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A B S T R A C T   

This paper introduces a new hybrid approach (DBH) for solving gene selection problem that incorporates the 
strengths of two existing metaheuristics: binary dragonfly algorithm (BDF) and binary black hole algorithm 
(BBHA). This hybridization aims to identify a limited and stable set of discriminative genes without sacrificing 
classification accuracy, whereas most current methods have encountered challenges in extracting disease-related 
information from a vast amount of redundant genes. The proposed approach first applies the minimum redun
dancy maximum relevancy (MRMR) filter method to reduce the dimensionality of feature space and then utilizes 
the suggested hybrid DBH algorithm to determine a smaller set of significant genes. The proposed approach was 
evaluated on eight benchmark gene expression datasets, and then, was compared against the latest state-of-art 
techniques to demonstrate algorithm efficiency. The comparative study shows that the proposed approach 
achieves a significant improvement as compared with existing methods in terms of classification accuracy and 
the number of selected genes. Moreover, the performance of the suggested method was examined on real RNA- 
Seq coronavirus-related gene expression data of asthmatic patients for selecting the most significant genes in 
order to improve the discriminative accuracy of angiotensin-converting enzyme 2 (ACE2). ACE2, as a corona
virus receptor, is a biomarker that helps to classify infected patients from uninfected in order to identify sub
groups at risk for COVID-19. The result denotes that the suggested MRMR-DBH approach represents a very 
promising framework for finding a new combination of most discriminative genes with high classification 
accuracy.   

1. Introduction 

Microarray technology has become one of the most important 
analytical tools for medical researchers and biologists to track the ac
tivity of tens of thousands of genes in a particular organism simulta
neously, known as gene expression profiling. High-throughput gene 
expression analysis has enabled significant advances in 1) identification 
of diagnostic or prognostic biomarkers, 2) monitoring therapeutic 
response, 3) understanding the pathogenesis of the diseases, and 4) 
classification of deadliest diseases such as cancer, Alzheimer’s, diabetes, 
etc. As a result, microarray analysis plays a crucial role in clinical 
medicine for the discovery process and medical decision support. Clas
sification of expression microarray data is one of the hot topics in bio
informatics. Accurate diagnosis and prognosis of patient diseases and 
improved clinical decision-making can be achieved by conducting 
microarray data classification. The classification of microarray data is a 

challenging task due to the curse of dimensionality problem. The high- 
dimensional microarray data include the expression of a very large 
number of genes (features) with a limited number of samples, in which 
the majority of the genes are irrelevant and redundant. It negatively 
influences the classification accuracy, and gene selection is required to 
surmount this challenge [1]. 

The predictive accuracy of classification in microarray data is 
strongly dependent on the gen selection (GS) approaches. The GS 
identifies the most relevant and reliable genes and eliminates insignifi
cant genes from microarray datasets so that more robust, accurate, and 
reliable predictions can be made. In other words, the GS aims to deter
mine the optimum number of genes with the highest classification ac
curacy. From a biological perspective, the main advantages of the GS 
include: 1) discovering the most significant and discriminative genes 
called biomarkers, 2) increasing the interpretability of microarray data, 
and 3) reducing clinical cost. So far, many GS techniques have been 
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proposed in the literature to determine informative genes and conse
quently improve sample estimation accuracy in biological data. 

GS techniques are mainly classified into three groups which are fil
ter, wrapper, and hybrid approaches. In filter methods, informative 
theory or statistical relationships such as dependency or correlation 
between genes are computed to assign a relevance score to each gene 
without invoking a classification model. Then, according to the scores, 
the genes are ranked and a subset with the highest-ranking genes is 
selected for further analysis [2]. Some of the most widely used filtering 
methods in gene selection are minimum redundancy maximum rele
vance (MRMR) [3], information gain (IG) [4], Relief [5], chi-square [6], 
etc. In the wrapper-based methods, the process is composed of two parts: 
1) search techniques to select the optimal feature subset, and 2) evalu
ation, in which the performance of a classifier, as a fitness function, is 
considered to evaluate the goodness of selected gene subsets. With the 
increasing number of genes, the space for gene search grows exponen
tially, causing the stage of generating all possible gene subsets in 
wrapper approaches to become an impractical and time-consuming task. 
Therefore, the wrapper approaches utilize nature-inspired optimization 
algorithms (NIOAs) to direct the search process efficiently. The process 
begins with a population of the solutions, in which each individual 
represents a candidate gene subset. Each individual’s fitness is measured 
by using a classifier, and individuals are updated according to the 
adopted NIOA’s characteristics. To improve the result, the process is 
repeated until reaching the necessary number of iterations. 

Filter approaches are computationally efficient in selecting gene 
subsets relative to wrapper methods, though they show lower classifi
cation performance than wrapper approaches. To improve the discovery 
of disease biomarkers within microarray data, hybrid approaches have 
been introduced in the literature. The hybrid approaches combine a 
filter method with a wrapper method to take benefit from the high 
classification performance of the wrappers and the efficiency of the fil
ters simultaneously. It first utilizes a filter approach to reduce the feature 
space dimension, and then a wrapper method to select the optimal 
feature subset. The majority of suggested methods in the literature for 
gene selection are based on hybrid approaches, which lead to choosing 
more informative genes with acceptable classification accuracy. In 
hybrid methods, various NIOA based wrapper approaches have been 
used for gene selection such as genetic algorithm (GA) [7], memetic 
algorithm (MA) [8], ant colony optimization (ACO) [9], bat algorithm 
(BA) [1,10,11], flower pollination algorithm (FPA) [12], artificial bee 
colony (ABC) [13], particle swarm optimization (PSO) [14], harmony 
search algorithm (HSA) [15], grasshopper optimization algorithm 
(GOA) [16], adaptive inertia weight teaching-learning-based optimiza
tion algorithm (ATLBO) [17], binary dragonfly (BDF) algorithm [18], 
etc. 

Since the hybrid models view these two filter and wrapper stages as 
being separate, the accuracy of hybrid methods is still a key issue [19]. 
To enhance the performance of the hybrid methods, more advanced and 
sophisticated models have been developed. Recently, a combination of 
two NIOAs has been suggested to improve the efficiency and robustness 
of the gene selection approaches. Some of them are hybrid of TLBO and 
simulated annealing (SA) algorithm (TLBOSA) [20], hybrid of TLBO and 
gravitational search algorithm (GSA) [21], hybrid of BA and Hill 
climbing algorithm [3], etc. 

Although a variety of NIOAs has been applied to the microarray data, 
there is still no guarantee to find the optimal subset of genes for clas
sification problems due to the stochastic nature of these techniques [22]. 
Also, gene selection continues to be a difficult task due to the huge gene 
search space and complex gene interactions [1,19]. Therefore, further 
investigations are required to develop an efficient gene selection method 
[3]. 

The DF algorithm (DFA) [23] is a widely used swarm 
intelligence-based optimization approach that is inspired by dragonflies’ 
static and dynamic flocking behavior in nature. Various extensions and 
improvements of DFA have been suggested for optimizing a large variety 

of different problems [24,25]. In the context of feature selection, binary 
DFA (BDF) [26] and its different variants [27,28] have been developed. 
Although DFA and its hybridized variants have demonstrated successful 
results in solving several complex optimization problems, they still have 
the disadvantage of trap in local optima. Yet, it is firmer than other 
NIOAs, and can easily be combined with other algorithms [24]. To 
reduce the probability of the algorithm falling into local optima, hybrid 
of BDF and binary black hole algorithm (BBHA) [29] is suggested in this 
study. 

The BHA [30] is an efficient physical-based optimization approach 
that is inspired by the actual behavior of the black hole in space. The 
BHA has shown an excellent performance in finding a near-optimal so
lution as compared to other NIOAs in various application domains [31, 
32]. The BHA has many advantages, including free-controller param
eter, simplicity, easy implementation, strength search capabilities, fast 
coverage speed, and local optima avoidance. However, the BHA lacks 
exploration capabilities on some complex datasets [33]. To address this 
drawback, the BHA has been modified and hybridized with other NIOAs 
to empower the algorithm’s exploration and exploitation process. 
Different variants of BHA have been proposed for various kinds of 
continuous optimization problems [32,34,35]. For solving feature se
lection problems, binary BHA [36], and its variant [37] have been 
introduced. However, BBHA is not yet properly investigated for a kind of 
gene selection problem. 

In this paper, a hybrid filter/wrapper gene selection model is pro
posed based on the MRMR approach and hybridized BDF with BBHA 
(DBH), for cancer classification. In the suggested method, MRMR is first 
operated as a filter method to select high-ranked genes. This is intended 
to fine-tune the search space for the wrapper approach. Then, the high- 
ranked genes are passed to the hybrid DBH algorithm, in which BDF acts 
as an internal operator to provide a strong initial population for BBHA. 
The main goal is to improve the mechanism of the initial population 
production stage in the BBHA to cover the feasible space properly. The 
hybridization in the wrapper stage boosts the efficiency of BBHA in 
terms of satisfactory local optima avoidance and balancing the explo
ration and exploitation to offer better prediction accuracy, fast conver
gence, and robustness compared to standard BBHA, standard BDF, and 
other state-of-art existing methods for biomarker discovery and cancer 
diagnosis. The proposed method is known as MRMR-DBH, and it uses 
the support vector machine (SVM) classifier to evaluate each candidate 
gene subset in DBH. 

It’s also worth noting that the efficiency of the standard BHA [36] 
and a combination of PSO and BHA [38] for gene selection has been 
examined before. In Ref. [36] a two-stage hybrid algorithm was intro
duced for feature selection of biological data, in which the chi-square 
method is employed to filter the genes at the first stage. Meanwhile, in 
the second stage, standard BHA is used to generate the gene subsets, and 
the random forest (RF) classifier is utilized for the evaluation purpose. In 
Ref. [38], random-forest-recursive feature elimination (RF-RFE) algo
rithm is used to filter out irrelevant and redundant genes, and a hybrid of 
BPSO and BBHA is employed to seek further informative genes. SPLSDA 
classification model is the evaluator for each candidate gene subset. 

Even though the suggested MRMR-hybrid DBH-BBHA (DBH)-SVM 
method exploits the BBHA in its wrapper stage, its utilized filter 
approach, adopted classifier, and wrapper’s collaborative structure are 
entirely different from previous BBHA based gene selection approaches. 
In Ref. [38], BBHA was used as a local search within PSO, while in our 
research, BDF was used as an internal initialization operator within the 
BBHA. To de best of our knowledge, integration of MRMR and BBHA 
with SVM classifier has not been investigated, and BBHA and BDF have 
collaborated for the first time to develop a hybrid wrapper model aimed 
to find the more robust and insightful genes in a complex search space. 

The main contributions of this study in the context of gene selection 
and cancer classification can be briefly outlined as follows. 
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• Using the MRMR filtering method in conjunction with hybridized 
BBHA (DBH) to identify strongly discriminative genes with the help 
of the SVM classifier.  

• Developing a new wrapper approach by merging BDF and BBHA to 
direct the quest for a more robust and informative gene subset 
considering the accuracy and feature selection stability.  

• To examine whether the suggested MRMR-DBH will reach a gene 
subset with a limited number of genes and higher classification ac
curacy than the existing gene selection method.  

• To explore the efficiency of MRMR-DBH in a real RNA- Seq 
coronavirus-related gene expression dataset of asthmatic patients, to 
identify a small appropriate gene subset to improve the discrimina
tive power of the angiotensin-converting enzyme 2 (ACE2) 
biomarker. 

The suggested algorithm’s performance was evaluated on eight well- 
known benchmark gene expression datasets of different characteristics. 
First, MRMR performance on dissimilarity of selected top M genes was 
investigated as a preprocessing step, and compared to other well- 
regarded filtering methods. The filtering approaches used SVM to esti
mate the accuracy of the classification. Also, a performance comparison 
of the SVM with other classifiers was conducted when they have used M 
top genes. The results obtained using BDF-BBHA technique has been 
compared with standard BDF and BBHA techniques in the term of ac
curacy, the number of selected genes, and execution time. The result was 
also compared with numerous gene selection techniques. The compar
ative results indicate that the MRMR-DBH-SVM approach consistently 
outperformed current BBHA based and other established gene selection 
approaches in terms of classification accuracy, and the optimal number 
of retained genes. 

The rest of the paper is structured as follows. Some theoretical 
background is described in Section 2. The details of the proposed DBH 
algorithm are presented in Section 3. Section 4 explains the details of the 
conducted experiments and obtained results. Finally, Section 5 con
cludes this study. 

2. Preliminary concepts 

This section offers a brief definition of the gene selection problem as 
well as a detailed overview of the MRMR filtering method. Then, the 
standard BDF and the BHA approaches, which are later integrated to 
develop a more robust optimization algorithm are described. Finally, 
SVM is demonstrated in detail. 

2.1. Problem definition 

The gene expression microarray data consists of a very large number 
of genes with a limited number of samples. The majority of genes (fea
tures) in microarray data are redundant, irrelevant, and noisy, causing 
classifier algorithms to perform poorly on microarray data in regard to 
classification accuracy and computational cost. Gene selection is a 
process of providing a small biologically important gene subset to ach
ieve more accurate classification results. The total number of possible 
gene subsets for N genes is 2N.The search for optimal gene subset is an 
NP-hard problem since the search space, which includes all possible 
subsets, exponentially grows as the number of genes increases [10,12]. 

2.2. MRMR 

The MRMR filter feature selection method [39] was employed as a 
preprocessor before the wrapper approach, to filter out the irrelevant 
and redundant features from high-dimensional data sets. The MRMR’s 
idea is to choose features that have a high correlation with the class label 
(maximum relevancy) but a low correlation between themselves (min
imum redundancy). MRMR calculates the score of all features and se
lects the feature with the maximal score at each iteration in a greedy 

forward manner. MRMR utilizes mutual information to measure fea
tures’ redundancy and relevance in order to rank them [40]. The mutual 
information between two variables X and Y is defined as: 

I(Y;X)=H(Y) − H(Y|X) (1)  

H(Y)= −
∑

y
p(y)log2(p(y)) (2)  

H(Y|X) =
∑

x
p

(

y

)(

−
∑

y
p(y|x)log2

(

p

(

y|x

)))

(3)  

where H(.) represents entropy, and p denotes (empirical) probability 
mass function. 

Considering a data set with n instances of the m features X1, .., Xm 
and a class variable Y, the filter score for each feature Xk is defined as: 

JMRMR(XK)= I(Y;Xk) −
1
|S|

∑

Xj∈S
I
(
Xk;Xj

)
(4) 

The term I(Y;Xk) measures feature relevance to the target, based on 
the knowledge it has about Y. Let S stand for the list of features that have 
already been selected. The initial value of S is set to S = {Xk} with 

I(Y;Xk) =
max
j ∈ {1,…,m}

I(Y;Xj). The term 1
|S|
∑

Xj∈S
I(Xk;Xj) determines the 

feature’s redundancy by assessing the mean information it shares with 
the features in S. At each iteration, the feature that maximizes the 
respective score is added to S. 

2.3. Binary dragonfly algorithm 

The DFA is a recently proposed metaheuristic approach inspired by 
the unique swarming behaviors of dragonflies. Dragonflies swarm for 
two reasons. Either they form small flocks and fly back and forth over a 
tiny region for hunting prey, which is called the static swarm. Or a large 
number of them create a single group for long-distance migration in one 
direction, termed as the dynamic swarm. Each NIOA should provide a 
satisfactory balance between exploration and exploitation to produce 
good results. Static and dynamic swarming behaviors of dragonflies play 
the role of exploration and exploitation in DFA, respectively. The posi
tion of each dragonfly (solution) in the swarm (population) is updated 
using a step vector (velocity), which consists of five primitive factors:1) 
separation, 2) alignment, 3) cohesion, 4) attraction, 5) distraction. 

To avoid the collision of a candidate dragonfly (individual) with its 
adjacent dragonflies in the search space, the separation factor is used. 
The alignment factor is utilized to match the velocity of the individual 
with its neighboring dragonflies. The cohesion factor represents the 
tendency of the individual towards the center of the mass of the 
neighborhood. Attraction and distraction, as survival factors, reflect the 
dragonflies’ attraction towards food and their escape from enemies. 
Each factor is modeled mathematically as follows: 

Si = −
∑N

j=1
X − Xj j = 1, 2, 3, …,N (5)  

Ai =

∑N
j=1Vj

N
(6)  

Ci =

∑N
j=1Xj

N
− X (7)  

Fi =X+ − X (8)  

Ei =X− + X (9)  

where Si, Ai, Ci, Fi, and Ei represent the separation, alignment, cohesion, 
attraction, and distraction motion for ith dragonfly, respectively. X 
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Fig. 1. Flowchart of the BDF algorithm.  
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shows the current position of the ith dragonfly. Xj and Vj indicate posi
tion and velocity of neighboring dragonflies around X, whereas N rep
resents the total number of adjacent dragonflies. The position of the food 
and enemy are denoted as X+ and X− in equations (8) and (9), respec
tively. It worth mentioning that all the dragonflies in the population are 
assumed as a group in X neighboring at binary (discrete) search spaces, 
while Euclidean distance is computed between all the dragonflies for 
determining the neighborhood of each dragonfly in continuous search 
space. 

Then, the step vector showing the direction of dragonflies’ motions is 
determined as follow: 

ΔXt+1 =(sSi + aAi + cCi + fFi + eEi) + wΔXt (10)  

where s, a, c, f, e indicate the separation weight, alignment weight, 
cohesion weight, food factor, and enemy factor for ith dragonfly, 
respectively. And, w and t are inertia weight and iteration counter. 

In the continuous search space, the new position of the ith dragonfly 
is determined by adding the step vector to its previous position if at least 
one dragonfly is located in its neighborhood. Otherwise, the Levy flight 
operator is utilized to update the position of the dragonfly. 

Xt+1 =Xt + ΔXt+1 (11)  

Xt+1 =Xt + Levy*Xt (12) 

However, in the binary search space, the new position of the ith 

dragonfly is determined by employing the following transfer function to 
define the probability of changing position. 

T(ΔX)=
⃒
⃒
⃒
⃒

ΔX
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX2 + 1

√

⃒
⃒
⃒
⃒ (13)  

Xt+1 =

{
¬Xt r < T(ΔXt+1)

Xt r ≥ T(ΔXt+1)
(14) 

The transfer function takes the step vector as inputs and generates 
output between 0 and 1. Then the T(ΔX) result is used to convert the 
position vector variables to either 0 or 1 depending on equation (10), 

where r indicates a random number in [0, 1]. For more information refer 
to Refs. [25,26]. Pseudocode and flowchart of the BDF algorithm have 
been presented in Algorithm 1 and Fig. 1, respectively.   

2.4. Binary black hole algorithm 

The idea of BHA [30] is taken from the phenomenon of the black hole 
in space. A black hole (BH) is a region of space containing a large volume 
of mass, in which the entire mass lies in its middle. There is a heavy 
gravitational pull around the BH, called the event horizon, which en
sures that no nearby object can escape from it. A binary version of BHA 
(BBHA) was introduced in Ref. [36] to make the algorithm applicable for 
discrete problems since BHA was originally designed for continuous 
problems. 

The BBHA begins with random and binary initialization of candidate 
solutions. Each solution represents the position of a star in the search 
space. Then, an objective function is utilized to determine the goodness 
of each star to find the best solution among all the candidates. The 
prediction accuracy of a specific classifier is utilized to evaluate stars by 
computing their fitness value. Among all the solutions in the population, 
the star with the highest fitness value is chosen as the best solution and 
introduced as BH. The BH starts to attract stars, and consequently, all of 
the stars begin to move around the BH since the best place in search 
space belongs to BH. Stars update their positions, and their movements 
toward BH are carried out through the following equations: 

Xi(t+ 1)=Xi(t)+ rand [XBH − Xi(t)] i= 1, 2,…, N (15)  

S(Xi(t+ 1))= abs(tanh(Xi(t+ 1))) (16)  

Xi(t+ 1)=
{

1, if S(Xi(t + 1)) > 0.6
0, otherwise (17)  

where rand stands for a random value in the range [0,1]. The Xi(t) and 
Xi(t+1) represent the position of ith star in iteration t and t+ 1. The XBH 

Fig. 2. Flowchart of the BBHA  
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shows the position of the BH (best solution) in search space, and 
Ndemonstrates numbers of stars in the population with ddimension. 

After accomplishing stars’ movements toward the BH in the first 
iteration, the fitness values for new stars are calculated. If any of the 
stars have a better position than the BH considering the fitness values, 
the BH’s position is changed and it takes the position of the star. The 
algorithm proceeds and stars again begin to travel around this new BH. 
After the predefined number of iteration, the algorithm is stopped and 
BH is reported as the best solution for the optimization problem. 

It’s worth mentioning that if stars cross the event horizon when 
moving around BH, the BH immediately swallows them and they 
disappear from search space. It enables the random formation of new 
stars in the search space. The event horizon radius (R) is calculated as 
follow: 

R=
fBH

∑popsize
i=1 fi

(18)  

where fBH is the black hole fitness value, fi is the ith star’s fitness value, 
and . is the total number of stars in the population. The star vanishes 
from the search space when its distance from the BH is less than the 
radius of the event horizon. For more details on the steps of the original 
algorithm refer to Ref. [36]. Algorithm 2 shows the pseudocode of the 
BBHA and Fig. 2 demonstrates its flowchart. 

Due to BBHA’s simple structure, durability, high local optima 
avoidance, and the parameter-less nature of the BHA, it has been suc
cessfully applied in solving numerous optimization and engineering 
problems. However, in some datasets, the BBHA fails to demonstrate its 
excellent results, so a hybrid version of BBHA has been suggested to 
enhance its global search capability utilizing the BDF algorithm. It is 
worth mentioning that the initial population for both BDA and BBH is 
generated using uniformly distributed random numbers.   

2.5. Support vector machine 

SVM has demonstrated its usefulness in various biological classifi
cation tasks, such as gene expression microarrays. The SVM’s 
outstanding performance in microarray data can be explained by a va
riety of factors, including their robustness to high-dimensional data, 
their ability to avoid overfitting by utilizing powerful regularization 
principles, and their efficiency in learning complex classification func
tions [41]. The basic idea behind SVM classifiers is to find a maximal 
margin separating line (or hyperplane) between data of two classes. If 
the data is not linearly separable at origin, kernel functions are utilized 
to implicitly map the data to a higher-dimensional space, where a 
separating hyperplane can be found. 

We adopted the SVM classifier as an objective function in the pro
posed method to evaluate the candidate gene subset solution. Package 
“e1071” as an interface of “libSVM” in R was used for SVM imple
mentation with linear kernel. Recall that the linear kernel of SVM can be Fig. 3. Flowchart of the suggested MRMR-DBH algorithm.  

Table 1 
Datasets characteristics.  

Dataset #genes #samples #classes 

Breast Cancer 24481 97 (46, 51) 2 
Colon Cancer 2000 62 (40, 22) 2 
DLBCL 4026 47 (24, 23) 2 
Prostate Tumor 10509 102 (50, 52) 2 
MLL 12533 72 (24, 20, 28) 3 
CNS 7129 60 (21, 39) 2 
Ovarian Cancer 15154 253 (91, 162) 2 
ALL-AML 7129 72 (25, 47) 2 
GSE149273 (COVID-19) 11765 90 (30, 30, 30) 3  
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defined as: 

K
(
xi, xj

)
= xT

i xj (19)  

where xi and xj are samples with gene expression values. The value of 
the SVM penalty parameter C was set to one, and feature scaling was 
applied to data. 

3. Proposed method for gene selection 

This section provides the methodology followed to implement the 
proposed MRMR-DBH gene selection algorithm. It contains two main 
modules which are the filter feature selection approach based on MRMR, 
and the wrapper feature selection approach based on novel hybrid BDF/ 
BBHA (DBH) algorithm. The filter method is used in the first stage of the 
proposed model to identify a relevant feature set, and the wrapper 
model is used in the second stage to find the final feature subset. A 
detailed description of each stage of the proposed method is given in the 
following sub-section. The flowchart of the suggested approach is shown 
in Fig. 3. 

3.1. Stage I: filter approach 

In this stage, the MRMR feature selection approach was employed to 
select the initial subset features by analyzing the relevance and redun
dancy of the genes. MRMR ranking method aims to reduce the original 
dataset’s high dimensionality instead of the exhaustive search over the 
feature subsets and feed the wrapper method with the most discrimi
native genes. As a result, it reduces computational load and improves 
classification accuracy. Performing filtering process is bound to give 
rank scores for all genes, and n top-ranked genes, which are highly 
correlated with class and uncorrelated with each other, are chosen. 
Then, the selected n top genes will be passed to the subsequent stage to 
further select a small set of informative genes. 

3.2. Stage II: Wrapper approach 

In this stage, the wrapper method is used to select a subset of the 
most informative genes from the set of top-ranking genes collected by 
the MRMR filtering method. A hybridized version of BHA with DFA was 

developed as an efficient search method to perform in the wrapper 
model. The DFA is prone to trapping in local optima, but it is more stable 
than other NIOAs and can be combined with other algorithms easily. 
BBHA, on the other hand, has outperformed other NIOAs in terms of 
finding a near-optimal solution, but it lacks exploration capabilities on 
some complex datasets. Therefore, the hybridization of DFA as an in
ternal initialization operator with the BBHA can produce an efficient 
search method by covering the feasible space properly. The proposed 
DBH wrapper feature selection method uses the most popular SVM 
fitness function iteratively to evaluate the quality of feature subsets. Our 
proposed method’s ultimate aim is to increase classification accuracy 
while reducing the number of selected genes. 

3.2.1. Solution representation 
One of the main challenges confronting the NIOAs when designing 

them for the problem at hand is solution representation. The solution in 
this study is a one-dimensional vector with N elements, where N rep
resents the number of genes in the original dataset. A “1” or “0” value is 
assigned to each element in the vector. If the value is “1,” it means the 
corresponding gene is selected; otherwise, it is “0.” 

3.2.2. Fitness function 
In the wrapper model, the feature subsets in the search space are 

evaluated using a fitness function. The fitness function is one the most 
critical part of the suggested DBH wrapper feature selection approach 
since a poor judgment of the fitness function can lead to insufficiencies 
in the model. SVM classifier is used to calculate the fitness values of the 
candidate solutions in the population. Each solution’s fitness is given by 
a measure of the classification accuracy. Accuracy is defined as the 
number correct prediction made by SVM using gene subset. The equa
tion for the fitness function is as follows: 

fintess=
number f instance correctly classified

total number of instance
(20) 

The model’s main goal is to improve classification accuracy with a 
smaller number of genes. It’s worth noting that if the classification ac
curacy of two subset features is equal, the subset with the fewer genes is 
chosen. 

Table 2 
LOOCV classification accuracy (%) of the filter approaches on the different number of top-ranked genes using SVM classifier.  

Dataset Filter Methods Dataset Filter Methods 

#Top MRMR IG Relief Chi-square #Top MRMR IG Relief Chi-square 

Breast cancer 25 74.22 77.31 80.41 75.25 DLBCL 25 97.87 97.87 97.87 97.87  
50 81.44 76.28 77.31 76.28  50 100 100 100 100  
78 75.25 74.22 71.13 76.28  75 100 100 100 100        

100 100 100 100 100        
125 100 100 100 100        
150 100 100 100 100 

Colon Cancer 25 80.64 83.87 77.41 80.64 Prostate Tumor 25 87.25 92.11 90.19 96.07  
50 87.09 79.03 79.03 77.41  50 89.21 94.11 93.13 89.21  
75 79.03 77.41 79.03 75.80  75 92.15 90.19 93.13 91.17  
100 85.48 79.03 80.64 79.03  100 94.11 88.23 93.13 86.27  
125 83.87 87.09 77.41 85.48  125 92.15 91.17 93.13 90.19  
150 80.64 85.48 80.64 85.48  150 90.19 92.15 94.11 89.21 

MLL 25 91.66 91.66 93.05 91.66 Ovarian Cancer 25 98.02 98.02 100 98.41  
50 95.83 90.27 93.05 91.66  50 100 100 100 100  
75 94.44 94.44 94.44 91.66  75 100 100 100 100  
100 94.44 95.83 94.44 94.44  100 100 100 100 100  
120 94.44 95.83 93.05 95.83  120 100 100 100 100  

CNS 25 60 70 75 70 ALL-AML 25 95.83 97.22 94.44 95.83  
50 63.33 75 68.33 71.66  50 95.83 98.61 95.83 98.61  
75 70 73.33 71.66 71.66  75 97.22 98.61 97.22 97.22  
100 63.33 70 65 68.33  100 98.61 97.22 97.22 97.22  
125 71.66 66.66 65 65  125 98.61 95.83 98.61 97.22  
150 71.66 68.33 66.66 68.33  150 98.61 97.22 98.61 97.22  
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Fig. 4. LOOCV classification accuracy (%) of the filter approaches on the different number of top-ranked genes using SVM classifier.  
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3.2.3. Hybrid BDF and BBHA: binary DBH algorithm 
In this stage, BBHA is hybridized with the BDFA (DBH) to boost the 

BBHA’s initial population development mechanism in order to create an 
efficient gene selection algorithm with improved exploration and 
exploitation capabilities as well as faster convergence. The DBH flow
chart in Fig. 3 shows how the individual steps are carried out. Algorithm 
3 presents the pseudocode for the proposed approach. 

After the first stage, in which the MRMR filter approach selects n top- 
rank genes, the selected genes are fed to the proposed BBHA/BDFA 
(DBH) algorithm in the second stage. The I*D population was created 
randomly by a binary (0/1) string. . I stands for the number of stars in a 
swarm, and D is the dimension of the optimal feature subset. In the DBH 
algorithm, first, the BDF algorithm is performed for half number of 
maximum iteration, then BBHA is conducted for the next half of the 
maximum iteration. It is worth noting that dragonflies’ positions at the 

beginning stage of BDF are initialized randomly, while the positions of 
the stars in BBHA are initialized by the final dragonflies’ positions in the 
search space (See Fig. 3). In fact, we utilized the BDF approach to 
optimize the initial positions of the stars in BBHA. After a predefined 
number of iterations, the best solution is reported by BBHA, and DBH is 
finished. Lastly, the final solution is used to pick the most discriminative 
genes. Then SVM classifier with leave one out cross-validation (LOOCV) 
is utilized to build the model for cancer classification. The following is a 
summary of this hybrid meta-heuristic algorithm:  

Step 1 Generate I*D initial population of dragonflies using the optimal 
feature subset from the MRMR filtering method.  

Step 2 Perform BDFA process. Dragonflies begin to move toward the 
food and update their positions and velocity via Eq. (10)-(14) 
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Table 3 
LOOCV performance of classifiers on 8 microarray datasets with complete genes and maximum selected top-ranked genes.  

Dataset Measure Classifiers Classifiers 

Full genes maximum top genes   

SVM NB KNN DT RF CHIRP AdaboostM1 SVM NB KNN DT RF CHIRP AdaboostM1 
Breast ACC 67 52.5 59.7 57.7 71.1 65.9 62.8 81.4 79.3 79.3 81.4 83.5 76.2 78.3  

MCC 33.8 0.70 18.9 15 42.1 32.6 25.8 62.9 58.8 58.7 62.8 67 52.4 56.6  
F-mes 67 38 59 57.6 71.1 65.9 62.9 81.5 79.2 79.4 81.4 83.5 76.3 78.3  
AUC 66.9 50. 59.1 48 77.1 66.3 67.3 81.5 87.4 79.3 85.2 91.2 76.2 87.2  

Colon ACC 80.6 58 75.8 80.6 83.8 85.4 77.4 87 88.7 80.6 80.6 87 79 85.4  
MCC 57 19.9 46.6 57 64.2 68 49.8 71.4 75.1 56.5 57.7 72.6 53.8 68  
F-mes 80.4 58.9 75.7 80.4 83.7 85.4 77.2 86.9 88.7 80.6 80.6 87.2 78.9 85.4  
AUC 77.8 64.8 73.1 66.5 86.6 83.6 85.3 84.9 91.8 76.8 83.7 91.5 76.6 91.5  

DLBCL ACC 91.4 95.7 76.5 82.9 85.1 91.4 82.9 100 100 95.7 87.2 97.8 95.7 95.7  
MCC 83.3 91.5 55.4 66.1 70.2 83 65.9 100 100 91.8 74.7 95.8 91.5 91.8  
F-mes 91.5 95.7 76 82.9 85.1 91.5 83 100 100 95.7 87.2 97.9 95.7 95.7  
AUC 91.6 98.8 76.3 76.6 93.5 91.5 93.8 100 100 95.8 82.6 100 95.7 99.8  

Prostate ACC 91.1 62.7 84.3 87.2 88.2 90.1 92.1 94.1 92.1 92.1 88.2 94.1 89.2 90.1  
MCC 82.4 28.8 69.2 74.7 76.5 80.5 84.3 88.2 84.4 84.4 76.5 88.5 78.4 80.6  
F-mes 91.2 59.9 84.3 87.3 88.2 90.2 92.2 94.1 92.2 92.2 88.2 94.1 89.2 90.2  
AUC 91.2 62.7 84.4 97.6 91.2 90.2 93.2 94.1 92.8 92.1 91.6 96.8 89.2 96.6  

MLL ACC 95.8 95.8 83.3 86.1 95.8 90.2 90.2 95.8 95.8 91.6 93 97.2 95.8 90.2  
MCC 93.8 93.7 76.7 78.8 93.9 85.7 85.4 93.7 93.9 88 89.4 95.8 94.2 85.4  
F-mes 95.8 95.9 83.8 86 95.9 90.3 90.1 95.9 95.8 91.8 93 97.2 95.9 90.1  
AUC 96.9 96.8 88.1 87.4 98.9 92.6 97.4 96.8 98.3 93.9 93.6 99.9 97.1 97.4  

Ovarian ACC 100 88.1 96 95.6 94 97.2 99.2 100 98 99.2 98.8 99.2 96.8 99.6  
MCC 100 74.5 91.4 90.5 87.1 94 98.3 100 95.7 98.3 97.5 98.3 93.1 99.1  
F-mes 100 88.2 96 95.6 94 97.2 99.2 100 98 99.2 98.8 99.2 96.8 99.6  
AUC 100 93 95.5 95.7 99.5 96.4 100 100 98.6 98.9 99.7 99.9 96.1 100  

CNS ACC 68.3 58.3 58.3 50 63.3 60 65 71.6 61.6 73.3 83.3 73.3 65 73.3  
MCC 28.2 13.4 13.4 − 9.9 0 6.1 15.7 35.8 24.5 42.8 62.7 37.5 25.7 41.4  
F-mes 67.7 59.1 59.1 50 53 58.1 62 71.1 62.5 73.6 83.1 70.7 65.5 73.3  
AUC 63.6 58.4 57 49.8 60.4 52.7 62.8 67.2 63.8 71.8 83.2 86.3 63.2 80.7  

ALL-AML ACC 97.2 100 87.5 73.6 94.4 94.4 98.6 98.6 95.8 95.8 79.1 98.6 90.2 98.6  
MCC 93.9 100 72 44.9 88 88.1 97 97 90.9 90.8 55.5 97 78.8 97  
F-mes 97.2 100 87.3 74.1 94.3 94.5 98.6 98.6 95.9 95.8 79.4 98.6 90.3 98.6  
AUC 96.9 100 84.8 69.4 97.6 94.8 99.8 98 99.1 94.9 85.1 100 89.7 99.8  
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Fig. 5. The classification performance of seven classifiers on datasets with complete genes and maximum selected top-ranked genes in terms of Accuracy and 
F-measure. 
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Step 3 Check termination. If the termination condition is satisfied 
(maximum number of iterations = 10), go to Step 4. Otherwise, 
go to Step 2.  

Step 4 The positions of the optimized dragonflies are passed to the 
BBHA algorithm as the stars’ initialized population.  

Step 5 Compute fitness values of all-stars and update the position of the 
black hole XBH . 

Step 6 Perform BBHA operators. Each star updates its position accord
ing to Eqs. 15–17. 

Step 7 Judge termination. If satisfied, output the final solution. Other
wise, go to Step 5.  

Step 8 Build SVM classifier using the final solution with a LOOCV 
schema    

Example. consider the solution vector Xi, with 8 top-ranked genes Xi 
= [1,0,1,1,1,0,1,0]; where first, third, fourth, fifth and seventh feature 
are chosen randomly. On the other hand, second, sixth, and eighth 
features are not chosen. First binary DFA is performed on Xi and its 
position is updated according to its velocity iteratively with Xnew =

{
¬Xcurrent r < T(ΔXnew)

Xcurrent r ≥ T(ΔXnew)
equation where ΔXnew = (sSi + aAi + cCi +

fFi + eEi)+ wΔXcurrent . Then, the BBHA is employed to move Xi toward 

the best solution using Xnew =

{
1, if abs(tanh(Xnew)) > 0.6
0, otherwise where 

Xnew = Xi(current)+ rand [XBH − Xi(current)]. 

4. Experimental setup and results 

The performance of the proposed method MRMR- BDF-BBHA was 
evaluated using eight benchmark gene expression datasets and one real 
sequence read archive (SRA) dataset. Benchmark microarray datasets 
were taken from the http://csse.szu.edu.cn/staff/zhuzx/Datasets.html 
and SRA dataset was taken from the gene expression omnibus data
base (GEO). The algorithms in our experiments were programmed using 
Java and R. Except MRMR which was implemented using R (praznik 
package), the remains filter approaches (IG, Relief, and chi-square) were 
implemented in Java using the Weka tool. BDF, as well as BBHA, were 
both implemented using R language. The “e1071” library in R was uti
lized for the SVM classifier. 

Fig. 6. The bar plot with error bars for the average classification accuracy of seven classifiers on 8 microarray datasets.  

Table 4 
Comparison of the proposed method with basic BBHA and BDF regarding classification accuracy (in %), number of selected genes, and execution time using SVM 
classifier.  

Dataset Performance  BBHA BDF proposed Dataset Performance  BBHA BDF proposed 

Breast ACC Best 92.77 90.75 94.77 DLBCL ACC Best 100 100 100   
AVG 88.4 85.63 90.21   AVG 100 100 100  

#G Best 12 23 11  #G Best 5 7 3   
AVG 13 25 14   AVG 7 10 4.05  

CPU time  159 195.92 171  CPU time  218.66 334.79 209.32  

Colon ACC Best 98.57 98.57 98.571 Prostate ACC Best 99.09 98.18 99.09   
AVG 95.88 96.29 97.02   AVG 98.13 97.09 98.19  

#G Best 6 21 8  #G Best 14 35 12   
AVG 7.66 22.33 12   AVG 26.8 42 28  

CPU time  199.3 221.18 194.3  CPU time  206.14 252.77 200.1  

MLL ACC Best 100 100 100 Ovarian ACC Best 100 100 100   
AVG 100 100 100   AVG 100 100 100  

#G Best 5 10 5  #G Best 3 9 2   
AVG 5.3 12 5.25   AVG 3.2 8.33 2.66  

CPU time  186.1 248.64 208  CPU time  157.69 306.33 280.1  

CNS ACC Best 96 95 98.57 ALL-AML ACC Best 100 100 100   
AVG 94.32 90.6 97.19   AVG 97.79 99.08 100  

#G Best 29 54 22  #G Best 2 33 3   
AVG 33 57.33 39.75   AVG 4.33 36 4  

CPU time  317.66 392.53 271.2  CPU time  238.19 196.65 168.23  
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4.1. Dataset used 

The selected benchmark microarray datasets are common in the 
literature. They are “Breast Cancer”, “Colon Cancer”, Diffuse Large B- 
cell Lymphoma (DLBCL), “Prostate Tumor”, “Ovarian”, “MLL”, “ALL- 
AML”, and “CNS”. The selected real SRA dataset is ‘‘GSE149273′′ which 
is based on COVID-19 infectious illness. The description of genes, sam
ples, and the number of classes in these datasets are presented in Table 1. 

4.2. Parameter settings 

The parameters setting values for the filter and wrapper phases are 
assigned based on preliminary experiments. Accordingly, the number of 
top-ranked genes in MRMR is assigned to 125 for CNS, 100 for Prostate 
and ALL-AML, and 50 for the remainder of microarray datasets. It is 
worth mention that before applying MRMR, min-max normalization has 
been done. In all wrapper approaches the population size and the 
maximum number of iterations are set to 35 and 50, respectively. The 

Fig. 7. The convergence behavior of BBHA, BDF, and the proposed DBH approach for a random seed.  
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SVM of the “e1071” library with the linear kernel is used to evaluate the 
effectiveness of the proposed feature selection method. The scale and 
probability parameters of SVM are set to “true” and for tuning the cost 
parameter of the linear kernel, a traditional grid search algorithm has 
been conducted. 10-fold cross-validation is used during the algorithm 
process to estimate the solutions’ prediction accuracy (fitness function). 

4.3. Experimental results 

First, we investigated the efficacy of four filter methods, including 
MRMR, IG, Relief, and chi-square, to assess their effects on classification 
process performance and choose the best one as a pre-processing stage 
for the wrapper algorithm. Then we selected the top-ranked genes with 
the highest accuracy that are chosen from the output of the MRMR 
method to used them as input to the proposed wrapper approach. SVM 

Fig. 8. The number of selected genes during the convergence of BBHA, BDF, and the proposed hybrid approach for a random seed.  

E. Pashaei and E. Pashaei                                                                                                                                                                                                                     



Analytical Biochemistry 627 (2021) 114242

15

classifier with LOOCV was used to evaluate the performance of selected 
genes by filter approaches (Table 2, and Fig. 4). It can be seen from 
Table 2, and Fig. 4 that compared to the other approaches on most 
datasets, the MRMR method obtains the highest accuracy on most of the 
various sub-sets of top-ranked genes, except for the CNS and Prostate 
Tumor. IG for CNS and Relief for Prostate Tumor have the highest ac
curacy scores as compared to the other unsupervised filter-based ap
proaches. For the 50 number of genes, MRMR gets significantly higher 
classification accuracy rates on 5 out of 8 datasets. For example, on the 
breast cancer dataset, MRMR obtains the highest accuracy compared to 
other approaches, particularly for 50 and 75 numbers of the top-ranked 
genes. The Relief method provides the lowest results in this dataset. 
According to Table 2 and Fig. 4 just 125 top rank genes for CNS, 100 for 
Prostate and ALL-AML, and 50 for the rest of the microarray datasets are 
useful for classification. An increase in the number of top-ranked genes 
degrades the output of classifiers by adding noisy genes. 

In the second set of experiment, we compared the classification 
performance of seven classifiers; SVM, NB, KNN, DT, RF, CHIRP, and 
Adaboost1, in terms of Accuracy (ACC), F-measure, Area Under Roc 

Curve (AUC), and Matthew Correlation Coefficient (MCC). Table 3 re
ports the LOOCV classification performance of the seven classifiers for 
datasets with complete genes and maximum selected top-ranked genes. 
Fig. 5 summarize this table for F-measure and ACC measures. 

The average classification accuracy of seven classifiers on 8 micro
array datasets is shown in Fig. 6. According to the results presented in 
Table 3, Fig. 5, and Fig. 6, no classifier performs consistently better than 
others, and the overall performance of NB, RF, and SVM is similar. 

Table 4 shows the best and average classification accuracy (ACC) of 
the fitness function, the best and average optimal subset of genes (#G), 
and execution time (CPU time) on a random seed for the proposed DBH, 
basic BDF, and basic BBHA. The best results are highlighted in bold font. 
From Table 4, we can observe that the proposed method is reliable 
compared to basic BDF and BBHA for gene selection since it has selected 
the least number of genes with lower execution time and higher accu
racy for most datasets. 

For basic BBHA, BDF, and proposed hybrid DBH, the convergence 
behavior on a random seed is plotted and shown in Fig. 7. On all data
sets, the convergence behavior trend of suggested DBH is substantially 
better than BDF. Although suggested DBH performs worse than BBHA in 
the early stage of evolution for most datasets, proposed DBH can 
converge better than BBHA in the late stage of evolution. For DLBCL, 
Ovarian, and MLL the convergence trends of the methods are the same. 

Fig. 8 displays the number of selected genes during the convergence 
of BBHA, BDF, and the proposed DBH for a random seed. From Fig. 8. It 
can be concluded that whereas the proposed DBH selects more genes 
than the BBHA for all datasets in the early stage of evolution, the DBH 
can select a minimum number of genes compared to the BBHA in the late 
stage of evolution on most datasets. 

In the fourth series of experiments, the efficiency of the proposed 
method was compared to various swarm intelligence gene selection 
methods in terms of average classification accuracy and the average 
number of selected genes (Table 5). All methods were executed in 10 
independent runs. As shown in Table 5, the proposed method has 
resulted in higher classification accuracy and a smaller number of 
selected genes on most datasets. The standard deviation is consistently 
small for both parameters on most datasets. These facts indicate that the 
proposed hybrid approach is a fast, consistent, and effective feature 
selection algorithm. 

The non-parametric Friedman test has been carried out to shows 
whether there exists any statistically significant difference between the 
proposed approach and other algorithms. The Friedman test assigns 
average accuracy value rankings to each of the algorithms on eight 
datasets, which is shown in Table 6. As shown in Table 6, the proposed 

Table 5 
Average LOOCV classification accuracy ± STD (in %) and the number of genes over 10 runs of the swarm intelligence gene selection methods using SVM classifier.  

Dataset Performance Bat ACO PSO Firefly Cuckoo BBHA BDF Proposed 

Breast ACC 87.27 ± 0.59 85.21 ± 0.61 87.28 ± 2.37 86.59 ± 1.03 84.97 ± 0.5 88.4 ± 2.1 85.63 ± 1.8 90.21 ± 2.2  
#G 17.66 ± 3.78 16 ± 5.29 14.66 ± 1.52 16 ± 2.64 14 ± 4.3 13 ± 2.7 25 ± 3.2 14 ± 1.1  

Colon ACC 91.93 ± 1.61 90.31 ± 1.6 91.93 ± 1.61 89.51 ± 1.14 90.85 ± 1.8 95.88 ± 1.4 96.29 ± 0.9 97.02 ± 0.5  
#G 15.33 ± 3.51 13.66 ± 5.68 9 ± 3 11.33 ± 2.08 6.33 ± 2.08 7.66 ± 1.5 22.33 ± 1.3 12 ± 2.6  

DLBCL ACC 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 99.29 ± 1.2 100 ± 0.0 100 ± 0.0 100 ± 0.0  
#G 10.66 ± 1.52 4.66 ± 0.57 4.33 ± 1.52 13.33 ± 0.57 5 ± 1.7 7 ± 1.5 10 ± 3.01 4.05 ± 1.2  

Prostate ACC 97.07 ± 0.98 98.03 ± 0.01 97.70 ± 0.56 97.70 ± 0.56 97.70 ± 0.5 98.13 ± 2.5 97.09 ± 0.5 98.19 ± 0.3  
#G 29 ± 11 18 ± 1.73 12 ± 1 30.33 ± 1.59 14.3 ± 5.5 26.8 ± 7.4 42 ± 7.5 28 ± 6.7  

MLL ACC 100 ± 0.0 99.07 ± 0.8 99.53 ± 0.8 100 ± 0.0 99.07 ± 0.8 100 ± 0.0 100 ± 0.0 100 ± 0.0  
#G 11 ± 2.64 9.66 ± 1.15 7.66 ± 0.57 13 ± 3 8.33 ± 2 5.3 ± 1 12 ± 2.2 5.25 ± 0.5  

Ovarian ACC 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 99.68 ± 0.5 100 ± 0.0 100 ± 0.0 100 ± 0.0  
#G 13 ± 1 3.33 ± 0.57 3.33 ± 0.57 15 ± 0.81 3.33 ± 0.5 3 ± 0.0 8.33 ± 1.15 2.66 ± 0.57  

ALL-AML ACC 99.07 ± 0.80 99.53 ± 0.8 99.53 ± 0.8 100 ± 0.0 100 ± 0.0 97.79 ± 1.4 99.08 ± 0.14 100 ± 0.00  
#G 14.66 ± 5.5 11.66 ± 1.52 9 ± 3.6 26.66 ± 2.51 8 ± 2.64 4.33 ± 2.08 36 ± 3.6 4 ± 1  

CNS ACC 87.21 ± 0.96 90.55 ± 2.54 90 ± 0.01 92.22 ± 3.47 88.33 ± 7.63 94.32 ± 1.2 90.6 ± 4.01 97.19 ± 1.56  
#G 18.33 ± 2.51 14.33 ± 0.57 15.25 ± 2.06 45.66± 36.33 ± 8.62 33 ± 3.46 57.33 ± 3.51 39.7 ± 10.01  

Table 6 
Average rankings of accuracy values 
among 8 algorithms on eight microarray 
datasets using Friedman test.  

Proposed 2.12 

BBHA 3.5 
Firefly 4.25 
BDF 4.5 
PSO 4.62 
ACO 5.25 
BAT 5.31 
Cuckoo 6.43  

Table 7 
Post-hoc Holm test (0.05).  

Comparision P-values Result 

Proposed vs BBHA 0.26157224 H0 is not rejected  
Proposed vs Firefly 0.08273102 H0 is not rejected  
Proposed vs BDF 0.0524795 H0 is rejected  
Proposed vs PSO 0.04122683 H0 is rejected  
Proposed vs ACO 0.01072444 H0 is rejected  
Proposed vs BAT 0.009252446 H0 is rejected  
Proposed vs Cuckoo 0.0004296932 H0 is rejected   
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approach has placed in rank one. In most comparisons, the p-value 
suggests that the null hypothesis can be rejected. This means that the 
performance of the proposed approach is statistically significant 
compared to most of the methods. The findings obtained from the “post- 
hoc Holm” test are shown in Table 7. 

The performance of the proposed algorithm was compared with 
some relevant state-of-the-art methods. Table 8 indicates the average 
accuracy of the predictions and the optimum number of genes obtained 

by the proposed and other reported literature methods. Out of 8 datasets 
in 4 of them including DLBCL, MLL, ALL-AML, and Ovarian the proposed 
approach can achieve perfect accuracy with a lower number of genes 
than other algorithms. In the prostate cancer dataset, except the TLBO- 
SA-SVM method [20], the proposed approach achieved higher classifi
cation accuracy but with a slightly increasing number of selected genes 
than other methods. For the Breast cancer dataset, RFE- 
PSO-BBHA/SPLSDA [38] obtained the highest classification accuracy 

Table 8 
Comparing the performance of the proposed approach with the literature methods.  

Dataset Method Accuracy Reference Dataset Method Accuracy Reference 

Prostate Cancer Clustering 94.71 (10) [43] Colon Cancer TOPSIS-Jaya-NB 97.76 (18.90) [18]  
IDGA-F-SVM 96.3 (14) [44]  BDE-X Rankf 75 (3) [45]  
MOBBA-LS-KNN 97.1 (6) [46]  DRF0-CFS-SVM 90 (10) [47]  
BFO 97.42 (29) [48]  SFS-MB 72.21 [49]  
DRF0-CFS-SVM 97.06 (113) [47]  RFR-IDGA-RF 93.39 (4.7) [7]  
PSO dICA 96.77 [50]  PSO dICA 94.73 (20) [50]  
TLBO-SA-SVM 99.13 (8) [20]  TLBO-SA-SVM 99.01 (11) [20]  
Proposed 98.19 ± 0.3 (28 ± 6.7)   RFR-BBHA-Bagging 93.33 (4.5) [29]      

Proposed 97.02 ± 0.5 (14.4)   

DLBCL BFO 98.99 (8) [48] Breast cancer BDF 86.22 (7237) [18]  
BDF 89.44 [18]  DRF0-CFS-SVM 84.21 (82) [47]  
DRF0-CFS-SVM 94.67 (11) [47]  MIM-AGA-ELM 82.47 [51]  
PSO dICA 94.73 (30) [50]  Chi-Squared-BBHA-RF 87.77 (6.2) [36]  
BDE-X Rank 92.9 (3) [45]  EGS and F-score-AGA-SVM 88.64 (17) [52]  
Proposed 100 ± 0.0 (4.05 ± 1.2)   MRMR-BA 

RFE- PSO-BBHA/SPLSDA 
88.8 (18.3) 
97.72 (12.9) 

[11] 
[38]      

Proposed 90.21 ± 2.2 (12 ± 2.6)   

MLL RMRMR-HBA-SVM 100 (8) [3] Ovarian Cancer RMRMR-HBA-SVM 100 (3.07) [3]  
HAS-MB 99.55 (6.6) [53]  HAS-MB 99.81 (5.73) [53]  
MRMR-BA 79.86 (19.03) [11]  MRMR-BA 100 (3.83) [11]  
MBEGA 94.33 (32.1) [54]  MBEGA 99.71 (9) [54]  
CFC-iBPSO 100 (30.8) [14]  CFC-iBPSO 100 (3.3) [14]  
TOPSIS-Jaya-NB 99.62 (12.90) [42]  TOPSIS-Jaya-NB 99.52 (18.50) [42]  
Proposed 100 ± 0.0 (5.25 ± 0.5)   Proposed 100 ± 0.0 (2.66 ± 0.57   

ALL-AML RMRMR-HBA-SVM 100 (4.07) [3] CNS RMRMR-HBA-SVM 100 (11.2) [3]  
HAS-MB 99.34 (5) [53]  HAS-MB 84.17 (7.43) [53]  
MRMR-BA 100 (5.23) [11]  MRMR-BA 94.22 (19.2) [11]  
MBEGA 95.89 (12.8) [54]  MBEGA 72.21 (2.5) [54]  
CFC-iBPSO 100 (4.3) [14]  CFC-iBPSO 95.84 (10.5) [14]  
TOPSIS-Jaya-NB 100 (16.10) [42]  TOPSIS-Jaya-NB 96.22 (8.7) [42]  
RFR- IDGA-RF 98.06 (7.4) [7]  RFR-BBHA-Bagging 90 (3.33) [29]      

RFE- PSO-BBHA/SPLSDA 99.16 (10.5) [38]  
Proposed 100 ± 0.0 (4 ± 1)   Proposed 97.19 ± 1.56 (39.7 ± 10.01)   

Table 9 
The identified best subset of genes by the proposed method.   

Gene Index Gene names SVM NB KNN DT RF CHIRP AdaboostM1 

Breast 3232, 4973, 5509, 6247, 8899, 
8910,10889,16629,19074,21911, 24107 

NM_020123, Contig47710_RC, 
NM_002914, NM_021184, NM_006145, 
NM_013438, AL080059, Contig15714_RC, 
Contig12419_RC, AB014526, 
Contig49670_RC 

93.8 82.4 68.8 85.1 91.9 78.2 90.1 

Colon 249, 262, 286, 1221, 1312, 1582, 1772, 1976 M63391, control, H64489, R62549, 
M86934, X63629, H08393, K03474 

98 93.2 83.9 81.3 92.1 83.6 89.9 

DLBCL 1277, 1291, 3226 – 100 98.7 93.7 87 98.1 93.6 96.7 
Prostate 1943, 4694, 4823, 5074, 5227, 6105, 7073, 7451, 

7515, 7652, 8906, 10130 
– 99.6 97.4 93.1 76.3 97 93.1 96.9 

MLL 318, 6223, 6841,8703, 8937 31575_f_at, 37933_at, 39749_at, 36997_at, 
37710_at 

100 99.8 94.9 90.7 99.3 89.7 96.5 

Ovarian 2239, 2314 MZ435.85411, MZ465.56916 100 99.9 100 99.4 99.9 97.4 99.9 
CNS 360, 444, 1049, 1869, 2032, 2372, 2474, 2537, 

2851, 3783, 4008, 4394, 4536, 4779, 5476, 5494, 
5563, 6035, 6345, 6369, 6534, 6609 

D31763_at, D45399_at, J00124_at, 
M26679_at, M55593_at, M93426_at, 
S71824_at, S81914_at, U17989_at, 
U79290_at, V00563_at, X63597_at, 
X74295_at, X90857_at, X70811_at, 
X92368_at, D13631_s_at, Z31560_s_at, 
M63438_s_at, X62083_s_at, U43203_s_at, 
Z70276_s_at 

95.4 67.6 65.9 79.7 86.8 65.8 86.7 

ALL- 
AML 

3433, 4211, 4847 U57721_at, X51521_at, X95735_at 100 100 100 96 99.4 93.9 99.6  
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with only 12.9 average number of genes. By contrast, our proposed 
method selected 12 genes and achieves (90.21) classification accuracy. 
In the Colon cancer dataset, the proposed approach obtained better 
performance than the previous studies except for TLBO-SA-SVM [20] 
and TOPSIS-Jaya-NB [42]. For the Colon dataset, the TOPSIS-Jaya-NB 
method obtained 97.76 classification accuracy with 18.90 genes, 
while the proposed approach achieves 97.02 classification accuracy 
with only 14.4 genes. 

In sum, the experimental results exhibit that the proposed approach 
can yield a smaller set of reliable genes with higher/equivalent classi
fication accuracy than other methods on most datasets. 

Table 9 shows the best subset of gens obtained by using the proposed 
method in each dataset. As can be seen in Table 9, all of the classifiers 
achieve a high area under the roc curve (AUC) on the optimal subset of 
gens. Table 10 shows the relationships between identified genes in each 
dataset using a rule-based classifier (PART). Fig. 9 displays a heatmap 
created for the identified best subset of gens. The heatmap correctly 
clusters samples and reorder the genes into blocks with similar expres
sion patterns. The boxplots which show the expression distribution of 
the identified gens are plotted in Fig. 10. 

4.4. GSE149273 (Covid19) dataset 

A novel virus which is known as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2 or CV2) was identified as the cause of 
coronavirus disease (COVID-19). The CV2 required ACE2 to infect the 
cells. ACE2 is a protein that provides the entry point for CV2 to hook into 
and infect human cells. In other words, ACE2 serves as a cellular 
gateway or a receptor for the COVID-19-causing virus. This COVID-19 
infectious illness may be more severe in patients with asthma. Rhino
virus (RV) is the respiratory virus that is responsible for the majority of 
asthma exacerbations in children and adults. An analysis was conducted 
in Ref. [55] recently to examine the role of RV infection in ACE2 
expression of asthmatic patients. It was found that RV infections in 
asthmatics lead to the overexpression of ACE2, and subsequently acti
vate cytokine pathways that are associated with severe COVID-19 

disease. 
The GSE149273 is an SRA dataset that was downloaded from the 

GEO and composed of 25343 genes, 90 samples, and three categories 
(RVA, RVC, Control). After downloading the count data some pre
processing steps such as (removing lowly expressed genes, converting 
counts to Differentially Expressed Genes (DGEList), quality control, 
normalization for composition bias, finding all common genes differ
entially expressed in (RVA, control) and (RVC, Control), extracting 
ACE2 gene with 90 samples) has been done. 

We keep genes that have a count per million (CPM) of 0.2 or more in 
at least 12 samples. The number of highly expressed genes after filtering 
is 17940. In the next step, we draw a multi-dimensional scaling (MDS) 
plot to display similarities and dissimilarities of samples in an unsu
pervised manner (Fig. 11(A)). Before fitting the linear model we did 
quality control and draw a Voom plot to check there is a need to filter 
more genes or not. Fig. 11(B) shows a “good” voom plot. Then we did 
normalization and extract genes that are DE in multiple comparisons. 
Fig. 11(C) is a Venn diagram that shows the number of DE genes in the 
comparison between controlv versus RVA, control versus RVC, and the 
number of genes that are DE in both comparisons (center). 4055 number 
of common DE genes were extracted. 

The performance of different classifiers (KNN, NB, SVM, DT, RF, 
CHIRP, and AdaboostM1) for 4055 common DE genes and ACE2 are 
shown in Table 11. Compared to all classifiers the SVM classifier ob
tained the highest accuracy for the ACE2 gene and the second-highest 
for common DE genes. 

Here, we aim to build a model to improve the predictive efficiency of 
ACE2 in Covid 19 diagnostics. By applying the proposed approach 
(MRMR-BDF-BBHA-SVM) to 4055 common DE genes, we find the best 
subset of 9 genes with an SVM accuracy of 83.33%. This indicates that 
among 90 samples, only 15 of them have been misclassified (Table 12). 

Table 13 shows the extracted rule by the PART classifier for the 
proposed model. Fig. 11 (D) displays a heatmap created for the best 
subset of genes. From the heat map, we observe that the expressions of 
ACE2 and HTR2B are very similar. 

Fig. 11(E) shows the expression distribution of genes. The relation of 

Table 10 
Extracted rules by the PART classifier for identified biomarkers.  

Datasets PART rules AUC 

Breast IF (NM_013438 ≤ 0.148) AND (AL080059 ≤ − 0.199) AND (Contig49670_RC > − 0.173) => class = non-relapse (35.0) 
IF (NM_020123 ≤ 0.071) AND (Contig49670_RC > − 0.334) AND (Contig49670_RC ≤ − 0.104) => class = relapse (21.0/2.0) 
IF (NM_020123 > 0.071) => class = relapse (18.0) 
IF (NM_020123 > − 0.023) AND (NM_020123 > 0.006) AND (NM_006145 > − 0.084) => class = non-relapse (8.0/1.0) 
IF (NM_020123 > − 0.023) => class = relapse (9.0/1.0) 
=> class = non-relapse (6.0) 

73.5 

Colon IF (M63391 ≤ 1627.27) AND (H08393 > 61.59875) => class = negative (34.0) 
=> class = positive (28.0/6.0) 

76.1 

DLBCL IF (Gene1291<=0.43) => class = activated (21.0) 
IF (Gene1277 > 0.45) => class = germinal (22.0/1.0) 
=> class = germinal (4.0/1.0) 

86.2 

Prostate IF (Gene4823 ≤ 70) AND (Gene7652 > 441) => class = Normal (36.0) 
IF (Gene10130 ≥ 129) AND (Gene7515 ≤ 11) => class = Tumor (52.0/2.0) 
=> class = Normal (14.0/2.0) 

81 

MLL IF (37710_at ≤ 1071 AND 37933_at<=531) => class = AML (28.0/1.0) 
IF (31575_f_at<=216) => class = ALL (24.0) 
=> class = MLL (20.0/1.0) 

87.2 

Ovarian IF (MZ435.85411 > 0.345977 AND MZ465.56916 ≤ 0.411917) => class = Cancer (138.0) 
IF (MZ465.56916 > 0.237635 AND MZ435.85411 ≤ 0.495118 AND MZ465.56916 > 0.260951) => class = Normal (86.0) 
IF (MZ435.85411 > 0.160364) => class = Cancer (24.0) 
=> class = Normal (5.0) 

99.7 

CNS IF (S71824_at > 420) AND (M26679_at <= − 12) => class = 0 (22.0) 
IF (M55593_at ≤ 1274) AND (U79290_at ≤ 110) AND (X74295_at<=747) => class = 1 (18.0) 
IF (M26679_at > − 7) => class = 0 (18.0/1.0) 
=> class = 1 (2.0) 

67.2 

ALL-AML IF (X95735_at<=938) => class = ALL (45.0/1.0) 
IF (X51521_at<=4253) => class = AML (24.0) 
=> class = ALL (2.0) 

96  
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Fig. 9. The heat map of the actual expression profiles for the best subset of genes obtained from the proposed method. The heat map is generated using the 
“pheatmap” package in R. 
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Fig. 10. Box plot for best subset of genes identified by proposed approach in each dataset.  
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Fig. 11. A. MDS plot of log-CPM values over dimensions 1 and 2 with samples colored by categories. B. Mean-variance plot of each gene, C. Venn diagram, D. heat 
map, E. boxplot, F. Enrichment analysis for COVID-19 related gene sets. 
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‘ZC3HAV1’ with severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) was already identified in previous studies [56,57]. Fig. 11 
(F) displays the Enrichment analysis that was conducted using the 
Enricher web tool (https://maayanlab.cloud/Enrichr). Fig. 11 (F) shows 
whether or not a gene is associated with the SARS-CoV-2 term. ACE2, 
PNPT1, ZC3HAV1, and LMO2 are four genes to be linked to SARS-CoV-2 
which have been confirmed by enrichment analysis. 

5. Conclusion 

Due to the curse of the dimensionality problem of microarrays, 
predicting strongly discriminative genes in gene expression data is a 
difficult task and most of the current approaches fail to deal with it 
effectively. This study suggests a new hybrid approach that combines 
BDF with BBHA, called DBH, to find the most informative genes for 
disease classification and diagnosis. The primary purpose of hybridiza
tion is to improve BBHA performance for a wide exploration and a deep 
exploitation search using the BDF algorithm. As the BDF is more firm 
and can easily be combined effectively with other NIOA, its efficiency 
has been integrated with the excellent performance of BBHA in avoiding 
local optima and its high convergence speed. 

The proposed method consists of two stages. In the first stages, the 
MRMR filter method is employed to choose the top 150 features, and in 
the second stage, the reduced gene subset is used as an input to the DBH 
algorithm to extract the most discriminative genes. In the suggested 
approach, the SVM classifier was applied as the classification model. The 
efficiency of the suggested approach is tested on eight well-known 
benchmark microarray datasets and one real COVID-19 related gene 
expression dataset. According to the obtained results, the suggested 
MRMR- DBH approach has shown remarkable performance in terms of 
convergence rate, classification accuracy, and the optimal number of 
genes, as compared to other considered approaches. The suggested 
hybrid algorithm also incorporates stability and robustness into the so
lution. Moreover, in the RNA-Seq COVID-19 related gene expression 
dataset, the suggested method achieves more than 83.33% classification 

accuracy, which verifies that it is an effective approach in practice for 
selecting the most biologically relevant genes related to the disease. 

As future work, the suggested hybrid approach can be extended and 
applied to solve various real and complex optimization problems of 
different domains. For Example, DF/BHA performance can be examined 
in numerical function optimization, image contrast enhancement, image 
segmentation, and text mining. It also would be interesting to hybridize 
the BBHA algorithm with other NIOA such as the salp optimization al
gorithm using many classifiers other than SVM which was adopted in 
this paper. Additionally, different combinations of the present method 
can be developed through new filtering feature selection methods to 
improve the classification accuracy of the BDF/BBHA method. 
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