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ABSTRACT 

 
Nowadays, study on fractional derivative and integral operators is one of the hot topics of mathematics 

and lots of investigations and studies make their attentions in this field. Most of these concerns raised 

from the vast application of these operators in study of phenomena’s models. These operators interpreted 

by Newtonian calculus, however different types of calculi are existed and we introduce the fractional 

derivative operators focused on Bi-geometric calculus and also their fractional differential equations are 

studied. 

 

Keywords: Non-Newtonian calculi, Bi-geometric calculus, Hadamard fractional integral and derivative 

operators. 

 

RESUMEN 

 
Hoy en día, el estudio de operadores fraccionarios derivados e integrales es uno de los temas candentes de 

las matemáticas y muchas investigaciones y estudios centran su atención en este campo. La mayoría de 

estas preocupaciones surgieron de la vasta aplicación de estos operadores en el estudio de modelos de 

fenómenos. Estos operadores interpretados por el cálculo newtoniano, sin embargo, existen diferentes 

tipos de cálculos y se introducen los operadores de derivada fraccionaria enfocados en el cálculo Bi-

geométrico y también se estudian sus ecuaciones diferenciales fraccionarias. 

 

Palabras clave: Cálculos no newtonianos, Cálculo bi-geométrico, Operadores de derivadas e integrales 

fraccionarias de Hadamard. 
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1. INTRODUCTION  

 
Since Newton and Leibnitz introduced modern calculus, many calculi have been created with different 

aspects. In the 60th decad an underlying idea was given by Michael Grossman and Robert Katz for 

creating different presentations of Newtonian calculus. The idea based on making the homeomorphisem 

from real line to 𝐼 = (0, ∞) that is denoted by 𝑦 = 𝛼(𝑥)which leads to the new defnitions of algebraic 

operators. On the basis of these operator, it is possible to set two calculi that is called 𝛼-calculus and bi 𝛼-

calculus. In the existing literature, we consider the bi𝛼-calculus that leads to the different derivative and 

 integral in comparison by 𝛼-calculus. Different functions as 𝑦 = 𝛼(𝑥) lead to different calculi, specificly  

the case 𝛼(𝑥) = 𝑒𝑥𝑝(𝑥)was developed in many literatures and its properties were investigated. We list 

arithmetics 𝛼-operators and their corresponding specific values for  

𝛼(𝑥) = 𝑒𝑥𝑝(𝑥) which form a field on 𝐼 and can isometrically transfer the real line to 𝐼 (Momenzadeh, 

2021). 
 

𝑎⨁𝛼𝑏 = 𝛼(𝛼−1(𝑎) + 𝛼−1(𝑏)) → 𝑎⨁𝑒𝑥𝑝𝑏 = 𝑎𝑏                                         (1) 

𝑎 ⊝𝛼 𝑏 = 𝛼(𝛼−1(𝑎) − 𝛼−1(𝑏)) → 𝑎 ⊝𝑒𝑥𝑝 𝑏 = 𝑎/𝑏 

𝑎⨂𝛼𝑏 = 𝛼(𝛼−1(𝑎). 𝛼−1(𝑏)) → 𝑎⨂𝑒𝑥𝑝𝑏 = 𝑎𝑙𝑛𝑏 

𝑎 ⊘𝛼 𝑏 = 𝛼(𝛼−1(𝑎)/𝛼−1(𝑏)) → 𝑎 ⊘𝑒𝑥𝑝 𝑏 = √𝑎
𝑙𝑛𝑏

 

 

These definitions of arithmetics 𝛼-operators inspired the derivative and integral of non-Newtonian 

calculus that their definitions and corresponding relations to Newtonian calculus are as follow (Ezzat, 

2010) 
 

𝑓𝛼̂(𝑥) = 𝑙𝑖𝑚
𝑦→𝑥

((𝑓(𝑦) ⊝𝛼 𝑓(𝑥)) ⊘𝛼 (𝑦 ⊝𝛼 𝑥)) = 𝛼 (
𝛼−1(𝑓(𝑥))′

𝛼−1(𝑥)′
)                              (2) 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝛼̂(𝑥)

= 𝑙𝑖𝑚
𝑛→∞

⨁𝑖=1
𝑛

𝛼𝑓(𝑐𝑖)⨂𝛼(𝑥𝑖+1 ⊝𝛼 𝑥𝑖)
 

= 𝛼 (∫ 𝛼−1(𝑓(𝑥))
𝑏

𝑎
𝛼−1(𝑥)′𝑑𝑥).                                                     (3) 

 

For more than 60 years that the concepts of non-Newtonian calculus were stablished, few articles have 

been published with the main concerns of this calculus and the structure of these calculi were studied. At 

first glance, it seems that the simple homeomorphism cannot make a significant difference on the 

concepts. However, the study of fractional derivative and integral shows the interesting relations and 

significant differences which are concerned in this article. The tools of fractional calculus have played a 

significant role in improving the modeling techniques for several real-world problems and we can Önd 

trace of this operator in many articles. Fractional derivative simply can be considered as the derivative of 

any order and seems that its origin return back to a letter from Leibniz to líHopital in 1695. There are 

many approaches to the fractional integral operator as making the differential equation and finding the 

operator as an extension of solution, or using Cauchy iterated integral. Indeed, we defined the fractional 

integral operator for non-Newtonian calculi in the aid of Cauchy iterated integral by applying (3) in the 

chain of integration and reach to this definition (Ezzat, 2010). 
 

𝐼𝑥
𝑛

𝑎
𝛼(𝑥)

𝑓(𝑥) = ∫ ∫ … ∫ 𝑓(𝑥𝑛)
𝑥𝑛−1

𝑎

𝑑𝛼̂𝑥𝑛𝑑𝛼̂𝑥𝑛−1 … 𝑑𝛼̂𝑥1 ⇒
𝑥1

𝑎

𝑥

𝑎

 

𝐼𝑥
𝜇

𝑎
𝛼(𝑥)

𝑓(𝑥) = 𝛼 (
1

𝛤(𝜇)
∫ (𝛼−1(𝑥) − 𝛼−1(𝑠))𝜇−1𝛼−1(𝑓(𝑠))𝛼−1(𝑠)′

𝑥

𝑎
𝑑𝑠).                           (4) 
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To define fractional derivative in non-Newtonian calculus, one may use Lagrangeís rule for differential 

operators. Computing 𝑛-th order derivative over the integral of order (𝑛 − 𝛽) the 𝛽 order derivative is 

obtained where 𝑛 is the smallest integer greater than 𝛽 This leads us to the following definition (Pandey 

& Holm, 2016). 
 

𝐷𝑥
𝛽

𝑎
𝛼(𝑥)

𝑓(𝑥) = (
𝑑𝛼̂

𝑑𝑥𝛼̂)
𝑛

𝐷𝑥
−(𝑛−𝛽)

𝑎
𝛼(𝑥)

𝑓(𝑥) = (
𝑑𝛼̂

𝑑𝑥𝛼̂)
𝑛

𝐼𝑥
𝑛−𝛽

𝑎
𝛼(𝑥)

𝑓(𝑥)                                  (5) 

 

We will study the fractional differential equation (5) in specific case i.e. 𝛼(𝑥) = 𝑒𝑥𝑝(𝑥) in the following 

sections, although related fractional differential equations and their applications in describing real-world 

problems will be introduced (Pandey & Holm, 2016). 

 

2. DERIVATIVE OPERATOR AND ELASTICITY ON BI-GEOMETRIC CALCULUS 

 
Out of all examples of non-Newtonian calculus, one of the brilliant cases occurred when we substitute 

𝑒𝑥𝑝(𝑥) instead of 𝛼(𝑥)which is called bi-geometric calculus. In this case, the derivative and integral can 

be defined as (Letelier & Stockle, 2021). 
 

𝑓°(𝑥) = 𝑙𝑖𝑚
𝑦→𝑥

√
𝑓(𝑦)

𝑓(𝑥)

𝑙𝑛(
𝑦
𝑥)

= 𝑙𝑖𝑚
ℎ→0

(
𝑓(𝑥+ℎ)

𝑓(𝑥)
)

(
1

ℎ
)

= 𝑒𝑥𝑝 (𝑥
𝑓(𝑥)′

𝑓(𝑥)
)                                        (6) 

∫ 𝑓(𝑥)𝑑𝑥𝑏

𝑎
= ∏ (𝑓(𝑥𝑖))

𝑙𝑛(
𝑥𝑖+1

𝑥𝑖
)∞

𝑖=0

= 𝑒𝑥𝑝 (∫ 𝑙𝑛(𝑓(𝑥))
𝑑𝑥

𝑥

𝑏

𝑎
) 

                                                            (7) 

 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑥𝑖  𝑓𝑜𝑟𝑚𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 [𝑎, 𝑏] 
 

We denote the derivative operator of bi-geometric calculus by 𝐷°(𝑓) = 𝑓°and It is easy to see that °-

derivative and Newtonian derivative are coexist; that is, for positive real function if either exists then so 

does the other. There are many interesting properties of this operator which were studied successfully. For 

instance, °-derivative of power function is equal to their °- slope and is constant. In addition, the operator 

𝐷° is scale-free; that is, 𝐷° is independent of the scale or unit which are used for domain and range of the 

function. In a pedagogical literature Segel (1972) discusses the necessity and advantages for non-

dimensionalisation and scaling in general with several practical examples and this derivative gives the 

oportunity of making the easier model with no dimension.In the study of economy, the expression at 

parentheses in (6) is called elasticity and because of that we refer 𝑓°(𝑥) as resiliency of f at 𝑥. Let us 

describe this economical concept precisely and see how can we use this interpretation. Elasticity is defined 

as a measure of a variableís sensitivity to change in another variable and our concern is elasticity of 

demand and it is predominantly used to assess the change in consumer demand as a result of a change in a 

good or serviceís price. This measure is calculated as percentage of change of quantity over the percentage 

of change in price (Sene, 2018). There is two cases of consideration, when the elasticity is greater than 

one, demand for good or service is a§ect by price and when it is less than one, buying habits stay about the 

same. The good example of elasticity which is greater than one, can be assumed as the candy which can be 

replaced by another sweet products and for the case that elasticity is less than one, can be assumed as 

insulin medicine which can not be replaced easily. If we refer quantity as a function of price and denote it 

by y and x respectively, then we can see that (Sene, 2018). 
 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 =
%𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

%𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝𝑟𝑖𝑐𝑒
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=

𝑦2−𝑦1

(
𝑦2+𝑦1

2
)⁄

𝑥2−𝑥1

(
𝑥2+𝑥1

2
)⁄
                                                                              (8) 

 

Now by tending 𝑥1 to 𝑥2, we reach to 𝑙𝑛 (𝑓°(𝑥2)) . Indeed, since the derivative of bi-geometric calculus 

can be interpreted as exponential of elasticity, the critical value is one, similar to the critical value of 

Newtonian derivative which is zero. Therefore, the interpretation of derivative in bi-geometric calculus 

can lead us to another prespective for modelling the real-worlds phenomena. Definitely, the direct usage 

of this concept can be applied in economic issues and further fractional derivative can be used to make a 

better curve fitting function, whereas in this literature we apply it for simple population growth model and 

we use this concept to interpret the growth rate model (Odibat & Momani, 2008). 
 

The study of population change has a very long history and can be traced back to the work of Leonardo in 

the excersice of his arithmetic book that involved building a mathematical model for a growing rabbit 

population. From very begining of study the model for population growth rate where 𝑁(𝑡) denotes the 

population of the speciest at time t and known as the conservation equation of population was introduced 

as (Odibat & Momani, 2008). 
 

𝑑𝑁

𝑑𝑡
= 𝑏𝑖𝑟𝑡ℎ − 𝑑𝑒𝑎𝑡ℎ + 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛,                                                               (9) 

 

This simple model of population rate inspired a lot of mathematician to developed their model in the 

different aspects. The pioneer of them was Malthus who described his model simply as right side of (9) as 

a constant coeficient of 𝑁(𝑡),  population. His model was unrealistic but it was the first atempt to establish 

the mathematical model based on conservation equation of population and clearify that the right side of 

the equation in (9) should be written as a function of  𝑁(𝑡). In the long run of course there must be some 

adjusment to such exponential growth and at the end Verhulst solved the problem of population increasing 

by putting the self-limiting process in the equation and introduced the logistic growth in a population in 

the aid of following equation (Odibat & Momani, 2008). 
 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝑘
)      𝑟, 𝑘 > 0 

 

There is a remarkable note that by going forward to the recent time, a lot of model were studied to make 

more accurate model and give the better approximation. Definitely, we could produce an algebraic 

expression with a few more parameters and derive some differential equation for which it is the solution 

and do a better job but then all we would be doing would be curve fitting without increasing our 

understanding of the actual mechanism governing the phenomenon. The motivation for modelling is to 

further our understanding of the underlying processes since it is only in this way that we can make 

justiÖable predictions.Our consider in this article is the Malthus model which is simply described the 

population growth. However, this discussion can be extended to more complicated and advanced models. 

Malthus considered the simple model of population with no imigration and assumed the birth and death 

terms as a proportion of population which can be written in terms of Newtonian calculus as follow: 

(Ghalib et. al, 2020). 
 

𝑑𝑁

𝑑𝑡
= 𝑏𝑁 − 𝑑𝑁 → 𝑁(𝑡) = 𝑁0𝑒(𝑏−𝑑)𝑡 

 

Here 𝑏 and 𝑑 are positive constant and 𝑁0 denotes the initial value of population. In this model, if the birth 

factor 𝑏 is greater than death factor 𝑑, then the population grows exponentially while 𝑏 < 𝑑 implies that it 
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dies out. In addition, the model is not dimension free; that is the constants 𝑏 and 𝑑 have the dimension 

(𝑡𝑖𝑚𝑒)−1 and both side of the equation have dimension of 𝑁𝑡−1. If we construct °-derivative of 

population, then we can see the model as (Ghalib et. al, 2020). 
 

𝐷°(𝑁) = 𝑒(𝑏−𝑑)𝑡                                                                        (10) 

 

This equation expresses the model with a simple relation  between the single °-derivative and exponential 

function and has the nondimensional form. Indeed, the model declare that elasticity of population is 

linearly equal to (𝑏 − 𝑑)𝑡 and by going forward through the time, population from inelastic stage changes 

to greater elasticity. By the other words, when the time is increasing, the population rapidly affected by 

changing the time and because of that the model is not realistic. This preliminary example shows that how 

the bi-geometric calculus could be used to describe the model and this interpretation gives a new outview 

to population modelling wheares all kind of calculi are isometrically the same (Ghalib et. al, 2020). 
 

 

3. FRACTIONAL DERIVATIVE ON BI-GEOMETRIC CALCULUS 

 

 The fractional integral operator on bi-geometric calculus can be written by substituting 𝑒𝑥𝑝(𝑥) instead of 

𝛼(𝑥) at (4) which is (Alotta et. al, 2019). 
 

𝐼𝑥
𝜇

𝑎
𝑒𝑥𝑝(𝑥)

𝑓(𝑥) = 𝑒𝑥𝑝 (
1

𝛤(𝜇)
∫ (𝑙𝑛 (

𝑥

𝑠
)))

𝜇−1

𝑙𝑛𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
)                                       (11) 

The expression in the braces at (11) can be considered as the Hadamard integral operator on 𝑙𝑛𝑓(𝑥)which 

is defined as (Alotta et. al, 2019). 
 

𝐽𝑥
𝜇

𝑎
𝐻 𝑓(𝑥) =

1

𝛤(𝜇)
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝜇−1

𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
,                                                  (12) 

 

Let us review some properties of fractional Hadamard operators first. Nowaday we can see the vast usage 

of fractional differential equations in improving the models of several phenomena. However, most of the 

work on the topic is based on Riemann-Liouville, and Caputo-type fractional differential equations and 

contribution of Hadamard fractional operators is insignificant which is apeared side by side to 

RiemannLiouville and Caputo derivatives in the literature and is the fractional derivative due to 

Hadamard, introduced in 1892. Hadamard fractional integral can be formulated from the following 

Cauchy iterated (Siddique & Bukhari, 2020). 

 

𝐽𝑥
𝜇

𝑎
𝐻 𝑓(𝑥) = ∫

𝑑𝑡1

𝑡1
∫

𝑑𝑡2

𝑡2
… ∫ 𝑓(𝑡𝑛)

𝑡𝑛−1

𝑎

𝑑𝑡𝑛

𝑡𝑛

𝑡1

𝑎

𝑥

𝑎

=
1

(𝑛 − 1)!
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝑛−1

𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
.                   (13) 

 

The Hadamard fractional derivative is inspired by a fractional power of the form 𝛿𝜈 = (𝑥
𝑑

𝑑𝑥
)

𝜈
 which is 

invariant with respect to dilation on the whole axis and fully compatible with bi-geometric calculus. The 

left-sided Hadamard fractional derivative operator is defined as (Siddique & Bukhari, 2020). 

 

𝐷𝑥
𝜇

𝑎
𝐻 𝑓(𝑥) = 𝛿𝑛 𝐷𝑥

𝑛−𝜇
𝑎
𝐻 𝑓(𝑥) = (𝑥

𝑑

𝑑𝑥
)

𝑛 1

𝛤(𝑛 − 𝜇)
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝑛−𝜇−1

𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
                           (14) 

 



911 

The Hadamard fractional integral and derivative operators have the semigroup properties for 𝑓 ∈ 𝐿𝑝(𝑎, 𝑏) 

as (pp:114 property 2.26) (Siddique & Bukhari, 2020). 

 

𝐽𝑥
𝜇

𝑎
𝐻 ( 𝐼𝑥

𝜈
𝑎
𝐻 𝑓(𝑥)) = 𝐽𝑥

𝜇+𝜈
𝑎
𝐻 𝑓(𝑥)   𝜇, 𝜈 > 0                                                   (15) 

 

𝐷𝑥
𝜇

𝑎
𝛼(𝑥)

( 𝐽𝑥
𝜈

𝑎
𝐻 𝑓(𝑥)) = 𝐷𝑥

𝜇−𝜈
𝑎
𝐻     𝜈 > 0 

 

Kilbas et al. (n.d) studied the Cauchy problem for the nonlinear Hadamard fractional differential equation 

of complex order 𝜈 ∈ ℂ where Re(𝜈) > 0  as following (Siddique & Bukhari, 2020). 

 

𝐷𝑥
𝜈

𝑎
𝐻 𝑦(𝑥) = 𝑓[𝑥, 𝑦(𝑥)]        𝑎 ≤ 𝑥 ≤ 𝑏 

𝐷𝑥
𝜈−𝑘

𝑎
𝐻 𝑦(𝑎) = 𝑏𝑖 ∈ ℂ        (𝑘 = 1,2, … 𝑛) 

 

Where for non-positive integer 𝑛 is defined as ⌊𝑅𝑒(𝜈)⌋ + 1  and for 𝑛 ∈ ℕ, 𝑛 = 𝜈. It was shown that the 

solution of this problem can be written as a Volterra integral equation of the second kind of the form: 

 

𝑦(𝑥) = ∑
𝑏𝑖

𝛤(𝑛 − 𝑖 + 1)
(𝑙𝑛 (

𝑥

𝑎
))

𝜈−𝑖

+
1

𝛤(𝜈)
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝜈−1

𝑓[𝑠, 𝑦(𝑠)]
𝑑𝑠

𝑠
.                      (16)

𝑥

𝑎

𝑛

𝑖=1

 

 

 form of solution (16) is useful when we apply the successive approximation with the given initial values. 

Indeed, to solve this problem for individual cases of 𝑓[𝑥, 𝑦(𝑥)] which veriÖes the existance conditions by 

having lipschitz conditions, successive approximation method were used frequently.[9]In the process of 

the solution we face with different types of Mittag-Leffler functions that the classic form is known as 

(Kadak & Özlük, 2015). 
 

𝐸𝜈(𝑧) ≔ ∑
𝑧𝑘

𝛤(𝜈𝑘 + 1)
   (𝑧, 𝜈 ∈ ℂ; 𝑅𝑒(𝜈) > 0).                                                    (17)

∞

𝑘=0

 

 

the simplest and for applications most important generalizations of the Mittag- Leffler function, namely 

the two-parametric Mittag-Leffler function were investigated by Humbert and Agraval separately in 1953 

and can be written as (Kadak & Özlük, 2015). 
 

𝐸𝜈,𝜏(𝑧) ≔ ∑
𝑧𝑘

𝛤(𝜈𝑘 + 𝜏)
   (𝑧, 𝜈, 𝜏 ∈ ℂ; 𝑅𝑒(𝜈) > 0).                                                 (18)

∞

𝑘=0

 

 

Indeed, more general case is apeared in the solution of integral equation (16), where 𝑓[𝑥, 𝑦(𝑥)] =
(𝑥 − 𝑎)𝜂𝑦(𝑥) and was introduced by Kilbas et al. (n.d). 

 

Now, we can define the fractional derivative on bi-geometric calculus by substituting 𝑒𝑥𝑝(𝑥) instead of 

𝛼(𝑥) at (5), which leads to (Kadak & Özlük, 2015) 
 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝 (𝑥)

𝑓(𝑥) = (
𝑑°̂

𝑑𝑥°)

𝑛

𝐷𝑥
−(𝑛−𝛽)

𝑎
𝑒𝑥𝑝 (𝑥)

𝑓(𝑥) = (
𝑑°̂

𝑑𝑥°)

𝑛

𝐼𝑥
𝑛−𝛽

𝑎
𝑒𝑥𝑝 (𝑥)

𝑓(𝑥)

= (
𝑑°̂

𝑑𝑥°)

𝑛

𝑒𝑥𝑝 (
1

𝛤(𝑛 − 𝛽)
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝑛−𝛽−1

𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
) 
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If we assume the derivative operator of Hadamard as 𝛿 = 𝑥
𝑑

𝑑𝑥
 , then it is easy to see that (Hristov et. al, 

2017) 

 

(
𝑑°̂

𝑑𝑥°)

𝑛

𝑦 = 𝑒𝑥𝑝(𝛿𝑛𝑙𝑛(𝑦)) 

 

Therefore, we can reduce the fractional derivative of bi-geometric calculus to the following form 

 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝 (𝑥)

𝑓(𝑥) = 𝑒𝑥𝑝 ((𝑥
𝑑

𝑑𝑥
)

𝑛 1

𝛤(𝑛 − 𝛽)
∫ (𝑙𝑛 (

𝑥

𝑠
))

𝑛−𝛽−1

𝑓(𝑠)
𝑥

𝑎

𝑑𝑠

𝑠
) = 𝑒𝑥𝑝 ( 𝐷𝑥

𝜇
𝑎
𝐻 𝑙𝑛𝑓(𝑥)) 

 

For instance, let us assume the Particular case where 0 < 𝛼 < 1, 𝑛 = 1 (Hristov et. al, 2017) 

 

𝐷𝑥
𝛽

𝑎
exp(𝑥)

𝑓(𝑥) = (
𝑑°̂

𝑑𝑥°) 𝐼𝑥
1−𝛽

𝑎
exp(𝑥)

𝑓(𝑥) = 𝑒𝑥𝑝 ( 𝐽𝑥
1−𝛽

𝑎
𝐻 𝑙𝑛𝑓(𝑥))

= 𝑒𝑥𝑝 (
𝑥

𝑑
𝑑𝑥

𝐽𝑥
1−𝛽

𝑎
𝐻 𝑙𝑛𝑓(𝑥)𝑒𝑥𝑝 ( 𝐽𝑥

1−𝛽
𝑎
𝐻 𝑙𝑛𝑓(𝑥))

𝑒𝑥𝑝 ( 𝐽𝑥
1−𝛽

𝑎
𝐻 𝑙𝑛𝑓(𝑥))

) = 𝑒𝑥𝑝 ( 𝐷𝑥
𝛽

𝑎
𝐻 𝑙𝑛𝑓(𝑥))  

   

Where 𝐷𝑥
𝛽

𝑎
𝐻 = (𝑥

𝑑

𝑑𝑥
) 𝐽𝑥

1−𝛽
𝑎
𝐻  Hadamard fractional derivative operator. For instance, let us show that our 

definition of fractional derivative is compatible by the °-derivative by an example (Hristov et. al, 2017)  

 

Example 1 Consider ordinary °-derivative equation as 

 

𝐷°(𝑦(𝑥)) = 𝑦(𝑥) 

which is separable differential equation in Newtonian calculus and has a solution as 𝑦(𝑥)  =  𝑒𝑥𝑝(𝑐𝑥). 

On the other hands corresponding fractional differential equation can be written as (Eldred et. al, 1995) 
 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝 (𝑥)

𝑦(𝑥) = 𝑦(𝑥) 

 

that according to our definition is equivalent to Hadamard-type fractional differential equations as 

𝐷𝑥
𝛽

𝑎
𝐻 𝑙𝑛𝑦(𝑥) = 𝑙𝑛𝑦(𝑥) and in the aid of (16) and using succesive approximation the solution in terms of 

(18) can be written as (pp. 235 Theorem 4.5) (Eldred et. al, 1995) 
 

𝑙𝑛𝑦 = 𝑏 (𝑙𝑛 (
𝑥

𝑎
))

𝛽−1

+ 𝐸𝛼,𝛼 (𝑙𝑛 (
𝑥

𝑎
))

𝛽1

 

 

We remind that 𝐸1,1(𝑥) = 𝑒𝑥𝑝 (𝑥) and by letting 𝛽 → 1 We will find the ordinary solution.  

As we have seen, derivative of bi-geometric calculus can be considered as resiliancy and with this 

interpretation, the real-world problems can be remodeled and for getting better curve fitting, the fractional 

derivative and related differential equation can be obtained. Indeed, several phenomena in the aid of 

geometric calculus (multiplicative calculus) were studied and related differential equations were 

established [14] which can be assumed as a good resource of investigation and the separated study. The 

above example and previous discussions were depended on Hadamard fractional operators and Newtonian 
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demonstration of equations and their solutions, but the next lemma is written totally in the bi-geometric 

symbols (Zhou et. al, 2018). 

 

Lemma. Let 𝑎, 𝛽 > 0 then the following identities hold true 

 

𝐼𝑥
𝛽

𝑎
exp (𝑥)

((𝑡 ⊖exp 𝑎)
⊛exp(𝜈−1)

) (𝑥)  

= exp (
Γ(𝜈)

Γ(𝜈 + 𝛽)
) ⨂exp(𝑥 ⊖exp 𝑎)

⊛exp(𝛽+𝜈−1)
                                            (19) 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝(𝑥)

((𝑡 ⊖𝑒𝑥𝑝 𝑎)
⊛𝑒𝑥𝑝(𝜈−1)

) (𝑥) 

= 𝑒𝑥𝑝 (
Γ(𝜈)

Γ(𝜈 − 𝜇)
) ⨂𝑒𝑥𝑝(𝑥 ⊖𝑒𝑥𝑝 𝑎)

⊛𝛼(𝛽−𝜈−1)
                                            (20) 

 

Proof. First let us clear the terminology that is used in these identities. According to (1), the exponent of 

the expression in bi-geometric calculus which is denoted by ⊛𝛼 can be defined similar to Newtonian 

calculus. For instance, we can see that for positive integerís exponent we have (Zhou et. al, 2018): 

 

𝑥⊛𝛼𝑛 = 𝑥⨂𝛼𝑥 … ⨂𝛼𝑥 = 𝑒𝑥𝑝((𝑙𝑛(𝑥))𝑛) = 𝑥(𝑙𝑛𝑥)(𝑛−1)
 

 

Now let us prove equation (19), the equation (20) can be proved similarly. The prove is straightforward 

and can be written in the aid of beta function and knowing that 𝛿𝑛(𝑙𝑛𝑚𝑥) = 𝑙𝑛𝑚−𝑛𝑥  as 

 

𝐼𝑥
𝛽

𝑎
exp (𝑥)

((𝑡 ⊖exp 𝑎)
⊛exp(𝜈−1)

) (𝑥)  

= 𝐼𝑥
𝛽

𝑎
exp (𝑥)

((𝑙𝑛
𝑡

𝑎
)

𝜈−1

) (𝑥)  

= 𝑒𝑥𝑝 ( 𝐽𝑥
𝛽

𝑎
𝐻 ((𝑙𝑛

𝑡

𝑎
)

𝜈−1

) (𝑥))  

= 𝑒𝑥𝑝 (
Γ(𝜈)

Γ(𝜈 + 𝛽)
(𝑙𝑛

𝑥

𝑎
)

𝛽+𝜈−1

) 

𝑒𝑥𝑝 (
𝛤(𝜈)

𝛤(𝜈 + 𝛽)
) ⨂𝑒𝑥𝑝(𝑥 ⊖𝑒𝑥𝑝 𝑎)

⊛𝑒𝑥𝑝(𝜈+𝛽−1)
 

 

It is interesting when we compare it by the identity for Riemann- fractional operator’s  identities (pp. 71 

Property 2.1) 

 

𝐼𝑥
𝛽

𝑎 ((𝑡 − 𝑎)𝜈−1)(𝑥) =
Γ(𝜈)

Γ(𝜈 + 𝛽)
(𝑥 − 𝑎)𝛽+𝜈−1  

𝐷𝑥
𝛽

𝑎 ((𝑡 − 𝑎)𝜈−1)(𝑥) =
Γ(𝜈)

Γ(𝜈 − 𝛽)
(𝑥 − 𝑎)𝛽−𝜈−1 

 

Remark. The derivative of a constant are, in general, not equal to zero and similar to Riemann fractional 

operator, in the aid of the previous Lemma, it can be seen easily that (Zhou, 2018) 

 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝

(1𝑒𝑥𝑝)(𝑥) = 𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝 (𝑒)(𝑥) = 𝑒𝑥𝑝 (

1

𝛤(1 − 𝛽)
𝑙𝑛 (

𝑥

𝑎
)

−𝛽

) 

 

Which for Riemann fractional derivative, 
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𝐷𝑥
𝛽

𝑎 (1)(𝑥) =
(𝑥 − 𝑎)−𝛽

𝛤(1 − 𝛽)
 

 

In addition, since the Gamma function at zero is not defined we use the direct calculation to see (20) for 

the values 𝜈 = 0 and 0 < 𝛽 < 1 as (Zhou et. al, 2018) 

 

𝐷𝑥
𝛽

𝑎
𝑒𝑥𝑝

((𝑡 ⊖exp 𝑎)
⊛exp(−1)

) (𝑥) = exp ( 𝐷𝑥
𝛽

(𝑙𝑛
𝑡

𝑎
)

−1

𝑎
𝐻 (𝑥))

= exp ((𝑥
𝑑

𝑑𝑥
)

1

Γ(1 − 𝛽)
∫ (𝑙𝑛

𝑥

𝑠
)

−𝛽

(𝑙𝑛
𝑠

𝑎
)

−1 𝑑𝑠

𝑠

𝑥

𝑎

) = 1 

 

 
1. CONCLUSION 

In this paper we introduced the fractional integral and derivative on non-Newtonian 

calculus. Many real examples of the phenomena were described in the aid of non-Newtonian calculus 

and new approaches to these problems were considered. In the discussion of fractional operators related to 

the general function, similar discussion can be assumed. However, this interpretation in non-

Newtonian calculus can construct the bridge between these two parts of mathematics. Moreover, the 

fractional operators on non-Newtonian calculus are totally compatible with the structure of these 

calculi. This interpretation of fractional calculus as a specific operator in corresponding calculus, lets us 

determine many results, especially economical debates, as a fractional differential equation in that 

calculus. As it mentioned in the article, many examples of different aspects such as population problem, 

economical problems can be well established in terms of non-Newtonian calculus. Plugging the fractional 

operators to these calculi makes the interpretations clear and many problems and applications could 

struggle with these things. 
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