidden layer is shown in Figure 2. Based on Figure 2, the prediction output of
the jth node in the hidden layer is calculated by50

O f x w b i I= for 1j

i

I

i ij j

=1

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ≤ ≤ (22)

where f (.) is the activation function, i is the number of nodes in the input layer, xi and wij are
inputs and weight from ith node in the input layer to the jth node in the hidden layer, and bj is the
bias for jth hidden node. while the output of kth node in the output layer can be calculated by50

y f O w b for k K= + 1k

j

J

j jk k

=1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ≤ ≤ (23)

FIGURE 2 The architecture of multilayer perceptron network for one hidden layers
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where yk is the output of kth node in the output layer, K is the number of nodes in the output
layer, wjk is the weight from the jth node in the hidden layer to the kth hidden node in the
output layer, and bk is the bias for the kth output node.

On the other hand, CMLP network is an artificial neural network that has the same
structure and the work methodology as MLP.51,52 In contrast, the CMLP uses a weight con-
nection from the input directly to each layer, and from each layer to all successive layers.51,52

The architecture of CMLP that consists of one hidden layer is shown in Figure 3.
As shown in Figure 3, the input layer passes the input data directly to the output layer and

all successive layers. The predicted output of kth node in the output can be calculated by:50

y f w x O w b= + +k

i

I

ik i

j

J

j jk k

=1 =1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ (24)

where yk is the predicted output of kth node in the output layer, wik is the weight from the ith
node in input layer to the kth node in output layer.

2.3.2 | Back propagation optimization algorithms

To calculate the predicted output of MLP and CMLP, the network should be learned first. To
learn a network two major learning models are used including the online learning (in-
stantaneous learning) and the offline learning (training or batch learning).48 In online learning,
the weights and biases will be updated upon presentation of each pattern, while in offline
learning the weights and biases will be updated after complete set of patterns (after learning
each neuron separately). In several research and mathematical tools, online learning is denoted
as adaption learning and offline learning as training. Many developments on the conventional

FIGURE 3 The architecture of cascade multilayer perceptron network for one hidden layers.
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MLP and CMLP have been suggested to speed up the learning process and to enhance the
predicted outputs.52–54 Both learning methods should be implemented on the backward way
that the network will start back propagate the results to update the weights and biases after
calculating the outputs of the network. Two learning methods can be used to back propagate
the results including gradient decent with momentum back propagation and Levenberg‐
Marquardt back propagation.

After calculating the output of the network by using Equation (22) for MLP and Equation
(23) for CMLP, the error will be propagated backward to adjust the weights and biases using the
first order‐derivative for the error function as shown in Figure 4.

As shown in Figure 4, the direction of backward propagation is from output layer to input
layer. While moving to input layer, weights and biases will be updated step by step (i.e., first
from out to h2, then from h2 to h1 and finally from h1 to in). The error function that used in
gradient decent model is defined as follows:55

E x w d o( , ) =
1

2
( − )

p

P

k

K

kp kp

=1 =1

2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ (25)

where E x w( , ) is the summation of the squared errors function for an input vector x and a
weight vector w, w is the weight vector of the network that:

w w w w= [ , , …, ]N
T

1 2 which consists all the weights of the network, x is the input vector of
the network, dkp is the desired output vector of the kth output and pth pattern, okp is the actual
output vector of the kth output and pth pattern, P is the index of patterns that p P1 ≤ ≤ , and
K is the index of network outputs k K1 ≤ ≤ . The gradient should be computed for each weight
in vector w using a chain rule as follows:55

E x w

w

E

w

E

w

E

w

( , )
= ….

n

T

1 2

⎡
⎣⎢

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂
(26)

Therefore, to calculate the new weights and biases between the jth neurons of the hidden
layer and the ith neurons in the input layer the following equations are used.56

w t w t w t( ) = ( − 1) + ( )ji ij ji∆ (27)

b t b t b t( ) = ( − 1) + ( )j j j∆ (28)

where w t( )ji and b t( )j are the current weight and bias, w t( − 1)ij and b t( − 1)j are the previous
weight and bias, w t( )ji∆ and b t( )j∆ are the increment of weights and biases that can be
calculated using the following formulas:56

Output 

neuron 

Input neuron 
Hidden neurons 

( )

h1 h2

out
in

Winh1

W
h1h2

W
h2out

FIGURE 4 Gradient decent techniques [Color figure can be viewed at wileyonlinelibrary.com]
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w t η ρ t x t α w t( ) = ( ) ( ) + Δ ( − 1)ij w j i w ji∆ (29)

b t η ρ t α b t( ) = ( ) + Δ ( − 1)j b j b j∆ (30)

where α w t α b tΔ ( − 1) and Δ ( − 1)w ji b j are the momentum terms that determine the influence
of the past parameter changes on the current direction of movement in the parameter space, ηw
and ηb represent the learning rates, and ρ t( )j is the error signal of the jth neuron of the hidden
and output layer which is back propagated in the network. ρ t( )j is calculated based on the
position of the neuron as shown in Figure 4, for output layer neuron to h2 neuron the following
equation is used:55

ρ t y y t y( ) = −( (1 − )( − ))j j j j j (31)

where yj is the output of jth node in the output layer, tj is the desired target of jth node. For
other reasons, ρ t( )j is calculated using the following formula:55

ρ t y y w ρ t( ) = − (1 − ) ( )j j j

k

jk k

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ (32)

where yj is the output of jth node in the output layer, w ρ t( )
k jk k∑ is the propagated results from

hidden neuron to another hidden neuron or input neuron as shown in Figure 4, k contains the
layers from output layer to the current layer j.

Finally, after this step the first iteration of the gradient descent with momentum technique is
completed. The gradient descent with momentum technique uses the first order derivative of the
error function and many works proved that the second‐order derivative methods (i.e.,
Levenberg–Marquardt back propagation) have more ability to improve the convergence speed and
enhance the results of the neural networks.48–61 As a result, Levenberg–Marquardt back propagation
is used after applying gradient decent with momentum algorithm by using the weights and biases
from the previous iteration to calculate the next weights and biases for the MLP and CMLP.

The standard Newton method defines a Hessian matrix as a second order derivative for the error
function. Levenberg–Marquardt algorithm solves the standard Newton method by using a
Gauss–Newton algorithm which is an approximation for Hessian matrix. The approximate Hessian
matrix is calculated by multiplying the transpose of the Jacobian matrix with Jacobian matrix, where
Jacobian matrix is the first order derivative of the error function. To find the optimal weights and
biases using the Levenberg‐Marquardt algorithm, the algorithm will monitor the change in the error
function. If the change is rapid, the algorithm will use Gauss–Newton algorithm as follows:61,62

W W H μI J e= − ( + )k k k k+1
−1 (33)

whereWk andWk+1 are the weight matrix for the current and the next step iteration kth and
(k + 1)th, respectively. μ is damping factor, I is identity matrix, ek and Jk are the error vector of
the kth iteration and Jacobian matrix for iteration kth, respectively. H is the Hessian matrix
that calculated as:61,62

H J Jk
T

k≈ (34)
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Jk is the Jacobian matrix for iteration kth that contains the first derivate of the error
function, and T is the transpose for the J matrix.

Moreover, if the error change is not decreased the H matrix can be neglected and only the
damping term (μI) is considered which will direct the algorithm to move one step closer to
gradient decent algorithm. The new weight will be calculated as follows:51,52

W W μI J e= − ( )k k k k+1
−1 (35)

The last equation is descent gradient algorithm where gradient is equal to J ek k. Besides that,
the biases will use the same equations from 32 to 34 but instead of using the weights' matrix,
bias matrix will be used. After completing Levenberg‐Marquardt algorithm calculations, the
new weights and biases will be used to calculate the new outputs of the MLP and CMLP.

The time that taken to define and set the new weights to calculate the outputs of MLP and
CMLP can be calculated by finding the time complexity of MLP and CMLP. The time com-
plexity for single hidden layer network can be expressed by using big O notation as follows:63,64

Complexity O d h O h c= ( × ) + ( × )MLP
(36)

Complexity O d h O d h c= ( × ) + ( × × )CMLP
(37)

where d is the number of input variables, h denotes the number of hidden nodes in the hidden
layer, and c denotes the number of output variables.

3 | METHODOLOGY

Using artificial intelligent controllers is desired to drive the motions of solar tracking systems. By
using intelligent controllers in solar tracking systems, the performance of solar tracking systems
could probably be increased. However, using intelligent drivers not guaranteed that the photo-
voltaic modules would perform better than traditional solar photovoltaic systems in all cases.
Nevertheless, MLP network, and CMLP network principles are sufficient to be used as solar
tracking systems controllers due to their effectiveness in complex and nonlinear systems which
leads them to perform better than other intelligent classifiers in driving solar tracking systems.

In contrast, the current intelligent solar tracking systems suffer from many problems, which
weaken the performance of the overall solar tracking systems. In addition, it would also slow
down the process of predicting tilt and orientation angles, therefore increase the time com-
plexity of the solar tracking systems. The main problems of the current solar tracking systems
based on intelligent classifiers are slow convergence to reach the desired goal. This is because of
the high complexity of the processes that adopted to find the desired goal. Consequently, high
complexity leads to obtain a highly cost system. In addition, complex architecture of the
intelligent classifiers would increase the complexity of the systems, and would increase the
processing time, thus, increase the consumed energy.

Solving the problems of the current solar tracking systems based on intelligent controllers is
the main motivation to develop driving solar tracking systems globally. The main target is to
develop efficient intelligent solar tracking systems which would increase the performance of
solar tracking controllers, produce high performance, simplify the current systems, minimize
the cost of the current systems, and faster the training process.

Based on the characteristics of artificial neural network principles, MLP and CMLP can be
efficiently used to drive solar tracking systems. However, the complexity of the solar tracking

5630 | AL‐ROUSAN ET AL.

 1098111x, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22525 by Istanbul G

elisim
 U

niversitesi, W
iley O

nline L
ibrary on [29/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



controllers would be increased by increasing the number of hidden nodes in the hidden layers,
and the number of hidden layers in the network. Increasing the complexity would increase the
cost, processing time, and consumed energy.

As explained in the literature review, minimizing the high level of nonlinearity by de-
creasing the number of hidden layers and the number of hidden nodes in the hidden layers is
not enough to generate that neural network can deal with data samples efficiently to produce
an adaptive, efficient, low complex, low cost, and fast intelligent solar tracking systems.

Developing an intelligent, efficient, adaptive, and high performance MLP and CMLP
principles to drive and control solar tracking systems is a very difficult and critical issue.
However, finding such system is the main motivation globally. Finding such system would
improve the field of renewable energy and would promote the use of solar energy in investment
globally. Replacing fossil‐fuels resources by the clean solar energy is highly demanded. This can
only be applied if effectual solar tracking systems are created.

To achieve the desired target, and to develop the conventional MLP and CMLP principles,
several techniques are proposed to increase the efficiency of conventional MLP and CMLP as
explained earlier. Using a reference value as an input in addition to the input variables of
conventional MLP and CMLP principles proved its capability to increase the performance of
the solar tracking systems based on MLP and CMLP. This technique can deal with dynamic
problems. In addition, it would also solve the disadvantages of the conventional systems and
introduce a new generation of neural network principles.

Developing new neural network principles by combining and modifying the architecture, adding
an additional input variable as reference value, and integrating the conventional neural network
principles with other intelligent classifiers would optimize the performance of solar tracking systems,
and introduce an effectual principle that can be used efficiently in driving solar tracking systems.

This section deals with the methodology to develop new single and dual axis solar tracking
systems by integrating LR with MLP. Two neural networks principles of conventional MLP and
CMLP are adopted to develop the proposed systems. In addition, two LR models including
BLR and MLR are adopted to be integrated with MLP models. Both BLR and MLR are trained
by using one of unsupervised clustering algorithms namely k‐means, fuzzy c‐means, and
hierarchical clustering algorithms.

Both BLR and MLR will be trained using the best clustering algorithms. The output of the
trained LR classifier is used as input data to train MLP and CMLP classifiers, along with
original input data. The output of the trained LR represents the desired reference value that
would increase the performance of MLP and CMLP principles. The integration of the trained
LR and the trained neural network models are adopted as new solar tracking systems con-
trollers as shown in Figure 5. By integrating LR with MLP, it is believed that the performance of
the proposed intelligent neural network could be improved.

It is believed that the proposed solar tracking systems which based conventional MLP and
CMLP neural network principles integrated with LR model would solve the complexity pro-
blem, faster the process to find the desired goal, increase the efficiency of solar tracking
controllers, produce high performance, simplify the current systems, and minimize the cost of
the current intelligent solar tracking systems. LR classifier has several advantages over other
classifiers.65,66 As explained earlier, these advantages lead to select LR classifier to enhance the
performance of conventional neural network principles as explained.

However, LR can deal with nonlinear relationship similar to linear relationship between
dependent and independent variables.23 This characteristic is very important when unknown
relationships exist between dependent and independent variables.
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The methodology of the proposed intelligent solar tracking systems is divided into three
main phases namely selecting of the optimum clustering algorithm, training the LR which
based on the selected optimum clustering algorithm, and integrating of the trained LR and a
neural network to develop new single and dual axis solar tracking systems controllers. The
three phases performed are explained in the following subsections.

3.1 | Phase one: Selection of the optimum clustering algorithm

This section deals with the phase of selecting the clustering algorithm that performs better
compared to other selected algorithms. Three unsupervised clustering algorithms namely
k‐means, fuzzy c‐means, and hierarchal clustering algorithms are tested to find their cap-
ability in clustering input data and investigate of the optimum clustering algorithm and
optimum number of clusters that can be used to train the LR models. These clustering
algorithms are selected because they are the mostly used clustering algorithms in the
clustering field.

To test these clustering algorithms, a combination between one of the selected clustering
algorithms and one of neural network architecture (i.e., MLP or CMLP) is adopted. The
optimum number of clusters for each algorithm will be determined by testing different
numbers of clusters from 2 to 10 clusters. The two clusters are the minimum number of
clusters that can be used to cluster the collected data, while ten clusters are the maximum
number of clusters that can be used to cluster the collected data without getting over
fitting.40 The clusters that obtained from the three clustering algorithms with number of
clusters from two to ten are adopted as input variable to MLP in addition to the input
variables of data set one (month, day, and time) or data set two (month, day, time, Isc, Voc,
and power radiation variables). The block diagram that represents the processes involved in
clustering phase is shown in Figure 6.

FIGURE 5 Block diagram of the developed single and dual axis solar tracking systems. CMLP, cascade
multilayer perceptron; MLP, multilayer perceptron
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As shown in Figure 6, selecting the optimum clustering algorithm is divided into two
phases. The first phase is to cluster the input attributes of data set. The second phase is to train
the MLP using the obtained clusters from the first step as inputs along with the input attributes
of data set one (month, day, and time) or data set two (month, day, time, Isc, Voc, and power
radiation), while outputs are either orientation angle or tilt and orientation angles for single
and dual axis solar tracking systems, respectively. The flowchart of clustering phase is shown in
Figure 7.

Based on Figure 7, the first process involved is to select one of the three clustering algo-
rithms k‐means, fuzzy c‐means, and hierarchical clustering. The next process is to split the
input data including the clusters output from the previous process, the selected input attributes,
and the target data into three sets. Seventy percent of data are used for training, 15% of data are
used for validation, and 15% of data are used for testing. The developed models proposed to use
a simple MLP or CMLP (i.e., with one hidden layer and optimum number of hidden nodes) to
find the best clustering technique.

For training neural network, the general architecture for the proposed networks is in-
itialized including the weights, biases, error target, and transfer functions. In the proposed
network, weights and biases are initialized randomly, error target is predefined as 10−15, and
both hyperbolic tangent and identity transfer functions are used to calculate the output of the
hidden layers nodes and the output layer nodes, respectively. The network is trained to tune
error and biases to the optimum values.

The next process is to test and evaluate the performance of the trained network. Both MSE
and prediction rate are performed criteria to evaluate MLP and CMLP principles. MSE should
be minimized to optimize the developed neural networks. MSE can be calculated by using
Equation (38).66

N
y yMSE =

1
( ˆ − )

i

N

i i

=1

2∑ (38)

where N is the number of samples, ŷi is the predicted output values, and yi is the original
output values.

FIGURE 6 Block diagram of selecting the optimum clustering algorithm process. CMLP, cascade multilayer
perceptron; MLP, multilayer perceptron
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Prediction rate measures the percentage of data samples that can be predicted by the used
predictor. The prediction rate can be calculated by using Equation (39).67

y y

y y
Prediction rate = 1 −

( − ˆ )

( − ¯)
× 100%i

N
i i

i

N
i

=1
2

=1
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

∑
(39)

where yi̅ is the mean of output values.
Then, the optimum clustering algorithm, and the optimum number of clusters that

achieved the highest performance are selected for both MLP and CMLP separately. Finally,
at the end of this process the optimum clustering algorithm is used to train the LR
classifier.

Split data (Input attributes, optimum clusters, and target 

data) into three groups (70% for training, 15% for 
validation, and 15% for testing)

Start

Train neural network

End

Record neural network performance

Initialize neural network parameters and architecture 

based on optimum architecture 

Set one hidden layer for neural network

Input data

Set the number of clusters to two

Implement clustering algorithm (i.e. k-means, fuzzy c-

means, hierarchical)

Number of clusters >10?

Yes

No

Add one 

cluster 

Determine the optimum clustering algorithm, and the 

optimum number of clusters that obtained the highest 

performance (MSE and prediction rate)

FIGURE 7 Flowchart of clustering phase
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3.2 | Phase two: Training of LR based on the optimum clustering
algorithm

Both BLR and MLR are employed to classify the input attributes of single and dual axis solar
tracking systems. The LR models are trained to be used as a predictor to predict the appropriate
cluster for data attributes.

This section uses the selected clustering algorithm and optimum number of clusters to train
the LR models. This process prepares the LR models to predict the appropriate and significant
cluster classification for any sample of data. The idea of employing this stage is to faster the
process of classifying a sample of data as well as help in improving the performance of MLP and
CMLP. Both MLR and BLR classifiers are used separately. MLR and BLR models are selected as
LR classifiers based on statistical rules as explained in Table 3.68–70 The block diagram to train
MLR and BLR models is shown in Figure 8.

As shown in Figure 8, the MLR and BLR classifiers follow the same procedure. Two phases
are involved. The first phase is to train the MLR and BLR by using 70% of the data samples of
selected datasets as inputs, in addition to the clusters output from the clustering algorithm in
clustering phase as a target data. The second phase is to test the trained MLR and BLR to
predict the suitable clusters for the rest of 30% of the data samples of datasets accurately. This
would faster the process of classifying any sample of data in the future. Testing the MLR and
BLR is very important process to ensure and validate the performance of the trained MLR and
BLR, and to evaluate its capability to classify new samples of data accurately. Based on the
results of selecting the optimum number of clusters and the statistical rules that explained in
Table 3, a BLR model is used when the optimum number of clusters that adopted to develop
solar tracking system is two. In contrast, a MLR is used when the optimum number of clusters
that adopted to develop solar tracking system is between three and ten. Figure 9 shows the
flowchart of training and testing MLR and BLR.

As shown in Figure 9, the first process involved is to split the data samples into two sets. Seventy
percent of data are used for training and 30% of data are used for testing. The second process involved

FIGURE 8 Block diagram of MLR/BLR. BLR, binomial logistic regression; MLR, multinomial logistic
regression
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is to initialize the linear formula coefficients to be used in training the data attributes. In this process,
the linear formula coefficients for the training data are calculated for both MLR and BLR.

The next process is to check whether any of the termination conditions is fulfilled. The
estimated LR equation is calculated when any of termination conditions is achieved. This
equation is used to test the testing data and to find the predicted cluster for each sample of data.
Then, the accuracy of MLR and BLR are calculated to ensure about the capability of MLR and
BLR to predict the suitable cluster for any sample of data accurately.

Accuracy performance criteria is used to evaluate the capability of MLR and BLR to predict
the suitable cluster for any sample of data accurately. The accuracy can be calculated by using
Equation (40).71

Accuracy(%) =
Total number of correct clusters

Total number of data
× 100% (40)

The trained MLR and BLR are used to develop single and dual axis solar tracking systems as
shown in the following section.

3.3 | Phase three: Integration of LR and MLP for single and dual axis
solar tracking systems

This section explains the process of developing the conventional MLP and CMLP by integrating
them with one of the trained MLR or BLR classifiers. The proposed models will be compared to
the conventional MLP and CMLP neural networks‐based systems. This will help in proving the

Split the input and target data of data samples, and optimum clusters 

output from Section 3.1 to 70% for training, and 30% for testing

Start

Use the estimated equation to test the testing data (find the suitable 
clusters for the testing data). 

End

Initialize the linear formula coefficients for training data 

Calculate the estimated logistic regression equation 

Is any of termination 

condition achieved?

Find the accuracy of the predicted clusters 

No

Yes

FIGURE 9 Flowchart of training and testing MLR and BLR. BLR, binomial logistic regression; MLR,
multinomial logistic regression
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effectiveness of integrating the trained LR to the conventional neural network. In addition, it
would also evaluate the proposed technique in improving the performance of solar trackers
controllers. The flowchart of the developed single and dual axis trackers is shown in Figure 10.

As shown in Figure 10, the first process involved is to use the MLR or BLR to predict the suitable
cluster of a given sample of data. This cluster will be used as input to MLP and CMLP along with the
input variables. The second process is to split the input data into training, validation, and testing sets.
The input data include the predicted clusters output from the previous process, the input variables of
the selected solar tracking models, and target data of orientation angle for single‐axis solar tracker
and both tilt and orientation angles for dual‐axis solar tracker. Seventy percent of data are used for
training, 15% of data are used for validation, and 15% of data are used for testing as well.

The third process is to define the general architecture of the neural network including the
number of hidden layers and number of hidden nodes. One hidden layer is performed first with
the optimum number of hidden nodes that that recommended by AL‐Rousan et al.2 Then, the
weights and biases parameters are randomly initialized. The error target is defined as 10−15. The
hyperbolic tangent and identity transfer functions are used as transfer functions for the output
of the hidden layers nodes and the output layer nodes, respectively.

Split data (input variables, the predicted clusters, and target 

data) into three groups (70% for training, 15% for 
validation, and 15% for testing)

Start

Train neural network

End

Record neural network performance

Set one hidden layer

Set number of hidden nodes and initialize neural network 
parameters

Determine the optimum number of hidden layers and 

connection weights that produced the highest performance

Hidden layers>3?

No

Yes

Add one 

hidden 

layer 

Predict the cluster of a sample of data attributes using 

MLR and BLR

FIGURE 10 The flowchart of the developed single and dual axis solar trackers using MLP/CMLP. BLR,
binomial logistic regression; CMLP, cascade multilayer perceptron; MLP, multilayer perceptron; MLR,
multinomial logistic regression
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The next process is to train the neural network, then to test the testing data to evaluate the
performance and to ensure about the capability of the trained neural network. The perfor-
mance results of the tested neural network are recorded. All the previous processes are re-
peated for two and three hidden layers. The optimum scenario that achieved the highest
performance is adopted to develop single and dual‐axis solar tracking systems separately.

4 | EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of integrating MLP networks with trained LR models to
develop new single and dual axis solar tracking system controllers. To achieve the goals of this
study, practical data will be used. The data were collected by using a real mechanical solar
tracking prototype. A high efficiency multicrystalline photovoltaic module of model KC 120‐1
was used to collect the data periodically. These data were recorded for several selected days
based on weather conditions from 8:00 am to 5:00 pm. Real based data sets were recorded for
several variables including time, day, month, Isc,Voc, power radiation, tilt angle, and orientation
angle. Two data sets are adopted to predict the orientation in single axis solar tracking or both
tilt and orientation angles in dual‐axis solar tracking.72 Month, day, and time variables were
selected as data set one, and month, day, time, Isc, Voc, and power radiation variables were
selected as data set two. This section is divided into three subsections to present the results of
the developed MLP and CMLP based systems.

4.1 | Results of phase one: Selection of the optimum clustering
algorithm

The main target of this phase is to select the optimum clustering algorithms and optimum
number of clusters that could achieve the highest performance. This section is divided into two

TABLE 4 The prediction rate (%) and MSE results of MLP and the three clustering algorithms of single‐axis
solar tracking system using data set one

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 96.67 96.85 96.79 0.0032 0.0034 0.0028

3 96.55 96.75 97.59 0.0033 0.0025 0.0025

4 96.59 97.11 97.02 0.0030 0.0029 0.0071

5 96.91 96.71 96.48 0.0038 0.0028 0.0034

6 96.43 97.05 97.05 0.0052 0.0026 0.0028

7 97.66 96.93 96.20 0.0024 0.0027 0.0030

8 96.51 96.78 96.98 0.0025 0.0026 0.0029

9 96.19 97.43 96.16 0.0029 0.0028 0.0049

10 96.54 96.60 97.30 0.0026 0.0083 0.0029
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parts to present the proposed MLP and CMLP based solar tracking systems. The optimum
clustering algorithms for both MLP and CMLP are presented in the following sections.

4.1.1 | Selection of the optimum clustering algorithm for MLP network

To develop new single and dual axis solar tracking systems, the first process is to evaluate the
conventional MLP network with one of the three clustering algorithms. The most effective clus-
tering algorithm that can improve the performance of the conventional MLP for both single and

TABLE 5 The overall prediction rate (%) and MSE results of MLP and the three clustering algorithms of
single‐axis solar tracking system using data set two

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 95.80 92.40 97.50 0.0013 0.0027 0.0007

3 94.80 94.60 94.70 0.0010 0.0012 0.0019

4 96.30 96.10 95.90 0.0007 0.0016 0.0007

5 96.48 97.40 97.95 0.0005 0.0006 0.0007

6 96.40 96.90 95.10 0.0009 0.0010 0.0011

7 97.10 95.80 97.00 0.0012 0.0010 0.0009

8 96.40 95.40 96.30 0.0006 0.0018 0.0011

9 95.90 97.60 96.80 0.0008 0.0010 0.0006

10 97.30 93.30 96.00 0.0006 0.0010 0.0009

TABLE 6 The prediction rate (%) and MSE results of MLP and the three clustering algorithms of dual‐axis
solar tracking system using data set one

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 96.80 96.96 96.05 0.0010 0.0014 0.0016

3 95.73 95.58 96.20 0.0017 0.0024 0.0017

4 94.50 95.50 96.01 0.0037 0.0023 0.0027

5 93.23 96.10 96.39 0.0028 0.0018 0.0014

6 94.41 93.95 96.34 0.0022 0.0033 0.0013

7 94.16 96.13 96.18 0.0026 0.0017 0.0014

8 95.71 96.02 96.22 0.0020 0.0015 0.0024

9 93.33 95.55 96.71 0.0038 0.0019 0.0010

10 95.29 95.64 96.21 0.0020 0.0024 0.0014

AL‐ROUSAN ET AL. | 5639

 1098111x, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22525 by Istanbul G

elisim
 U

niversitesi, W
iley O

nline L
ibrary on [29/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



dual axis solar tracking systems will be selected. Then, the optimum number of clusters that
achieved the highest performance are adopted to implement the proposed solar tracking systems.

The prediction rates and MSE of the three clustering algorithms with conventional MLP for
single and dual axis systems are shown in Tables 4–7.

Tables 4 and 5 present the single‐axis solar tracking system results for data set one and data set
two respectively. While Tables 6 and 7 present the dual‐axis solar tracking system results for data
set one and data set two, respectively. As shown in Table 4, the results revealed that k‐means
clustering algorithm with seven clusters predicted the highest prediction rate and the lowest MSE.
K‐means clustering algorithm predicted 97.66% of data set, while fuzzy c‐means and hierarchical
clustering algorithms obtained the highest prediction rates of 97.43% and 97.30% when nine and ten
clusters are used respectively. Moreover, the MSE of k‐means clustering with seven clusters is
0.0024, while the optimum MSE values for fuzzy c‐means and hierarchical clustering algorithms
are 0.0025 when three clusters are used for both cases. The results showed that the three clustering
algorithms achieved very close prediction rates and MSE results. Comparing the MSE values, using
k‐means clustering algorithm with seven clusters is the optimum clustering algorithm to develop a
single‐axis solar tracking system for data set one.

On the other hand, for data set two that tested on single‐axis solar tracking system, the results
in Table 5 show that hierarchal clustering algorithm predicted the highest prediction rate of 97.95%,
when five clusters are used. Fuzzy c‐means clustering algorithm with nine clusters predicted
97.60% of data set two, and k‐means clustering algorithm using 10 clusters predicted the worst
amount of data with prediction rate of 97.3%, while the MSE of k‐means clustering algorithm with
five clusters (i.e., 0.0005) is the lowest MSE as compared to fuzzy c‐means and hierarchical clus-
tering algorithms that achieved MSE of 0.0006 using five and nine clusters, respectively. Moreover,
the prediction rate of k‐means clustering algorithm with five clusters is 96.48%. The overall pre-
diction rate and MSE results revealed that using k‐means clustering algorithm with five clusters is
better than using both fuzzy c‐means and hierarchical clustering algorithms.

In contrary, Table 6 presents the results for dual‐axis solar tracking system using data set
one. The results revealed that fuzzy c‐means clustering algorithm predicted the highest amount

TABLE 7 The overall prediction rate (%) and MSE results of MLP and the three clustering algorithms of
dual‐axis solar tracking system using data set two

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 94.86 96.70 94.90 0.0007 0.0008 0.0011

3 94.90 94.70 93.60 0.0014 0.0013 0.0009

4 93.50 96.15 94.30 0.0014 0.0007 0.0012

5 95.05 95.40 93.20 0.0014 0.0014 0.0019

6 94.06 94.50 96.60 0.0013 0.0011 0.0009

7 93.80 93.60 94.30 0.0015 0.0016 0.0016

8 94.60 96.20 95.80 0.0010 0.0010 0.0012

9 95.40 92.60 93.20 0.0013 0.0013 0.0012

10 94.03 95.20 93.02 0.0014 0.0010 0.0012
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of data with a prediction rate of 96.96% for two clusters. K‐means clustering algorithm pro-
duced very close prediction rate of 96.80% with two clusters, and hierarchical clustering al-
gorithm predicted the worst with prediction rate of 96.71%. However, the three clustering
algorithms predicted close prediction rates. Table 6 shows that both k‐means clustering and
hierarchical clustering algorithms achieved the lowest MSE of 0.0010 when two and nine
clusters are used, respectively. While fuzzy c‐means clustering algorithm obtained higher MSE
of 0.0014 when two clusters are used. Thus, the best combination to improve the performance
of MLP is by using k‐means clustering algorithm with conventional MLP. The optimum
number of clusters that produced the lowest MSE and a high prediction rate is two clusters.
Referring to the data distribution that obtained by using two clusters which is the optimum
number of clusters, further analysis found that the best distribution is based on the half‐month.
Half‐month is a unit of time typically used in astronomy.73–75 The first half of each month is
clustered to cluster one, while the second half of each month is clustered to cluster two.

For dual‐axis solar tracking system, Table 7 presents the results of using data set two to predict
tilt and orientation angles. The results revealed that fuzzy c‐means clustering algorithm predicted
the highest prediction rate of 96.70%. In addition, hierarchical and k‐means clustering algorithms
predicted 96.60% and 95.40% of data set, respectively. On the other hand, the optimum MSE is
0.0007 that achieved when k‐means and fuzzy c‐means clustering algorithms are used with two and
four clusters, respectively. Hierarchal clustering algorithm achieved the worst MSE of 0.0009 when
six clusters are used. Fuzzy c‐means and hierarchical clustering algorithms achieved very close
prediction rate of 96.70% and 96.60%, respectively. According to the MSE and referring to the
complexity of the three algorithms, it is found that using two clusters of k‐means clustering
algorithm is better than using fuzzy c‐means and hierarchical clustering algorithms.

Referring to Table 2 and comparing both prediction rate and MSE values for the three
algorithms and all number of clusters, the results revealed that the best combination to improve
the performance of the neural network and then improve single and dual axis solar tracking
systems is using K‐means clustering algorithm with conventional MLP. The optimum

TABLE 8 The prediction rate (%) and mse results of cmlp and the three clustering algorithms of single‐axis
solar tracking system using data set one

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 97.03 96.83 96.62 0.0022 0.0027 0.0029

3 96.63 96.44 96.22 0.0030 0.0022 0.0023

4 97.60 96.01 96.72 0.0016 0.0031 0.0020

5 96.71 96.98 96.54 0.0025 0.0024 0.0023

6 96.81 96.15 97.05 0.0016 0.0019 0.0032

7 96.06 96.44 96.07 0.0021 0.0020 0.0032

8 97.07 96.55 97. 11 0.0022 0.0027 0.0023

9 97.12 96.37 97.33 0.0023 0.0034 0.0017

10 96.78 96.60 97.26 0.0021 0.0040 0.0018
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clustering algorithm and the optimum number of clusters should produce the lowest MSE with
high prediction rate.

4.1.2 | Selection of the optimum clustering algorithm for CMLP network

Similar to MLP network procedure, the performance of conventional CMLP network with the
three clustering algorithms are evaluated. The most effective clustering algorithms that can
improve the conventional CMLP performance are selected. Then, the optimum number of

TABLE 9 The overall prediction rate (%) and MSE results of CMLP and the three clustering algorithms of
single‐axis solar tracking system using data set two

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 94.90 93.80 93.80 0.0027 0.0012 0.0048

3 93.30 94.38 95.40 0.0028 0.0013 0.0040

4 93.80 94.60 93.10 0.0038 0.0008 0.0037

5 96.45 96.10 95.40 0.0042 0.0005 0.0025

6 94.30 95.45 93.03 0.0017 0.0006 0.0043

7 94.40 95.70 94.50 0.0020 0.0010 0.0040

8 94.40 95.80 95.60 0.0024 0.0009 0.0021

9 93.75 95.60 90.00 0.0026 0.0006 0.0037

10 95.80 92.60 95.20 0.0003 0.0008 0.0024

TABLE 10 The overall prediction rate (%) and MSE results of CMLP and the three clustering algorithms of
dual‐axis solar tracking system using data set one

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 96.29 97.55 96.13 0.0016 0.0008 0.0021

3 96.13 96.42 97.28 0.0013 0.0010 0.0011

4 96.50 97.43 95.87 0.0022 0.0008 0.0015

5 97.12 97.39 96.57 0.0013 0.0009 0.0010

6 97.02 97.62 97.27 0.0009 0.0008 0.0011

7 97.10 97.49 96.99 0.0018 0.0008 0.0015

8 97.71 97.47 97.01 0.0017 0.0008 0.0008

9 96.86 97.57 96.63 0.0013 0.0010 0.0007

10 97.06 97.50 97.56 0.0005 0.0007 0.0012
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clusters that achieved the highest performance are adopted to implement the proposed solar
tracking systems. The prediction rates and the MSE results of the three algorithms with CMLP
for single and dual axis systems are shown in Tables 8–11.

Table 8 presents the results of data set one to predict orientation angle in single‐axis solar
tracking system. The results revealed that using four and six clusters of k‐means clustering
algorithm achieved the lowest MSE of 0.0016. The MSE of hierarchical and fuzzy c‐means
clustering algorithms are 0.0017 and 0.0019, respectively. On the other hand, k‐means clustering
algorithm predicted 97.60%, and 96.81% of data set for four and six clusters, respectively. While
hierarchical and fuzzy c‐means clustering algorithms predicted 97.33% and 96.98% for nine and
five clusters, respectively. Comparing the MSE of four and six clusters of k‐means clustering,
using four clusters has better performance to predict the highest amount of data set and the
lowest MSE. Further analysis to the data distribution that obtained by using k‐means clustering
algorithm with four clusters, which is the optimum number of clusters, it found that the best
distribution is based on dividing each month into four quarters as described earlier. The data
samples were distributed to the four clusters. The data that taken in the third and fourth quarters
were clustered to clusters one and four respectively. While the data that measured in the first and
second quarters were clusters to clusters two and three such that cluster two contains the data
that measured from early morning at 8:00 a.m. until the day's noon at 1:00 p.m., and cluster three
contains the data that measured from after noon until 5:00 p.m.

Table 9 shows the results of using data set two to predict orientation angle in single‐axis
solar tracking system. The results revealed that k‐means clustering algorithm with five clusters
predicted the highest prediction rate of 96.45%. Fuzzy c‐means clustering algorithm with five
clusters obtained very close prediction rate of 96.10%. While hierarchical clustering algorithm
with eight clusters predicted the worst amount of data with prediction rate of 95.60%. On the
other hand, the MSE of k‐means clustering algorithm with ten clusters is 0.0003 which is the
lowest MSE. Fuzzy c‐means and hierarchical clustering algorithms achieved MSE of 0.0005,
and 0.0021 with five and eight clusters, respectively. Comparing the optimum results of

TABLE 11 The overall prediction rate (%) and MSE results of CMLP and the three clustering algorithms of
dual‐axis solar tracking system using data set two

Number of
clusters

Clustering algorithm

Prediction rate (%) MSE

K‐means Fuzzy c‐means Hierarchical K‐means Fuzzy c‐means Hierarchical

2 94.30 94.60 95.97 0.0013 0.0012 0.0008

3 95.01 94.70 93.70 0.0009 0.0011 0.0010

4 95.60 93.70 95.74 0.0006 0.0014 0.0007

5 94.61 96.59 95.35 0.0011 0.0008 0.0008

6 93.10 95.38 94.03 0.0014 0.0010 0.0013

7 92.40 95.20 95.50 0.0015 0.0011 0.0007

8 94.80 94.90 94.90 0.0013 0.0009 0.0009

9 94.70 94.30 95.20 0.0009 0.0012 0.0010

10 95.10 95.70 91.40 0.0012 0.0011 0.0016
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prediction rates and MSE of the three algorithms, using k‐means clustering algorithm with ten
clusters performed better than other algorithms.

In contrary, Table 10 presents the results of predicting both tilt and orientation angles in
dual‐axis solar tracking system using data set one. The results revealed that k‐means clustering
algorithm predicted the highest amount of data with a prediction rate of 97.71% when eight
clusters are used. While fuzzy c‐means clustering algorithm predicted close amount of data
with a prediction rate of 97.62% when six clusters are used.

Moreover, the hierarchical clustering algorithm predicted 97.27% with six clusters as well.
To select the optimum clustering algorithm and the optimum number of clusters, MSE per-
formance function is adopted.

K‐means clustering algorithm achieved the lowest MSE of 0.0005 for 10 clusters. Fuzzy
c‐means clustering algorithm achieved low MSE of 0.0008 for six clusters, while the
hierarchical clustering algorithm obtained 0.0011 MSE for two and six clusters. Referring to
Table 10, and comparing the overall results of the prediction rate and MSE, the results showed
that using ten clusters of k‐means clustering algorithm obtained the lowest MSE and a high
prediction rate. In addition, this prediction rate is very close to the highest prediction rate that
obtained using eight clusters. The results revealed that the best clustering algorithm that can
optimize the performance of CMLP network is k‐means clustering algorithm. While the opti-
mum number of clusters that can improve the performance is 10 clusters. Furthermore, the
data distributed in the 10 clusters based on the time of the day.

The time of each day was divided into two parts based on the position of the sun across the
sky. The time from early morning at 8:00 a.m. until the day's noon at 1:00 p.m. is the first part,
while the time after noon until 5:00 p.m. is the second part. Data that collected in several half‐
months and prenoon time are clustered to clusters one, two, four, six, and eight. In contrast, the
data that collected after noon are clustered to clusters three, five, seven, nine, and ten. This
indicate the relationship between clusters that selected to build the proposed systems.

On the other hand, Table 11 shows the results of using data set two to predict tilt and
orientation angles in dual‐axis solar tracking system. The results revealed that fuzzy c‐means
clustering predicted 96.59% of data when five clusters are used. This prediction rate is the
highest prediction rate compared to both hierarchical and k‐means clustering algorithms that
predicted 95.97% and 95.60% with two and four clusters, respectively. In contrast, using four
clusters of k‐means clustering algorithm achieved the lowest MSE of 0.0006. Hierarchical and
fuzzy c‐means clustering algorithms achieved 0.0007 and 0.0009 for seven and eight clusters,
respectively.

Moreover, comparing the results of both MLP and CMLP networks showed that the CMLP
predicted higher of data compared to MLP. This is probably because of CMLP network contains a
direct weighted connection from input to output layers, which allows it to learn higher complex
patterns as compared to MLP network.76,77 These additional direct connections also provide linear
connections that CMLP network could represent both linear and nonlinear relationships.

4.2 | Results of phase two: Training of LR based on the optimum
clustering algorithm

This section presents the appropriate LR model that can be integrated to MLP and CMLP
networks to develop the proposed solar tracking systems. In addition, it checks the capability of
the selected LR models in classifying the input data into clusters. The results of the trained LR
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models for both MLP and CMLP networks using data set one and data set two are presented in
the following sections.

To test the accuracy of BLR and MLR when k‐means clustering algorithm is used to train them
with the selected numbers of clusters, the data samples are split into two parts (i.e., training and
testing). Seventy percent of data are used to train the MLR and BLR, while 30% of data are used to
test the accuracy of MLR and BLR. The performance of MLR and BLR in classifying the input
variables of data set one and data set two is determined by finding the confusion matrix for overall
data, therefore, test the accuracy of the LR model. The results of the trained LR models for both
MLP and CMLP networks are presented in the following sections.

4.2.1 | LR based on the optimum clustering algorithm for MLP network

The selected optimum clustering algorithms and optimum number of clusters of MLP network
are used to train the LR models. The trained LR models are used to classify the input variables
into predefined clusters. Table 12 shows the optimum combination between the LR models and
the MLP network that is adopted to develop both single and dual axis solar tracking systems
using the data set one and data set two.

TABLE 12 The optimum combination of MLP and MLR/BLR to develop single and dual axis solar tracking
systems using data set one and data set two

Data set
Number of
axis

Number of
clusters

Suitable logistic
regression model

Data set one Single‐axis 7 MLR

Data set one Dual‐axis 2 BLR

Data set two Single‐axis 5 MLR

Data set two Dual‐axis 2 BLR

Abbreviations: BLR, binomial logistic regression; MLR, multinomial logistic regression.

TABLE 13 Confusion matrix for MLR that trained by k‐means clustering when k=7 by using data set one
for single‐axis solar tracking system

Cluster Number

Predicted

Percent (%)1 2 3 4 5 6 7

1 35 0 0 0 0 0 0 100

2 0 8 0 0 0 0 0 100

3 0 0 26 0 0 0 0 100

4 0 0 0 20 0 0 0 100

5 0 0 0 0 29 0 0 100

6 0 0 0 0 0 10 0 100

7 0 0 0 0 0 0 25 100

Overall (%) 22.79 5.22 17.01 13.2 18.9 6.54 16.34 100

AL‐ROUSAN ET AL. | 5645

 1098111x, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22525 by Istanbul G

elisim
 U

niversitesi, W
iley O

nline L
ibrary on [29/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



As shown in Table 12, for single‐axis solar tracking system by using data set one,
a MLR model is trained by seven clusters of k‐means clustering algorithm. In contrast, for
dual‐axis solar tracking system by using data set one, a BLR model is trained by two
clusters.

However, for single‐axis solar tracking system by using data set two, a MLR model is trained
by five clusters of k‐means clustering algorithm. While dual‐axis solar tracking system is
trained by a (BLR) model for data set two. Tables 13–16 show the confusion matrix for both
MLR and BLR for both single and dual axis solar tracking systems. The confusion matrix is a
table that used to describe the performance of a classifier.78–80

TABLE 14 Confusion matrix for BLR that trained by k‐means clustering when k=2 by using data set one for
dual‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2

1 90 0 100

2 0 63 100

Overall (%) 58.83 41.17 100

TABLE 15 Confusion matrix for MLR that trained by k‐means clustering when k= 5 by using data set two
for single‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2 3 4 5

1 35 0 0 0 0 100

2 0 20 0 0 0 100

3 0 0 18 0 0 100

4 0 0 0 40 0 100

5 0 0 0 0 40 100

Overall (%) 22.88 13.08 11.76 26.14 26.14 100

TABLE 16 Confusion matrix for BLR that trained by k‐means clustering when k= 2 by using data set two
for dual‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2

1 90 0 100

2 0 63 100

Overall (%) 58.83 41.17 100
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TABLE 17 The optimum combination of MLP and MLR/BLR to develop single and dual axis solar tracking
systems

Data set
Number of
axis

Number of
clusters

Suitable logistic
regression model

Data set one Single‐axis 4 MLR

Data set one Dual‐axis 10 MLR

Data set two Single‐axis 10 MLR

Data set two Dual‐axis 4 MLR

Abbreviations: BLR, binomial logistic regression; MLR, multinomial logistic regression.

TABLE 18 Confusion matrix for MLR that trained by k‐means clustering when k= 4 by using data set one
for single‐axis solar tracking system

Cluster number

Predicted group

Percent (%)1 2 3 4

1 39 0 0 0 100

2 0 40 0 0 100

3 0 0 42 0 100

4 0 0 0 32 100

Overall (%) 25.49 26.14 27.45 20.92 100

TABLE 19 Confusion matrix for MLR that trained by k‐means clustering when k= 10 by using data set one
for dual‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2 3 4 5 6 7 8 9 10

1 8 0 0 0 0 0 0 0 0 0 100

2 0 16 0 0 0 0 0 0 0 0 100

3 0 0 10 0 0 0 0 0 0 0 100

4 0 0 0 16 0 0 0 0 0 0 100

5 0 0 0 0 15 0 0 0 0 0 100

6 0 0 0 0 0 12 0 0 0 0 100

7 0 0 0 0 0 0 20 0 0 0 100

8 0 0 0 0 0 0 0 16 0 0 100

9 0 0 0 0 0 0 0 0 30 0 100

10 0 0 0 0 0 0 0 0 0 10 100

Overall (%) 5.2 10.5 6.5 10.5 9.8 7.8 13.1 10.5 19.6 6.5 100
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As shown in Tables 13–16, the accuracy of MLR and BLR classifiers are 100% when the
number of clusters that used to train MLR is seven, five, and two. Since both MLR and BLR
successfully could predict all the classes of training data, thus both MLR and BLR would be
used efficiently in finding the confidence classes to incorporate new training data into the
model. This process would enhance the performance of the developed single and dual axis solar
tracking systems when combined with MLP network.

4.2.2 | LR based on the optimum clustering algorithm for CMLP
network

Similar to Table 12, Table 17 shows the optimum combination between the LR models and the
CMLP network that is adopted to develop both single and dual axis solar tracking systems using
data set one and data set two.

TABLE 20 Confusion matrix for MLR that trained by k‐means clustering when k= 10 by using data set two
for single‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2 3 4 5 6 7 8 9 10

1 20 0 0 0 0 0 0 0 0 0 100

2 0 20 0 0 0 0 0 0 0 0 100

3 0 0 8 0 0 0 0 0 0 0 100

4 0 0 0 8 0 0 0 0 0 0 100

5 0 0 0 0 10 0 0 0 0 0 100

6 0 0 0 0 0 20 0 0 0 0 100

7 0 0 0 0 0 0 15 0 0 0 100

8 0 0 0 0 0 0 0 12 0 0 100

9 0 0 0 0 0 0 0 0 20 0 100

10 0 0 0 0 0 0 0 0 0 20 100

Overall (%) 13.1 13.1 5.2 5.2 6.6 13.1 9.8 7.7 13.1 13.1 100

TABLE 21 Confusion matrix for MLR that trained by k‐means clustering when k= 4 by using data set two
for dual‐axis solar tracking system

Cluster number

Predicted

Percent (%)1 2 3 4

1 42 0 0 0 100

2 0 39 0 0 100

3 0 0 40 0 100

4 0 0 0 32 100

Overall (%) 27.45 25.49 26.14 20.92 100
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As shown in Table 17, and by using data set one, CMLR models are trained by four and ten
clusters for single and dual axis solar tracking systems respectively. While by using data set two,
CMLR models are trained by ten and four clusters for both single and dual axis solar tracking
systems respectively. Tables 18–21 show the confusion matrix for both CMLR and MLR for
both single and dual axis solar tracking systems, respectively.

As shown in Tables 18–21, the accuracy of CMLR classifier is 100% when the number of
clusters that used to train MLR is four and ten. These results proved that MLR models are
capable to find the confidence classes to incorporate new training data into the model. Thus, it
would efficiently be used in developing efficient single and dual axis solar tracking systems
when combined with CMLP network. While the accuracy of CMLR classifier is 100% when the
number of clusters that used to train BLR is two. These results proved that BLR models are
capable to find the confidence classes to incorporate new training data into the model and
would efficiently be used in developing efficient single and dual axis solar tracking systems
when combined with CMLP network as well.

4.3 | Results of phase three: Integration of LR and MLP/CMLP for
single and dual axis tracking systems

Based on the results of previous sections, efficient single and dual axis solar tracking systems
are developed. A combination of MLP or CMLP neural network and a trained BLR or MLR by
k‐means clustering algorithm with different number of clusters is used. The results of the
developed single and dual axis solar tracking systems are compared to the results of conven-
tional MLP and CMLP to evaluate the performance of the developed systems. Both prediction
rate and MSE performance metrics are used to evaluate the developed solar tracking systems.

4.3.1 | Results of developed single and dual axis solar tracking system based
on MLP

The block diagram of the developed single and dual axis solar tracking systems based on
combining MLP neural network and BLR or MLR model is shown in Figure 11. As shown in
Figure 11, the developed single or dual axis solar tracking system will use the predicted cluster
from the trained LR model as input variable to the MLP neural network along with the input

FIGURE 11 Block diagram of the developed single and dual axis solar tracking systems based on BLR/MLR
and MLP. BLR, binomial logistic regression; MLP, multilayer perceptron; MLR, multinomial logistic regression
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variables of month, day, and time variables as data set one, while month, day, time, Isc,Voc, and
power radiation variables are used as data set two.

The developed single and dual axis solar tracking systems are tested, analyzed, and com-
pared with conventional MLP network by following the methodology that explained earlier.
Three different scenarios with one, two, and three hidden layers are tested to find the pre-
diction rate and MSE. Tables 22 and 23 show the MSE and the prediction rate of the developed
single‐ axis and dual‐axis solar tracking systems respectively when data set one is used.

As shown in Tables 22 and 23, the overall prediction rate that obtained by using the
developed single and dual axis solar tracking systems based on combining MLP with MLR and
BLR is higher than the prediction rate of conventional MLP based system. Moreover, using one
hidden layer in the developed single‐axis tracking system achieved higher prediction rate
compared to the three scenarios of one, two, and three hidden layers in conventional MLP
based system. One hidden layer of MLP and MLR obtained a prediction rate of 96.78%, 96.37%,
and 99.13% for one, two, and three hidden layers, respectively compared to 92.5%, 95.06, and
96.75% for one, two, and three hidden layers of conventional MLP, respectively.

Moreover, using one hidden layer in the developed single‐axis solar tracking system ob-
tained higher performance compared with three hidden layers of conventional MLP. The MSE
of one, two, and three hidden layers are 0.240 × 10−2, 0.130 × 10−2, and 0.010 × 10−2 compared
to 0.890 × 10−2, 0.370 × 10−2, and 0 .250 × 10−2, respectively. The prediction rate of one hidden
layer in the developed MLP‐MLR is approximately equal to the prediction rate of three hidden
layers of conventional MLP. While the MSE of one hidden layer of the developed MLP‐MLR is
better than using three hidden layers of conventional MLP.

On the other hand, using BLR to develop dual‐axis solar tracking system obtained a pre-
diction rate of 96.80%, 98.64%, and 98.62% for one, two, and three hidden layers, respectively. In
addition, the developed dual‐axis solar tracking system achieved very low MSE of 0.100 × 10−2,
2.070 × 10−4, and 1.380 × 10−4 for one, two, and three hidden layers, respectively. One hidden

TABLE 22 The prediction rate (%) and MSE results of the developed dual‐axis solar tracking system based
on combining MLP and MLR when K= 7 by using data set one

Single‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional MLP 92.50 95.06 96.75 0.890 × 10−2 0.370 × 10−2 0.250 × 10−2

Developed‐MLP with MLR 96.78 96.37 99.13 0.240 × 10−2 0.130 × 10−2 0.010 × 10−2

Abbreviations: MLP, multilayer perceptron; MLR, multinomial logistic regression.

TABLE 23 The prediction rate (%) and MSE results of the developed dual‐axis solar tracking system based
on combining MLP and BLR when K= 2 by using data set one

Single‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional MLP 95.49 96.13 96.68 0.280 × 10−2 0.220 × 10−2 0.160 × 10−2

Developed‐MLP with BLR 96.80 98.64 98.62 0.100 × 10−2 2.070 × 10−4 1.380 × 10−4

Abbreviations: MLP, multilayer perceptron; MLR, multinomial logistic regression.
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layer in the developed MLP‐BLR system obtained lower MSE than the three scenarios of one,
two, and three hidden layers in conventional MLP.

On the other hand, data set two is tested and evaluated to find the MSE and the prediction
rate of the developed single and dual axis solar tracking systems. Tables 24 and 25 show the
results of MSE and prediction rate of the developed single and dual axis solar tracking systems
compared to the conventional MLP network.

As shown in Tables 24 and 25, the overall prediction rate that obtained by using the developed
single‐axis solar tracking system based on MLP and MLR is higher than the prediction rate of
conventional MLP based system. Moreover, using one hidden layer in the developed single‐axis
tracking system achieved higher prediction rate compared to that using the three scenarios of one,
two, and three hidden layers in conventional MLP based system. One hidden layer of MLP and
MLR obtained a prediction rate of 96.48%, 97.15%, and 97.85% with one, two, and three hidden
layers respectively. On the other hand, one hidden layer in the developed MLP‐MLR system
obtained lower MSE than the three scenarios of one, two, and three hidden layers in conventional
MLP. The MSE of one, two, and three hidden layers are 0.050 × 10−2, 0.020 × 10−2, and
6.130 × 10−5, respectively. Moreover, increasing the number of hidden layers could increase the
performance of the developed single‐axis solar tracking system by decreasing the achieved MSE.
The optimum MSE obtained when three hidden layers are used.

On the other hand, the overall prediction rate that obtained by using the developed dual‐
axis solar tracking system based on MLP and BLR is higher than the prediction rate of con-
ventional MLP based system. One hidden layer of MLP and BLR obtained a prediction rate of
96.703%, 96.75%, and 98.65% with one, two, and three hidden layers, respectively. Moreover,
the developed dual‐axis solar tracking system achieved very low MSE. One hidden layer in the
developed MLP‐BLR system obtained lower MSE than the three scenarios of one, two, and
three hidden layers in conventional MLP. The MSE of one, two, and three hidden layers are

TABLE 24 The overall prediction rate (%) and MSE results of the developed single‐axis solar tracking
system based on combining MLP and MLR when K= 5 by using data set two

Single‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional MLP 93.72 93.79 96.47 0.350 × 10−2 0.150 × 10−2 0.090 × 10−2

Developed‐MLP with MLR 96.48 97.15 97.85 0.050 × 10−2 0.020 × 10−2 6.130 × 10−5

Abbreviations: MLP, multilayer perceptron; MLR, multinomial logistic regression.

TABLE 25 The overall prediction rate (%) and MSE results of the developed dual‐axis solar tracking system
based on combining MLP and BLR when K= 2, by using data set two

Dual‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional MLP 94.64 94.94 95.36 0.130 × 10−2 0.090 × 10−2 0.070 × 10−2

Developed‐MLP with BLR 96.70 96.75 98.65 0.070 × 10−2 0.040 × 10−2 0.017 × 10−2

Abbreviations: BLR, binomial logistic regression; MLP, multilayer perceptron.
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0.070 × 10−2, 0.040 × 10−2, and 0.017 × 10−2, respectively for MLP and BLR network. More-
over, increasing the number of hidden layers increased the performance of the developed dual‐
axis solar tracking system by decreasing the achieved MSE. The optimum MSE obtained when
three hidden layers are used.

All the results revealed that increasing the number of hidden layers could increase the
performance of the developed single and dual axis solar tracking systems and decrease the
achieved MSE. The optimum MSE obtained when three hidden layers are used. These results
revealed that the developed single and dual axis solar tracking systems could minimize the
overhead of increasing the number of hidden layers in conventional MLP. Thus, decrease the
power consumption and the processing time.

Tables 26 and 27 show a comparison between the number of nodes, the number of con-
nections, and time complexity using one hidden layer in developed solar tracking system versus
using three hidden layers in conventional MLP for data set one and data set two, respectively.

As shown in Tables 26 and 27, the developed intelligent solar tracking controllers are better
than conventional MLP based controller because only one hidden layer will be adopted to
implement the developed model practically instead of using three hidden layers.

In contrast, although the number of inputs in developed system is greater than the con-
ventional system, but less number of neurons are used, therefore, less number of overall
connections. The overall connections in conventional MLP using data set one are 240 and
250 connections for single‐axis and dual‐axis systems respectively, and using data set two are
270 and 280 for single‐axis and dual‐axis systems, respectively.

While the number of overall connections of the developed single and dual axis tracking
systems are 50 and 60 connections respectively for data set one, and 80 and 90, respectively for
data set two. Increasing the number of connections could increase the number of multiplication

TABLE 26 A comparison between conventional MLP and MLP‐BLR/MLR based systems for data set one

Parameter

MLP‐3 hidden layers MLP‐BLR/MLR‐1 hidden layer

Single‐axis Dual‐axis Single‐axis Dual‐axis

Number of Inputs 3 3 4 4

Number of neurons 31 32 11 12

Number of connections
(inputs‐hidden nodes)

30 30 40 40

Number of connections
(hidden nodes‐outputs)

10 20 10 20

Number of connections
(hidden nodes)

200 200 0 0

Overall connections 240 250 50 60

Cost Function (MSE) 0.250 × 10−2 0.160 × 10−2 0.240 × 10−2 0.100 × 10−2

Prediction Rate (%) 96.75 96.68 96.78 96.80

Time Complexity for (n)
samples

O(d× h) +O
(h × h) +O
(h × h) +O
(h × c)

O(d × h) +O
(h × h) +O
(h × h) +O
(h × c)

O(d × h) +O
(h × c) +
(v2× c)

O(d× h) +O
(h × c) +
(v2 × c)
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terms (i.e., X1*W1), which increase the processing time and the memory size of the system,
therefore, increase the time complexity that measures the estimation time to run the system.
Moreover, the cost/performance can be calculated by comparing the MSE of both cases to-
gether (Rady, 2011).39 The MSE of the developed system is less than the conventional MLP‐
based system. As a result, the developed model is simpler, more accurate, needs less memory
size, fast processing time, and less power consumption as well. As shown in Tables 26 and 27,
the number of hidden layers that used to implement the solar tracking model plays the major
role to increase the time complexity of the solar tracking systems.

The time complexity of using three hidden layers is much greater than using single hidden
layer in the developed models although of using LR models in combination with MLP network.
The improvement of time complexity of the developed MLP‐BLR/MLR systems when data set
one is used are 72.50% and 68.30% for single and dual axis solar tracking systems, respectively.
While the improvement of the developed systems when data set two is used are 46.67% and 45%
for single and dual axis solar tracking systems, respectively.

4.3.2 | Results of developed single and dual axis solar tracking system based
on CMLP

The block diagram of the developed single and dual axis solar tracking systems based on
combining CMLP network and MLR models is shown in Figure 12. As shown in Figure 12, the
developed single or dual axis solar tracking system will use the predicted cluster from the
trained LR model as input variable to the CMLP network along with the input variables, in
addition to the input variables of month, day, and time or month, day, time, Isc, Voc, and power
radiation.

TABLE 27 A comparison between conventional MLP and MLP‐BLR/MLR based systems for data set two

Parameter

MLP‐3 hidden layers MLP‐BLR/MLR‐1 hidden layer

Single‐axis Dual‐axis Single‐axis Dual‐axis

Number of Inputs 6 6 7 7

Number of neurons 31 32 11 12

Number of connections
(inputs‐hidden nodes)

60 60 70 70

Number of connections
(hidden nodes‐outputs)

10 20 10 20

Number of connections
(hidden nodes)

200 200 0 0

Overall connections 270 280 80 90

Cost Function (MSE) 0.090 × 10−2 0.070 × 10−2 0.050 × 10−2 0.070 × 10−2

Prediction Rate (%) 96.47 95.36 96.48 96.70

Time Complexity for (n)
samples

O(d× h) +O
(h × h) +O
(h × h) +O
(h × c)

O(d × h) +O
(h × h) +O
(h × h) +O
(h × c)

O(d × h) +O
(h × c) +
(v2 × c)

O(d× h) +O
(h × c) +
(v2 × c)
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The developed single and dual axis solar tracking systems are tested, analyzed, and com-
pared with conventional CMLP network by adopting the methodology that explained earlier.
Three different scenarios with one, two, and three hidden layers are tested to find the pre-
diction rate and MSE. Tables 28 and 29 show the MSE and the prediction rate of the developed
single and dual axis solar tracking systems when data set one is used.

As shown in Tables 28 and 29, the overall prediction rate that obtained by using one hidden
layer of the developed single‐axis solar tracking system achieved higher prediction rate as
compared to using three hidden layers in conventional CMLP based system. The prediction rate
of one, two, and three hidden layers of the developed single‐axis solar tracking system achieved
97.60%, 98.52%, and 98.97%, respectively, compared to 96.35%, 96.52%, and 96.83% for one, two,

FIGURE 12 Block diagram of the developed single and dual axis solar tracking systems based on BLR/MLR
and CMLP. BLR, binomial logistic regression; CMLP, cascade multilayer perceptron; MLR, multinomial logistic
regression

TABLE 28 The prediction rate (100%) and MSE results of the developed single‐axis solar tracking system
based on combining CMLP and MLR when K= 4 by using data set one

Single‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional CMLP 96.35 96.52 96.83 0.520 × 10−2 0.250 × 10−2 0.080 × 10−2

Developed‐CMLP with MLR 97.60 98.52 98.97 0.160 × 10−2 0.070 × 10−2 0.020 × 10−2

Abbreviations: CMLP, cascade multilayer perceptron; MLR, multinomial logistic regression.

TABLE 29 The prediction rate (100%) and mse results of the developed dual‐axis solar tracking system
based on combining CMLP and MLR when k= 10 by using data set one

Dual‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional CMLP 93.87 97.37 97.98 0.180 × 10−2 0.160 × 10−2 0.070 × 10−2

Developed‐CMLP with MLR 97.06 98.71 99.19 0.050 × 10−2 6.030 × 10−5 6.250 × 10−5

Abbreviations: CMLP, cascade multilayer perceptron; MLR, multinomial logistic regression.
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and three hidden layers, respectively in conventional CMLP. On the other hand, the developed
single‐axis solar tracking system achieved low MSE. Using two hidden layers of the developed
single‐axis tracking system achieved better MSE compared to the three scenarios of conven-
tional CMLP. One, two, and three hidden layers of developed single‐axis solar tracking system
achieved MSE of 0.16 × 10−2, 0.070 × 10−2, 0.020 × 10−2, respectively compared to
0.025 × 10−2, 0.025 × 10−2, and 0.080 × 10−2, respectively.

Moreover, the prediction rate of dual‐axis solar tracking system based on CMLP and MLR is
higher than the prediction rate of conventional CMLP based system. Using one hidden layer in
the developed dual‐axis tracking system achieved very close prediction rate compared to using
three hidden layers in CMLP based system. The prediction rate of one, two, and three hidden
layers achieved 97.06%, 98.71%, and 99.19%, respectively. On the other hand, the developed
dual‐axis solar tracking system achieved extremely low MSE. One hidden layer in the devel-
oped CMLP‐MLR system obtained 0.050 × 10−2 MSE which is lower MSE than the three
scenarios of one, two, and three hidden layers in CMLP. Three hidden layers obtained the
minimum MSE of 6.250 × 10−5. The MSE values are superior and can guarantee the capability
of the developed system in predicting both tilt and orientation angles efficiently.

On the other hand, data set two is tested and evaluated to find the MSE and the prediction
rate of the developed single and dual axis solar tracking systems. Three different scenarios with
one, two, and three hidden layers are tested to find the prediction rate and MSE. Tables 30 and
31 show the results of MSE and prediction rate of the developed single and dual axis solar
tracking systems compared to the conventional CMLP network.

As shown in Tables 30 and 31, the MSE that obtained by using one hidden layer of the
developed single‐axis solar tracking system based on CMLP and MLR is equal to the MSE of
three hidden layers of conventional CMLP‐based system. One, two, and three hidden layers of

TABLE 30 The overall prediction rate (100%) and MSE results of the developed single‐axis solar tracking
system based on combining CMLP and MLR when K= 10 by using data set two

Single‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional CMLP 94.87 96.40 97.80 0.420 × 10−2 0.090 × 10−2 0.030 × 10−2

Developed‐CMLP with MLR 95.80 98.10 98.30 0.030 × 10−2 0.020 × 10−2 5.330 × 10−5

Abbreviations: CMLP, cascade multilayer perceptron; MLR, multinomial logistic regression.

TABLE 31 The overall prediction rate (100%) and MSE results of the developed dual‐axis solar tracking
system based on combining CMLP and MLR when K= 4 by using data set two

Dual‐axis based

Prediction rate (%) MSE

Number of hidden layers Number of hidden layers

One Two Three One Two Three

Conventional CMLP 94.27 95.90 96.03 0.110 × 10−2 0.240 × 10−2 0.060 × 10−2

Developed‐CMLP with MLR 95.60 97.03 97.60 0.060 × 10−2 0.040 × 10−2 0.020 × 10−2

Abbreviations: CMLP, cascade multilayer perceptron; MLR, multinomial logistic regression.
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the developed CMLP obtained MSE of 0.030 × 10−2, 0.020 × 10−2, and 5.330 × 10−5, respec-
tively. On the other hand, the overall prediction rate of the developed single‐axis solar tracking
system is higher than the prediction rate of conventional CMLP. One hidden layer in the
developed CMLP‐MLR system obtained 95.80%, while two and three hidden layers obtained
98.10% and 98.30%, respectively.

Moreover, increasing the number of hidden layers increased the performance of the de-
veloped single‐axis solar tracking system by decreasing the achieved MSE. The optimum MSE
obtained when three hidden layers are used. This is because increasing the number of layers
would increase the degree of nonlinearity and would add a level of abstraction.81–83

On the other hand, the overall prediction rate that obtained by using the developed dual‐
axis solar tracking system based on CMLP combined with the MLR is higher than the pre-
diction rate of conventional CMLP‐based system. One hidden layer of the developed CMLP‐
MLR obtained a prediction rate of 95.60%, 97.03%, and 97.60% with one, two, and three hidden
layers, respectively. Moreover, the developed dual‐axis solar tracking system achieved very low
MSE. One hidden layer in the developed CMLP‐MLR system obtained a MSE equal to the MSE
of three hidden layers of conventional CMLP. The MSE of one, two, and three hidden layers are
0.060 × 10−2, 0.040 × 10−2, and 0.020 × 10−2, respectively. Moreover, increasing the number of
hidden layers increased the performance of the developed dual‐axis solar tracking system by
decreasing the achieved MSE. The optimum MSE obtained when three hidden layers are used.

Moreover, all the results revealed that increasing the number of hidden layers increased the
performance of the developed single and dual axis solar tracking systems, and decreased the
achieved MSE. The optimum MSE obtained when three hidden layers are used. These results
revealed that the developed single and dual axis solar tracking systems could minimize the
overhead of increasing the number of hidden layers in conventional CMLP as well as of
conventional MLP. Tables 32 and 33 show a comparison between using one hidden layer in
developed solar tracking system versus using three hidden layers in conventional CMLP for
data set one, and data set two, respectively.

Tables 32 and 33 show a comparison between using one hidden layer in developed solar
tracking system versus using three hidden layers in conventional CMLP for data set one, and
data set two, respectively.

As shown in Tables 32 and 33, the developed intelligent solar tracking controllers are better
than conventional CMLP based controller because only one hidden layer would be adopted to
implement the developed model practically instead of using three hidden layers for conven-
tional CMLP. The overall connections in conventional CMLP using data set one are 423 and
456 connections for single‐axis and dual‐axis systems, respectively, and for using data set two
are 516 and 552 for single‐axis and dual‐axis systems, respectively. While the number of overall
connections of the developed single and dual axis tracking systems are 54 and 68 connections,
respectively for data set one, and 87 and 104, respectively for data set two.

Similar to the proposed MLP based systems, increasing the number of connections could
increase the number of multiplication terms (i.e., X1*W1), which increase the processing time
and the memory size of the system. The MSE of the developed system is less than the con-
ventional CMLP based system. As a result, the developed model is simpler, more accurate,
needs less memory size, fast processing time, and less power consumption as well.

Finally, similar to the proposed single‐axis solar tracking systems, the developed dual‐axis
solar tracking systems based on CMLP and MLP revealed that both developed systems are
sufficient to optimize the conventional methods, decreasing the power consumption, de-
creasing the complexity of the solar tracking system and fasten the processes of positioning the
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solar tracking systems toward the sun. The improvement of time complexity of the developed
CMLP‐BLR/MLR systems when data set one is used are 98.16% and 99.84% for single and dual
axis solar tracking systems, respectively. While the improvement of the developed systems
when data set two is used are 98.07% and 98.34% for single and dual axis solar tracking systems.

5 | DISCUSSION

Comparing all the achieved results of the developed single and dual axis solar tracking systems
with literature review results, it is found that the achieved results are in line with the results
that obtained by Rabee et al.9 The researchers have proved that neural network principles are
able to cope with nonlinear data. In addition, it is proved that neural network could be used as
a good controller for solar tracking systems.3,4,9,10 Moreover, the results of the proposed systems
revealed that neural network principles can deal with time series data and can be used to avoid
the disadvantages of conventional methods.

It is shown by literature review that neural networks need to maintain the generalization of
the forecaster and avoid the overfitting.9 These two problems have been maintained by either
modifying the error optimization function,10 or by increasing the number of hidden layers and
hidden neurons.9,10 In addition, it is proven that using these solutions could increase the
processing time, and thus increase the consumed energy.9

However, 83.3% of the research are based on using random‐generated data,3,9 or data that
measured in very short time.4,10

TABLE 32 A comparison between conventional CMLP and CMLP‐BLR/MLR based systems for data
set one

Model

CMLP‐3 hidden layers CMLP‐ MLR‐1 hidden layer

Single‐axis Dual‐axis Single‐axis Dual‐axis

Number of inputs 3 3 4 4

Number of neurons 31 32 11 12

Number of connections
(inputs‐hidden nodes)

90 90 40 40

Number of connections
(hidden nodes‐outputs)

33 66 14 28

Number of connections
(hidden nodes)

300 300 0 0

Overall connections 423 456 54 68

Cost function (MSE) 0.080 × 10−2 0.070 × 10−2 0.160 × 10−2 0.050 × 10−2

Prediction rate 96.83% 97.98% 97.60% 97.06%

Time complexity for (n)
samples

O(d × h) +O
(d × h × h) +
O(d× h ×
h × h) +O
(d × h × h ×
h × c)

O(d × h) +O
(d × h × h) +O
(d × h × h × h) +
O(d× h × h ×
h × c)

O(d × h) +O
(d × h × c) +
(v2 × c)

O(d× h) +O
(d × h× c) +
(v2 × c)
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Using inaccurate data is the main reason to slow the convergence to reach the desired goal.
In addition, using inaccurate data to train the neural network will add an additional risk to find
faulty and inaccurate results.

In contrast, this study used real experimental data to train, validate, and test the neural
network models. Therefore, the performance results of the proposed systems would be con-
sidered as trusted results. Moreover, the results revealed that both MLP and CMLP can be used
sufficiently to control solar tracking systems. However, the results revealed that using three
hidden layers performed better than using one and two hidden layers. In addition, it is found
that using 10 neurons in the hidden layers performed better than using 1–9 or 11–15 neurons.
Therefore, the proposed systems could work properly by increasing the number of hidden
layers and hidden nodes up to specific limit which is the same finding by literature review.2,9,10

However, increasing the complexity of the proposed controllers (i.e., MLP and CMLP)
would not achieve the primary goal of using artificial intelligence techniques to control solar
tracking systems. Thus, it is necessary to propose a simple system that can efficiently control
solar tracking systems. On the other hand, and depends on the characteristics of neural net-
work principles, it is found that MLP principles suffer from slow convergence to reach the
desired goal, high cost, and high time complexity problems. In addition, it has been proven by
literature review that using a reference value along with input variables to neural network can
help to approximate the desired goal faster, decrease the complexity of the proposed controller,
increase the performance, and avoid the overfitting.3

Moreover, this study mainly aims to design a new solar tracking system controller by
integrating MLP principles with a trained LR model. This LR model is trained by k‐means

TABLE 33 A comparison between conventional CMLP and CMLP‐BLR/MLR based systems for data
set two

Model

MLP‐3 hidden layers MLP‐BLR/MLR‐1 hidden layer

Single‐axis Dual‐axis Single‐axis Dual‐axis

Number of inputs 6 6 7 7

Number of neurons 31 32 11 12

Number of connections
(inputs‐hidden nodes)

180 180 70 70

Number of connections
(hidden nodes‐outputs)

36 72 17 34

Number of connections
(hidden nodes)

300 300 0 0

Overall connections 516 552 87 104

Cost function (MSE) 0.0009 0.0005 0.0009 0.0007

Prediction rate 97.80% 96.03% 95.08% 95.60%

Time complexity for (n)
samples

O(d × h) +O
(d × h × h) +
O(d× h ×
h × h) +
O
(d × h × h ×
h × c)

O(d × h) +O
(d × h × h) +O
(d × h × h × h) +
O(d× h ×
h × h × c)

O(d × h) +O
(d × h × c) +
(n × v2 × c)

O(d × h) +O
(d × h × c) +
(n × v2 × c)
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clustering algorithm with different number of clusters for each case. However, it has been
proven by this study that the output of the trained LR can be used as a reference value along
with the input variables of MLP principles. However, the output of the trained LR can help to
identify the relationships between data set variables because LR is more robust to find the
relationship between samples of data compared to other statistical models.15,16 These re-
lationships can guide the MLP principles to converge fast, thus, improve the performance of
MLP. In addition, LR models are trained to preclassify the input variables into clusters. The
trained LR models can easily incorporate new training data into the model.84,85 They are able to
accurately refine the data into an appropriate cluster. This is because it can easily adjust the
classification threshold to find confidence classes.18,86

The results of this study have proven that combining the trained LR models with MLP
principles could simplify the proposed controller by minimizing the number of hidden layers,
the number of hidden nodes, the number of overall connections, and the time complexity.
Thus, the output of the trained LR models can be considered as optimum reference value to
MLP. In addition, integrating LR models with MLP can be used globally to support, improve,
and enhance the literature review.

The proposed models achieved the objective of developing new principle to drive efficient
single and dual axis solar tracking systems. Integrating MLP or CMLP with MLR or BLR
models that trained by k‐means clustering algorithm is employed to achieve the objective of
this study. The results revealed that using one hidden layer of the developed single and dual
axis solar tracking systems achieved higher prediction rates and lower MSE as compared to
using three hidden layers in the conventional MLP and CMLP based systems. In addition, the
new MLP developed models achieved less number of overall connections for both single and
dual axis solar tracking systems (i.e., 79.17% and 76% less connections with data set one, and
70.37% and 67.86% for data set two, respectively). While the new CMLP developed models
achieved less number of overall connections for both single and dual axis solar tracking systems
(i.e., 87.23% and 85.09% less connections with data set one, and 83.14% and 81.16% for data set
two, respectively).

Moreover, using one hidden layer in the developed MLP and CMLP models achieved less
number of neurons for both single and dual axis solar tracking systems as compared to using
three hidden layers in conventional models. In addition, the developed MLP models achieved
less time complexity for both single and dual axis solar tracking systems as compared to
conventional models. While the developed CMLP models achieved less time complexity for
both single and dual axis solar tracking systems as compared to conventional models. Putting
everything together, all the objectives and the aim of the research were covered and proved.

6 | COMPARISON OF THE PROPOSED METHOD WITH
OTHER RECENT PUBLISHED PREDICTORS

As presented in literature review, several articles were published recently to develop different
intelligent models that can predict the optimum tilt, orientation, or tilt and orientation angles
of photovoltaic modules globally. These developed models can be considered as the most recent
proposed intelligent models that proved their capability to adjunct solar panels. However, the
efficiency and the robustness of these models vary from one model to another. This variation
depends on different variables (i.e., performance, consumed energy, number of variables used,
cost, and time complexity).
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This section focuses on compare the most recent developed predictors that proposed to
predict tilt and orientation angles with the developed models in this article MLP‐BLR/MLR and
CMLP‐BLR/MLR. Four recent articles are considered in the comparison to evaluate and assess
the superiority and the contribution level of the proposed models in this article.

As explained earlier, AL‐Rousan et al.2 and Şahin,13 have used multilayer feed forward
artificial neural network MLP, where, AL‐Rousan et al.2 have compared their results with both
linear regression and CMLP. They have proven that linear regression is not capable to predict
tilt and orientation angles. The predicted results using linear regression were less than 70% of
the data samples used. This result justified why linear models are not suitable to be used in
predicting tilt and orientation angles, where, nonlinear models are optimum to be used in such
application. In line with their results, Şahin,13 has proven the capability of MLP as well.
However, 126 and 84 of input and output variables were used to develop the proposed models
respectively. These variables were analyzed statistically using PAWS statistics 18 program. The
huge amount of input and output variables used, besides to the analysis preprocess need long
processing time and add more complexity to the proposed model. In addition, the process of
using MLP with all of the selected variables should be repeated every month after adjusting the
solar panels manually which will add extra complexity.

Abdallah et al.12 have proposed a multilevel world comprehensive feed forward neural
network model. This new proposed model consists of two stages of neural networks with one
hidden layer in each network. The proposed model could obtain very high accuracy and
efficient results worldwide. However, the number of hidden layers and hidden nodes for the
hidden layers vary from using one hidden layer with 100 nodes in the two stages of neural
network to using two hidden layers with 350 nodes for each hidden layer in the two stages.
They found that using one hidden layer with 350 nodes in the hidden layer for each stage is the
optimum scenario. On the other hand and based on the characteristics of neural networks,
using large number of neurons would increase the on‐linearity level, thus it needs long pro-
cessing time and consume more energy.

Kim et al.14 have used five of machine learning algorithms namely, least absolute shrinkage
and selection operator, random forest, support vector machine, and gradient boosting, besides
to linear regression to predict tilt angle of photovoltaic panel. They have used different variables
to develop their models. Several variables used are unnecessary to build their models. They
examined 32 variables and selected 14 variables as optimum variables to be used. Besides, they
used huge amount of data samples 173,568. They found that their models could increase the
amount of solar energy generated by PV modules compared to fixed panels, where, Gradient
Boosting performed better compared to other learning algorithms.

To assess and examine the idea of integrating the trained LR with MLP and CMLP, all the
mentioned recent articles should be compared with the developed model (i.e., multilayer feed
forward artificial neural network, multilevel world comprehensive feed forward neural net-
work, and Gradient Boosting models).

Several aspects should be considered namely, number of axis, number of input variables,
targeted results, and time complexity of both worst and best cases. Table 34 presents the
comparison between the optimum cases of the developed solar tracking controllers.

As shown in Table 34, it is clear that the number of input variables vary from one model to
another, Şahiṅ,13 has used a huge number of input and output variables, Kim et al.14 have used
a relatively large number of variables compared to Abdallah et al.12 AL‐Rousan et al.2 and the
proposed models in this article, where, two to four variables were used. In addition, they
have focused on studying dual‐axis solar tracking systems. This would increase the advantages
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iṅ

13
A
L
‐R

ou
sa
n
et

al
.

K
im

et
al
.

D
ev

el
op

ed
m
od

el
s

M
od

el
u
se
d

M
u
lt
il
ev
el

w
or
ld

co
m
pr
eh

en
si
ve

fe
ed

fo
rw

ar
d

n
eu

ra
l
n
et
w
or
k

M
u
lt
il
ay
er

fe
ed

fo
rw

ar
d
n
eu

ra
l

n
et
w
or
k

M
u
lt
il
ay
er

fe
ed

fo
rw

ar
d
n
eu

ra
l

n
et
w
or
k

C
as
ca
de

m
u
lt
il
ay
er

fe
ed

fo
rw

ar
d

n
eu

ra
l
n
et
w
or
k

G
ra
di
en

t
bo

os
ti
n
g

M
L
P
‐L
R

C
M
L
P‐
L
R

N
u
m
be
r
of

in
pu

ts
St
ag
e
1:

2
12
6
in
pu

t
va
ri
ab

le
s

di
vi
de

d
in
to

7
gr
ou

ps

Si
n
gl
e‐
ax
is
:
3

Si
n
gl
e‐
ax
is
:
3

14
Si
n
gl
e‐
ax
is
:
4

Si
n
gl
e‐
ax
is
:
4

St
ag
e
2:

4
D
u
al
‐a
xi
s:
3

D
u
al
‐a
xi
s:
3

D
u
al
‐a
xi
s:
4

D
u
al
‐a
xi
s:
4

T
ar
ge
te
d
ou

tp
u
t

St
ag
e
1:

T
il
t
an

d
O
ri
en

ta
ti
on

an
gl
es

84
of

T
il
t
an

gl
e

Si
n
gl
e‐
ax
is
:

O
ri
en

ta
ti
on

an
gl
e

Si
n
gl
e‐
ax
is
:

O
ri
en

ta
ti
on

an
gl
e

T
ii
lt
an

gl
e

Si
n
gl
e‐
ax
is
:

O
ri
en

ta
ti
on

an
gl
e

Si
n
gl
e‐
ax
is
:

O
ri
en

ta
ti
on

an
gl
e

St
ag
e
2:

th
re
e

ou
tp
u
ts

of
an

n
u
al

ra
di
at
io
n

D
u
al
‐a
xi
s:
T
il
t
an

d
O
ri
en

ta
ti
on

an
gl
es

D
u
al
‐a
xi
s:
T
il
t
an

d
O
ri
en

ta
ti
on

an
gl
es

D
u
al
‐a
xi
s:
T
il
t
an

d
O
ri
en

ta
ti
on

an
gl
es

D
u
al
‐a
xi
s:
T
il
t

an
d

O
ri
en

ta
ti
on

an
gl
es

N
u
m
be
r
of

h
id
de

n
n
od

es
in

h
id
de

n
la
ye
r
(i
f
N
N
s

m
od

el
is
u
se
d)

St
ag
e
1:

35
0

‐
Si
n
gl
e‐
ax
is
:
30

Si
n
gl
e‐
ax
is
:
30

‐
Si
n
gl
e‐
ax
is
:
10

Si
n
gl
e‐
ax
is
:
10

St
ag
e
2:

35
0

D
u
al
‐a
xi
s:
30

D
u
al
‐a
xi
s:
30

D
u
al
‐a
xi
s:
10

D
u
al
‐a
xi
s:
10

N
u
m
be
r
of

co
n
n
ec
ti
on

s
(i
n
pu

ts
‐

h
id
de

n
n
od

es
)

St
ag
e
1:

70
0

‐
Si
n
gl
e‐
ax
is
:
30

Si
n
gl
e‐
ax
is
:
90

‐
Si
n
gl
e‐
ax
is
:
40

Si
n
gl
e‐
ax
is
:
40

St
ag
e
2:

14
00

D
u
al
‐a
xi
s:
30

D
u
al
‐a
xi
s:
90

D
u
al
‐a
xi
s:
40

D
u
al
‐a
xi
s:
40

N
u
m
be
r
of

co
n
n
ec
ti
on

s
(h
id
de

n
n
od

es
‐

ou
tp
u
ts
)

St
ag
e
1:

70
0

‐
Si
n
gl
e‐
ax
is
:
10

Si
n
gl
e‐
ax
is
:
33

‐
Si
n
gl
e‐
ax
is
:
10

Si
n
gl
e‐
ax
is
:
14

St
ag
e
2:

10
50

D
u
al
‐a
xi
s:
20

D
u
al
‐a
xi
s:
66

D
u
al
‐a
xi
s:
20

D
u
al
‐a
xi
s:
28

(C
on

ti
n
u
es
)

AL‐ROUSAN ET AL. | 5661

 1098111x, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22525 by Istanbul G

elisim
 U

niversitesi, W
iley O

nline L
ibrary on [29/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
A
B
L
E

3
4

(C
on

ti
n
u
ed

)

P
ar
am

et
er

A
bd

al
la
h
et

al
.1
2

Şa
h
iṅ
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of the developed models due to their capability to predict the exact position of the sun by
adjusting the used solar panels vertically and horizontally at the same time.

On the other hand, the selected variables and the number of selected variables have a strong
impact on the performance and the time complexity of the proposed models. Increasing the
number of variables and using inappropriate combination of input variables would decrease the
performance and increase the time complexity. In addition and as mentioned earlier, increasing
the number of hidden nodes in the hidden layers, and the number of hidden layers in the
network would increase the complexity, the cost, processing time, and consumed energy.

However, Kim et al.14 have used Gradient Boosting Machine (GBM) model that depends on
the number of samples, number of features, and the number of trees used. They didn't mention
any detailed information about the developed GBM model used, thus, the default number of
trees normally adopted will be assumed. One hundred is the default number of trees normally
used. Considering this number of trees, the time complexity can be calculated using the
formula:

Complexity O npn= ( )GBM trees

where n is the number of samples, p denotes the number of features, and ntrees is the number of
trees (iterations) used in the model.

The time complexity for the developed GBM is relatively high due to the huge number of
samples used which can affect on its performance. A total of 173,568 samples of solar power
generation data were acquired from 22 PV modules were used, besides to 14 features were
selected and used to develop the models. Taking the selected number of data samples and
features together, and although the GBM showed low root mean square error, the estimation
time to run the system is relatively high. This can be concluded from the mean feature of GBM
model which continue improving to minimize all errors, and this would overemphasize outliers
and cause overfitting. Furthermore, applying the developed GBM by other researchers is not
applicable due to the unclarity to describe the developed models in the published article, and
due to unavailability of the same amount of data samples used. Therefore, GBM model is
computationally expensive and requires many trees to be applied which can consume space
and time compared to the used neural network models.

On the other hand, all the rest models depend on using multilayer feed forward neural
network model which proved its capability in predicting both tilt and orientation angles of solar
photovoltaic modules. As mentioned earlier, Şahiṅ,13 has used 126 and 84 input and output
variables, respectively. Besides, the structure and architecture of the developed neural network
are not clear. No detailed information mentioned about the number of hidden layers and the
number of hidden nodes adopted in the hidden layers, while it is clear that the number of
features and the number of samples used are huge, thus, the time complexity would be in-
creased and this study will be excluded from the comparison.

However, Abdallah et al.12 have proposed a new approach of neural network models, while
Al‐Rousan et al.2 have used conventional MLP and CMLP neural networks to develop their
models. It is clear that the number of hidden neurons and hidden layers vary in the compared
models. Abdallah et al.12 have used two stages of neural network, each stage consists of one
hidden layer with 350 neurons. While Al‐Rousan et al.2 have used three hidden layers with 10
neurons for each. Comparing the number of connections of input‐hidden nodes found that
Abdallah et al.12 have used 23 and 46 more times connections than MLP model in both Stage 1
and Stage 2, respectively, and they have used 7 and 14 more times connections than CMLP in
both Stage 1 and Stage 2, respectively. While the proposed models of MLP‐LR and CMLP‐LR
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have used a single hidden layer with 10 hidden nodes. Thus, the number of connections of
input‐hidden nodes are 40 in both MLP‐LR and CMLP‐LR. Besides, the number of connections
of hidden‐outputs found that Abdallah et al.12 has the highest number of connections com-
pared to both the developed MLP‐LR and CMLP‐LR. Abdallah et al.12 have used 70 and 40
more times connections than both MLP‐LR and CMLP‐LR models in both Stage 1 and Stage 2,
respectively, while they used 70 and 21 more times connections than both MLP and CMLP
developed models in both Stage 1 and Stage 2, respectively. On the other hand, the number of
connections between the hidden nodes in the proposed MLP‐LR and CMLP‐LR is zero for both
cases. While Al‐Rousan et al.2 have used 200 and 300 for both MLP and CMLP, respectively.
Comparing the overall connections indicates that the developed MLP‐LR obtained the mini-
mum number of overall connections for both single and dual axis cases. Besides, the developed
CMLP‐LR obtained relatively small number of overall connections for both cases of single and
dual axis. While the overall connections of both Al‐Rousan et al.2 models and Abdallah et al.12

cases are very large compared to the proposed MLP‐LR and CMLP‐LR models. Thus, and
putting everything together, it is clear that the estimation time to run the proposed MLP‐LR
and CMLP‐LR and the time complexity is relatively small compared to other models, and it can
be concluded that using a single hidden layer of the proposed MLP‐LR and CMLP‐LR models
can achieve higher performance, lower estimation time, and less time complexity compared to
other recent published models. This would present the originality and the novelty of this article.
Besides, the comprehensive comparison with recent published algorithms would clarify the
degree of the superiority of the proposed MLP‐LR and CMLP‐LR models and to prove that
preclassify the input variables into clusters and premapping of relationship between samples of
data as input to neural network along with the original input data could probably a strong
guide to help neural network to reach the desired goal and predict the output variables faster
and more accurate compared to other recent published algorithms.

7 | CONCLUSION

The main aim of this study is to develop new principle to drive efficient single and dual axis
solar tracking systems, and to solve the problem of using high level of nonlinearity in MLP.

To achieve this objective, integrating MLP and CMLP with MLR or BLR models that trained
by k‐means clustering algorithm is employed. These developed models are used to propose new
efficient and low complexity single and dual axis solar tracking systems controllers. These
controllers could increase the performance of the current solar trackers, increase the prediction
rate, decrease the MSE, and decrease the time complexity.

Real data sets for single and dual axis solar tracking systems were used. Several variables are
used to predict orientation angle in single‐axis solar tracking system or both tilt and orientation
angles in dual‐axis solar tracking systems.

The results revealed that using one hidden layer of the developed single and dual axis solar
tracking systems achieved higher prediction rates and lower MSE as compared to using three
hidden layers in the conventional MLP and CMLP based systems. In addition, the new MLP
developed models achieved less number of overall connections for both single and dual axis
solar tracking systems. While the new CMLP developed models achieved less number of overall
connections for both single and dual axis solar tracking systems.

Moreover, using one hidden layer in the developed MLP and CMLP models achieved less
number of neurons for both single and dual axis solar tracking systems as compared to using
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three hidden layers in conventional models. In addition, the developed MLP models achieved
less time complexity for both single and dual axis solar tracking systems as compared to
conventional models. While the developed CMLP models achieved less time complexity for
both single and dual axis solar tracking systems as compared to conventional models. Putting
everything together, all the objectives and the aim of the research were covered and proved.

In addition, this study contributed to the fields of solar energy and intelligent systems,
where, a new structure of neural networks with a single hidden layer that performs better than
three hidden layers in conventional MLP is developed, and a new generation of intelligent solar
tracking systems where the level of nonlinearity is minimized and the time complexity and
estimation time are decreased is proposed. Using a reference value to help neural network to
find the relationship between the data samples and guide the neural network to faster predict
the desired goal is a novel idea. Besides, a comprehensive comparison between the proposed
models in this article and the most recent published articles in the field is presented. This
article would be a good reference to other researchers in the field.

The future trend of the proposed solar tracking systems is to implement the proposed
systems practically using real solar photovoltaic module to test the proposed systems and
optimize its performance.

Moreover, improving and optimizing the current methods and principles of solar tracking
systems is very important future trend to increase the performance and the efficiency of solar
tracking systems. Several changes on the current tracking methods can be applied to maximize
the solar tracker gain power. Using hybrid techniques, new optimization method for current
principles, and using new artificial intelligent techniques are possible methods to increase the
efficiency of solar tracking systems.

On the other hand, it is important to test, evaluate, and validate the proposed intelligent
method using different applications. It is believed that the proposed models by integrating
(MLP/CMLP) with LR models could be used efficiently in different real applications (i.e.,
agricultural, environmental, medical, etc.).
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