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Abstract
The complementary functions method (CFM) is used to investigate the static behavior of laminated composite frames consist-
ing of straight and/or curved members of variable cross section. The Timoshenko beam theory (TBT) is used to obtain the set 
of the governing equations. The fifth-order Runge–Kutta (RK5) algorithm is employed in the solution process of initial value 
problems via the CFM. A computer program is substantially coded in Fortran on rigidity matrix based on the CFM to acquire 
the rigidity matrices and load vectors of these structural elements. With the help of the suggested method, the influences of 
the symmetric layer stacking sequence, the ratio of E1/E2, and various boundary conditions on the nodal displacements and 
element end forces of the considered frames are investigated. Carrying out the static behavior of laminated composite frame 
systems which contain straight and circular axis elements for the first time by using the CFM is the novelty of this study. 
Verification and accuracy of the suggested scheme are intently performed through the comparison of the present results 
with those of the finite element method. The effectiveness of the method and good agreement of the results are observed.

Keywords  Laminated composite · Frame structures · Complementary functions method · Two-point boundary value 
problem · FSDT

1  Introduction

Composite materials are now extensively used in engi-
neering applications due to their transcendent mechanical 
properties like high mechanical strength, rigidity, corrosion 
resistance, lightweight, acoustics, fatigue strength, high ther-
mal conductivity, safety, high-temperature resistance and 
cost-effectiveness. Together with the development of mod-
ern engineering and society, complex architectural structures 
became prevalent. Laminated composite beams are widely 

used in solving such significant engineering problems and 
applications; therefore, analysis of laminated composite 
beams has become a research focus among many engineer-
ing disciplines; thus, many papers can be found on its static 
and dynamic analysis in the literature.

Many solution models and different theories have been 
developed for the analysis of composite beam structures. Vo 
and Thai [1] carried out the static analysis of laminated com-
posite beam with various ply lay-ups undergoing uniformly 
distributed and point loads using a refined shear deformation 
theory. Ditaranto [2] used a variational method to obtain the 
differential governing equations and boundary conditions for 
laminated composite beams with three layers of which the 
middle layer carries shear forces. Reddy et al. [3] investi-
gated the relationship between deflection, shear forces and 
bending moments of a third-order shear deformation beam 
theory and other various beam theories. Karamanlı [4] 
employed the Timoshenko beam theory and the Ritz method 
to investigate the bending behavior of composite symmetric 
and anti-symmetric cross-ply beams under various sets of 
boundary conditions. Catapano et al. [5] carried out the lin-
ear static analysis of simply supported composite cross-ply 
beams subjected to bending loads considering different 
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length-to-thickness ratio values and implemented a closed-
form Navier-type solution. The results obtained are validated 
with those of the three-dimensional finite element (FE) mod-
els in the ANSYS program. Özütok and Madenci [6] used a 
higher-order shear deformation beam theory to analyze the 
static behavior and shear deformation effects in the thickness 
direction of laminated composite beams with various bound-
ary conditions. Pagani et al. [7] carried out the exact static 
response of a simply supported cross-ply laminated compos-
ite sandwich beam under sinusoidal loading by using a 
refined beam model based on the Lagrange expansion. 
Ecsedi and Baksa [8] have developed an analytical model to 
study the static response of a two-layered composite beam 
with an interlayer slip in which the loading acts on the sym-
metry plane of the beam. Euler Bernoulli’s theory was sup-
posed to be valid for each layer separately. Aguiar et al. [9] 
presented several FE models to investigate the static behav-
ior of laminated composite beams of various cross sections. 
The governing equations were obtained by utilizing the Hell-
inger–Reissner variation principle. Eisenberger [10] has 
obtained the exact stiffness coefficients for high-order iso-
tropic beam elements under different in-plane loading and 
various boundary conditions, and the results were validated 
with the Timoshenko and Bernoulli–Euler beam theories. 
Khdeir and Reddy [11] investigated the effects of shear 
deformation, the number of layers and the E1/E2 ratio on the 
static response of thick and thin cross-ply laminated beams 
using the first-, second- and third-order beam theories. Yuan 
and Miller [12] developed a new higher-order FE model to 
investigate the static response of symmetric and asymmetric 
laminated composite beams subjected to various boundary 
conditions. Yu [13] presented a new FE model to analyze the 
bending response of laminated composite beams and thin 
plates with different stacking sequences. Vo et al. [14] used 
a quasi-3D theory in order to investigate the flexural analysis 
of composite and sandwich beams subjected to various 
boundary conditions and considering the effects of fiber 
angle, layer stacking sequences and span to height ratio on 
the displacements and stresses. Cunedioğlu [15] used the FE 
method based on Euler–Bernoulli beam theory to study the 
static and buckling behaviors of a fiber-reinforced composite 
beam considering various parameters and proved that these 
parameters significantly influence the displacement and 
buckling loads of the beam. Masjedi and Weaver [16] pre-
sented an analytical solution for the 3D static response of 
non-uniform composite beams of variable stiffness. The 
proposed solution is derived by direct integration and series 
expansion methods. A slender beam with rectangular cross 
section subjected to tip and uniformly distributed loads, was 
examined. Daví et al. [17] developed a new theory for mul-
tilayered beams under axial, shear and bending loads acting 
on the ends of the beam. Their suggested model was applied 
on a single-layer beam to compare the accuracy of the 

results; thereafter, closed-form solutions were given for 
beams subjected to various supports and loading conditions. 
Vukasovic et al. [18] modified classical Timoshenko beam 
theory to investigate the influence of shear on thin-walled 
laminated composite beams of symmetrically open cross 
sections subjected to uniformly distributed loads and various 
boundary conditions. Saraçoğlu et al. [19] studied the deflec-
tion response of fiber-reinforced orthotropic beams accord-
ing to the Bernoulli–Euler and Timoshenko beam theories. 
The influence of the length to depth ratio, material properties 
and fiber orientation angle on deflection was also examined 
in detail. An FE model based on the first-order shear defor-
mation and Timoshenko beam theories was developed by 
Elshafei [20] to analyze the behaviors of isotropic and ortho-
tropic beams. Besides, the effect of thickness to length ratio, 
material properties, boundary conditions and the number of 
layers on the natural frequency and the static deflections of 
the beam were investigated. Zghal et al. [21] investigated the 
effects of porosity, boundary conditions, porosity coefficient 
and porosity distribution types on bending response of func-
tionally graded (FG) beams using a refined mixed FE beam 
model. Doeva et al. [22] introduced an exact analytical solu-
tion for static deformation analysis of composite beams sub-
jected to non-uniformly distributed loads and various bound-
ary conditions. Noori et al. [23] used the CFM to study the 
static bending of FG straight beams of variable mechanical 
and material properties through the thickness, subjected to 
different boundary conditions and various in-plane loads. 
Mathiyazhagan and Vasiraja [24] used an FE formulation to 
study the influence of loading type and direction on the static 
deflection of a cantilever curved beam of various cross sec-
tions. Barhate and Waghe [25] developed various theories 
to study the static analysis of simply supported and lami-
nated composite beams loaded transversely. Alaimo et al. 
[26] introduced an analytical theory to analyze the axial and 
transverse displacements of multilayered composite beams 
under uniformly distributed loads acting transversely. 
Sayyad et al. [27] investigated the effects of shear transverse 
deformation on the bending response of laminated compos-
ite and sandwich beams using a trigonometric beam theory, 
which does not require a shear correction factor. Pandey and 
Gadade [28] statically analyzed laminated composite beams 
undergoing transverse loads considering aspect ratios, ply 
lay-up and boundary conditions through a well-established 
higher-order shear deformation theory (HSDT). Sayyad and 
Ghugal [29] proposed a trigonometric beam theory (TBT) 
to investigate the effects of transverse shear deformation and 
normal strains on the flexure response of symmetric and 
anti-symmetric laminated composite beams. Rasooli and 
Temel [30] carried out the static response of laminated com-
posite beams subjected to the various point and uniformly 
distributed loads under different boundary conditions. Ghu-
gal and Shinde [31] used a layerwise shear deformation 
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theory to study the flexural behavior of composite cross-ply 
laminated beams of fixed and simply supported boundary 
conditions under sinusoidal loads. Aslan et al. [32] used the 
CFM to investigate the static analysis of circular axis ele-
ments subjected to static transverse concentrated and uni-
formly distributed loads with various boundary conditions. 
Karacam and Tımarcı [33] used third-order shear deforma-
tion beam theory to study the bending response of composite 
cross-ply laminated beams under uniformly distributed loads 
and various boundaries considering the effects of orthotro-
picity ratios and L/h ratios. Madenci et al. [34] developed a 
theoretical procedure to study the bending response of the 
P-GFRP composite beams. They applied a three-point bend-
ing experiment in their work. Madenci and Özütük [35, 36] 
examined the bending behavior of laminated composite 
plates with the aid of the mixed finite element method.

There have been plenty of research works found on the 
analysis of composite beams under various loading types 
and boundary conditions. Simultaneously, the effects of 
several parameters on the analysis of beam elements are 
investigated extensively. Even though the frame systems 
consisting of straight and curved axis beams are vastly used 
in various real-life engineering applications still, there is not 
enough research on the analysis of these structural elements. 
A first-time attempt on the static analysis of the compos-
ite laminated frame systems containing straight and curved 
axis elements with variable cross sections through an effi-
cient and easy applicable numerical approach expresses the 
novelty of this paper. The CFM was applied successfully in 
structural mechanics [37–44]. Using the CFM based on the 
rigidity matrix is also a novelty of this paper.

The main objective of this paper is to improve the CFM 
for the static analysis of laminated composite frame systems 
that comprise straight and curved beam elements with vari-
able cross sections along the axial direction. The influences 
of boundary conditions, layer stacking angle and the E1/E2 
ratio on the bending deflection and rotation of the system are 
investigated extensively. The differential equations that gov-
ern the static response of these structures are obtained with 
the help of Timoshenko’s beam theory. The RK5 algorithm 
is applied in numerical calculations. For this purpose, a com-
puter program is coded in Fortran. For validation, accuracy 
and applicability of the present method, a frame system con-
sists of composite laminated beam elements with a uniform 
cross section and various static loading is analyzed numeri-
cally and the results obtained are compared with those of the 
FEM-based results obtained from ANSYS [45].

A brief outline for a better presentation of the paper is 
in the following order: Sect. 2 prescribes the mathematical 
formulation, derivation of the canonic differential equations 
and theory of the proposed approach. Section 3 presents the 
effects of fiber angle, orthotropicity ratio, boundary condi-
tions and material properties on the static analysis of variable 

cross-sectional frame systems with the help of the proposed 
method. Section 4 of the paper is devoted to the discussion of 
the overall investigation of this research.

2 � Theory and formulations

2.1 � Governing equations

Choosing the t⃗, n⃗, b⃗ moving coordinate system provides big 
ease during formulations within the scope of this framework. 
Here ⃗t is tangent unit vector and n⃗, b⃗ are normal and binormal 
unit vectors [46].

The above relations can be written according to Fig. 1.
The relationship between these t⃗, n⃗, b⃗ unit vectors is 

obtained by using the Frenet formulas in the following form.

In the given equations � and � denote the curvature and 
twisting of the curved element of which relation can be written 
as = 1

R(�)
 and � = 0 for planar curved axis beam element. The 

following equations can be written due to simplifying the equi-
librium conditions, compliance equations and the constitutive 
law in the vector form.

(1)r⃗ = r⃗(s); t⃗ =
dr⃗

ds
; b⃗ = t⃗ × n⃗

(2)

d⃗t

ds
= 𝜒 ⋅ n⃗

dn⃗

ds
= 𝜏 ⋅ b⃗ − 𝜒 ⋅ t⃗

db⃗

ds
= −𝜏 ⋅ n⃗

(3)dT⃗

ds
+ p⃗ = 0

(4)dM⃗

ds
+ t⃗ × T⃗ + m⃗ = 0

Fig. 1   Geometry of the element
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In the above equations, four vector quantities T⃗ and M⃗ 
the internal forces, U⃗ and �⃗ the displacement and rotations 
should be calculated, in order to perform these calculations 
in an easy way the aforementioned vector equations should 
be transformed to the scalar form (see [43] for the trans-
formation processes). The ds = Rd� relation is accepted for 
curved elements. After all these transformation procedures 
are done, the canonical equations for the straight and circu-
lar axis beam element can be obtained in the scalar form as 
follows.

The governing equations for straight axis laminated com-
posite beam elements.

(5)d�⃗

ds
− [D]−1M⃗ = 0

(6)dU⃗

ds
+ t⃗ × �⃗ − [C]−1T⃗ = 0

(7)
dUt

d�
= Un + RA

�

11
Tt

(8)
dUn

d�
= −Ut + RΩb + RA

�

22
Tn

(9)
dΩb

d�
= RD

�

33
Mb

(10)
dTt

d�
= Tn − Rpt

(11)
dTn

d�
= −Tt − Rpn

(12)
dMb

d�
= −RTn − Rmb

(13)
dUt

dx
= A

�

11
Tt

(14)
dUn

dx
= Ωb + �nA

�

22
Tn

(15)
dΩb

dx
= D

�

33
Mb

(16)
dTt

dx
= −pt

The above ordinary differential equations handle the 
static behavior of the frames consisting of straight and 
curved axis laminated composite beam elements subjected 
to in-plane uniformly distributed and concentrated loads. 
In the above equations, Ut , Un , Ωb express tangent/nor-
mal deflections and rotation; Tt/Tn and Mb show the axial/
shear forces and bending moments at the desired node of 
the element. A curved element with a constant radius is 
accepted as a circle; in the above equations, R demon-
strates the radius of the circular element, pt and pn point 
to the external loads acting on the element, �n describes 
the shear correction factor, and 1.1875 value is used as 
�n within this framework. The extensional and bending 
stiffness matrices are denoted by A′

11
 , A′

22
 and D′

33
 , respec-

tively. These matrices are (3 × 3) in dimensions and can be 
obtained from the inverse of the material matrices, which 
includes the constitutive equations and total rigidity terms 
[43]. Details of the total compliance matrices A′ and D′ of 
composite frames are given in Appendix A.

2.2 � Solution procedures of the rigidity matrix based 
on the CFM

Consider a differential equation as (see [46]).

where ϕ is the independent variable, {Y} is the column 
matrix of unknown dependent variables, [A] is differential 
transformation matrix, and {F} matrix is populated with 
loading properties.

Based on the principle that the homogeneous and par-
ticular solution of the equation given in (19) is found with 
the boundary conditions determined at the beginning of 
the solution interval, independent of the boundary condi-
tions of the problem (see [46]).

In the above equation, Cm is the integration constants 
that can be calculated from the boundary conditions deter-
mined at the beginning and end of the problem. 

[
U(m)(�)

]
 

and {V(�)} are the homogeneous and particular solutions, 
respectively.

(17)
dTn

dx
= −pn

(18)
dMb

dx
= −Tn

(19)
d{Y(�)}

d�
= [A(�)]n×n{Y(�)}n×1 + {F(�)}n×1

(20){Y(�)} =

n∑
m=1

Cm

[
U(m)(�)

]
+ {V(�)}
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The above equation should be solved n time for n number 
initial conditions.

{
U(m)

}
 is the solution obtained in the solution region by giv-

ing 1 to the mth element and 0 to the others in the unknown 
{U} column matrix.

where [I] is the identity matrix. Equation (24) is the particu-
lar solution for the statement given in (19).

It is enough to be solved once for the boundary conditions

Element equation is given as

where {p} is the end forces matrix, [k] is the rigidity matrix 
{d} is the node displacement matrix, and {f} is the encas-
tered end forces matrix.

In order to transfer these equations obtained in element 
coordinate to the system coordinates, the following transfor-
mation process needs to be applied.

(21)
d
{
U(m)

}
d�

= [A]
{
U(m)

}
(m = 1… n)

(22)

m = 1 m = 2 m = 3

U1(a) = 1 U2(a) = 0 Un(a) = 0

U1(a) = 0 U2(a) = 1 Un(a) = 0

… … …

U1(a) = 0 U2(a) = 0 Un(a) = 1

(23)[U(a)] = [I]

(24)
d{V}

d�
= [A]{V} + {F}

(25)

m = n

V1(a) = 0

V2(a) = 0

…

Vn(a) = 0

(26){V(a)} = {0}

(27){p} = [k]{d} + {f}

(28)
{d} =

{
Ut

(
�i

)
,Un

(
�i

)
,Ωb

(
�i

)
,Ut

(
�j

)
,Un

(
�j

)
,Ωb

(
�j

)}T

(29)
{p} =

{
Tt
(
�i

)
, Tn

(
�i

)
,Mb

(
�i

)
, Tt

(
�j

)
, Tn

(
�j

)
,Mb

(
�j

)}T

(30)
{f} =

{
−Tt

(
�i

)
,−Tn

(
�i

)
,−Mb

(
�i

)
, Tt

(
�j

)
, Tn

(
�j

)
,Mb

(
�j

)}T

(31)
[
k�
]
= [T]T[k][T];

[
f �
]
= [T]T

[
f
]

The transformation matrix for planar elements is 
obtained as follows (Figs. 2 and 3) (see [46]): 

  
The transformation relation for i node in t⃗, n⃗, b⃗ coordi-

nate system is as

where

(32)

⎧⎪⎨⎪⎩

�

�

z

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

cos � sin � 0

− sin � cos � 0

0 0 1

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

x

y

z

⎫⎪⎬⎪⎭

(33)
t = y cos (−�) − x sin (−�), n = x cos (−�) + y sin (−�)

Fig. 2   Coordinate transformation of straight axis element

Fig. 3   Coordinate transformation of curved axis element



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:258

1 3

258  Page 6 of 16

Then in matrix form the statement becomes

While transferring to system coordinates the equations 
become as

and in matrix form

By replacing the above equation in (35) it becomes as

And for explicit expression of the transformation matrix 
the following assumption is considered.

and the matrix gets the following form

(34)� =
�

2
−

�

2

(35)

⎧
⎪⎨⎪⎩

t

n

b

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

cos
�

2
sin

�

2
0

sin
�

2
− cos

�

2
0

0 0 −1

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

x

y

z

⎫
⎪⎬⎪⎭

(36)x = X cos (�) + Y sin (�)

(37)y = Y cos (�) − X sin (�)

(38)

⎧⎪⎨⎪⎩

x

y

z

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

cos � sin � 0

− sin � cos � 0

0 0 1

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

X

Y

Z

⎫⎪⎬⎪⎭

(39)

⎧⎪⎨⎪⎩

t

n

b

⎫
⎪⎬⎪⎭
= [T]i

⎧
⎪⎨⎪⎩

X

Y

Z

⎫⎪⎬⎪⎭

(40)my = cos �

(41)ny = sin �

The above matrix is used to provide transformation 
between element coordinates and system coordinates for i 
node of the element. The same way by replacing 

(
�

2

)
 with (

−
�

2

)
 the transformation matrix can be obtained for j node 

of the element.

Boundary conditions considered for each example of this 
study are given in Table 1.

3 � Numerical applications and results 
discussion

The suggested efficient numerical approach is coded in For-
tran to investigate the static analysis of frames with straight 
and circular axis beam elements. This numerical scheme 
transforms the two-point boundary value problems into a 
set of initial value problems. The RK5 algorithm has been 
applied in the solution of the system of initial value prob-
lems. The material properties of both straight and circular 
axis beam elements are supposed to be varying according to 
the layer properties in the thickness direction. The proposed 
procedure is employed to investigate the effects of stacking 
sequence and orthotropicity ratio on the static behavior of 
frames systems.

To validate the accuracy of the presented approach, the 
frame system given in Fig. 5 assumed as uniform cross sec-
tion and first it is solved with the help of the CFM; subse-
quently, it is solved by utilizing ANSYS [45].

The material properties taken into account in this study 
are presented in Table 2. The geometrical model considered 

(42)

[T]i =

⎡⎢⎢⎢⎣

my cos
�

�

2

�
− ny sin

�
�

2

�
ny cos

�
�

2

�
+ my sin

�
�

2

�
0

my sin
�

�

2

�
+ ny cos

�
�

2

�
ny sin

�
�

2

�
− my cos

�
�

2

�
0

0 0 −1

⎤⎥⎥⎥⎦

(43)[T] =

[
[T]i 0

0 [T]j

]

6×6

Table 1   Boundary conditions of 
the problems

Numerical applications Boundary conditions At x = 0 At x = L

1. Example Pinned-clamped (P–C) U
t
= U

n
= M

b
= 0 U

t
= U

n
= Ω

b
= 0

2. Example Clamped–clamped (C–C) U
t
= U

n
= Ω

b
= 0 U

t
= U

n
= Ω

b
= 0

3. Example Roller-clamped (R–C) U
n
= T

t
= M

b
= 0 U

t
= U

n
= Ω

b
= 0

Table 2   Material properties of 
the structure

Material identity E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) v12 = v13 v23 ρ (kg/m3)

Kevlar 49 epoxy 76 5.56 2.3 1.618 0.34 0.718 1460.00
Carbon epoxy 144.8 9.54 4.14 3.45 0.30 0.399 1389.23
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for analysis is made of several straight and curved axis lami-
nated composite beam elements with a three-layered rec-
tangular cross section. The cross section of each element is 
presumed to be variable along the axial direction.

Two-layer layout modules have been considered for the 
rectangular cross section, the first laminated module (KI) is 
made of one type of material with three layers, and the sec-
ond module (KII) is made of two types of material properties 
with three layers (Fig. 4).

3.1 � Example 1

Consider the frame system given in Figs. 5 and 6 with 
pinned–clamped boundary conditions and subjected to 
concentrated and uniformly distributed static loads. This 
problem is first analyzed by ANSYS and later by using 

the suggested scheme for KI material properties (Fig. 4a). 
The results obtained from both methods are compared as 
nodal displacements and end forces in Tables 3 and 4, 
respectively.

Beam 189 element is used while analyzing the problem 
by ANSYS, and each element of the frame system is divided 
into 5, 10 and 20 equally parts. This beam element has three 
nodes with six degrees of freedom (translation in x, y and z 
directions and rotation about the x-, y- and z-axis) in each 
node. For more details about the assumptions and restric-
tions of BEAM189 see Mechanical APDL Element Refer-
ence [47] and Mechanical APDL Theory Reference [48]. 
Separate solutions are carried out for each number of ele-
ment divisions. Relative error (RE) is calculated by:

During the analysis in ANSYS, the KI material proper-
ties and 0° of layer angles are used and it is assumed to be 
constant for each number of element divisions.

The comparison provided in Table 3 reveals that when 
the mesh quality is increased, the results of the finite ele-
ment method approach to those of the CFM. This shows 
the accuracy and efficiency of the suggested method. Also, 
this method has been applied in the analysis of several 
structures [37–44] and compared with other available 
methods like FEM, shooting method.

(44)RE =
||||
ANSYS − peresent study

ANSYS

||||

Fig. 4   KI and KII cross-sectional layouts

Fig. 5   a KI and KII cross-sectional layouts and b the frame system
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The relative error between the results of the presents 
approach and those of the ANSYS is calculated in Table 3. 
The end forces value for each element is given with preci-
sion of four digits in Table 4. These results are obtained due 

to dividing every single element of the frame system into 
20 equal parts and KI material properties with the 0° layer 
sequences in FEM-based ANSYS program. The values of 
nodal displacement and element end forces obtained from 
ANSYS and the present method are seen to be in a good agree-
ment with each other. This verification example demonstrates 
the accuracy of the suggested numerical method.

3.2 � Example 2

Consider a frame system consisting of only straight elements 
(Figs. 7 and 8) which undergoes the concentrated and uni-
formly distributed loads subjected to clamped–clamped (C–C) 
boundary conditions. This frame system is solved by using 
the present approach considering the effects of layer stacking 
angles and for both KI and KII material properties. The effects 
of four different layer stacking angles on the nodal deflection 
of the given frame system are investigated on both cross sec-
tion made of KI and KII materials group (Figs. 9 and 10).

Effects of layer stacking angle on the nodal displacements 
of the frame system (Figs. 7 and 8) are investigated consider-
ing KI material properties. The axial and normal displace-
ments and rotations of node 1 and 4 are assumed to be zero due 
the C–C boundary conditions. Node displacement value for 
nodes 2 and 3 is calculated considering four different stacking 
sequences, and the results are obtained with a six-digit preci-
sion. After a look on the data in Table 5, it can be seen that the 
maximum displacement occurred in case III.

The values presented in Table 6 are resulting from solv-
ing the frame system (Figs. 7 and 8) for four different cases 
(Figs. 9 and 10) considering KII material properties. Effects of 
layer stacking angles on the node displacements and rotation 
of the system are investigated. When the results are examined, 
it is understood that the maximum displacement is occurred 
in case III.

Consider example 2 (Figs. 7 and 8), to investigate the effects 
of E1/E2 ratio on the static behavior of the system, the frame 
system is solved by the CFM considering KI and KII material 
properties and four different cross section with various layer 
stacking angles (Figs. 9 and 10). The system is solved for 1, 
10, 15, 20 and 30 ratios of E1/E2 with the help of suggested 
method. This analysis is carried out for both KI and KII mate-
rial properties by the CFM, respectively. The E1/E2 ratios are 
calculated, by changing the value of E2 and keeping the value 
of E1 as constant. The values of shear modulus are calculated 
with the help of the following formulations (see Ref. [49, 50]).

(45)G12 = G13 =
E1

2
(

E1

E2

+ �12

)

Fig. 6   Degrees of freedom of nodes and code numbers

Table 3   Node displacement values for KI group of materials and 0° 
of fiber angle

Node number Ut (m) Un (m) Ωb (Rad.)

1
 ANSYS (5 El.) 0.00000E+00 0.00000E+00 − 9.38370E−07
 ANSYS (10 El.) 0.00000E+00 0.00000E+00 − 9.38720E−07
 ANSYS (20 El.) 0.00000E+00 0.00000E+00 − 9.38750E−07
 Present study 0.00000E+00 0.00000E+00 − 9.38618E−07
 RE 0.00000E+00 0.00000E+00 1.40632E−04

2
 ANSYS (5 El.) 3.70100E−06 − 4.36640E−10 3.64990E−07
 ANSYS (10 El.) 3.70420E−06 − 4.36350E−10 3.64740E−07
 ANSYS (20 El.) 3.70440E−06 − 4.36330E−10 3.64720E−07
 Present study 3.70257E−06 − 4.36357E−10 3.64829E−07
 RE 4.94251E−04 6.18759E−05 2.98770E−04

3
 ANSYS (5 El.) 1.53360E−06 1.68460E−06 9.39960E−08
 ANSYS (10 El.) 1.53570E−06 1.68250E−06 9.39640E−08
 ANSYS (20 El.) 1.53580E−06 1.68250E−06 9.39600E−08
 Present study 1.53462E−06 1.68219E−06 9.40191E−08
 RE 7.68920E−04 1.84284E−04 6.28596E−04

4
 ANSYS (5 El.) 6.96920E−09 8.21280E−07 − 3.00190E−07
 ANSYS (10 El.) 6.96880E−09 8.20890E−07 − 3.00150E−07
 ANSYS (20 El.) 6.96880E−09 8.20870E−07 − 3.00140E−07
 Present study 6.96890E−09 8.21324E−07 − 3.00123E−07
 RE 1.43495E−05 5.52766E−04 5.66434E−05
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Tables 7, 8, 9 and 10 represent the results obtained due to 
analysis of the frame system (Figs. 7 and 8) for E1/E2 ratios 
and KI material properties. The entire layer stacking angle 
cases (Figs. 9 and 10) are taken into account, and the frame 
system is solved for each calculated E1/E2 ratio separately. 

(46)G23 =
E1(

1 + �23
)

After the results are examined, it is understood that E1/E2 
ratio highly affects the node displacement values of the sys-
tem at all layer stacking angles considered for KI material 
properties.

3.3 � Example 3

A composite laminated frame structure is considered as in 
Figs. 11 and 12. The suggested approach is applied to carry 
out the influence of the E1/E2 on the bending response of 
the considered frame structures for KII material properties. 
Results are presented in Tables 11, 12, 13 and 14.

Tables 11, 12, 13 and 14 represent the numerical values 
of node displacements obtained for each lamination scheme 
designed for KII material properties. Lamination scheme 
is considered for 1, 10, 15, 20 and 30 E1/E2 ratios as given 
in Fig. 10. After a careful review of the results presented 
in the above tables, it is concluded that by increasing the 
E1/E2 ratio, the displacement values are also increasing. As 
the highest nodal displacement is determined at case III (see 
Fig. 10) when the E1/E2 ratio is 30.

4 � Conclusions

An efficient numerical method is used to investigate the 
effects of fiber angle and E1/E2 ratio on the static response 
of frame systems containing straight and circular axis 
beam elements carrying in-plane concentrated and uni-
formly distributed static loads. The TBT is used in the for-
mulations, considering axial and shear deformation effects. 
Equations governing the static response of the system are 
first obtained in vector form; in the continuation, for ease 
of the calculations, the previously obtained equations are 
transformed to the set of scalar equations. The solution of 
the set of canonical first-order ordinary differential equa-
tions that govern the static behavior of frame systems is 

Table 4   Element end forces 
obtained for KI materials group 
and 0° of fiber angle

Element no Tti(N) Tni(N) Mbi (N m) Ttj(N) Tnj(N) Mbj (N m)

1
 Present study − 59.1316 2.5590 0.0000 − 40.8684 − 2.5590 91.3161
 ANSYS − 59.1320 2.5588 0.0000 − 40.8680 − 2.5588 91.3210

2
 Present study 40.8684 2.5590 − 91.3161 − 40.8684 − 2.5590 − 100.2310
 ANSYS 40.8680 2.5588 − 91.3210 − 40.8680 − 2.5588 − 100.2200

3
 Present study 40.8684 − 7.4410 100.2310 − 40.8684 7.4410 66.9058
 ANSYS 40.8680 − 7.4412 100.2200 − 40.8680 7.4412 66.9090

4
Present study 40.8684 − 7.4410 − 66.9058 − 40.8684 7.4410 7.5044
ANSYS 40.8680 − 7.4412 − 66.9090 − 40.8680 7.4412 7.5032

Fig. 7   Frame system containing straight axis elements

Fig. 8   Degrees of freedom of nodes and code numbers
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carried out by the CFM. This method turns the two-point 
boundary value problems into the set of initial value prob-
lems. RK5 algorithm is applied for the solution of the set 
of initial value problems, and for this purpose, a computer 
program is coded in Fortran. The accuracy and validation 

of the coded program are performed with the finite ele-
ment method.

The problems presented in this study are solved for two 
cross-sectional layouts of KI and KII material properties 
separately, while performing the analysis in ANSYS each 

Fig. 9   Cross-sectional layouts 
for KI material properties

Fig. 10   Cross-sectional layouts 
for KII material properties 0o

90o

0o

45o

0

45o

0o

45o

0o

0o

0o

0o

Case IVCase IIICase IICase I

0

Table 5   Node displacement 
values for KI materials group

Node number Stacking sequence Ut(m) Un(m) Ωb(Rad.)

2 0
◦

0
◦

0
◦ 0.565715E−06 − 0.682477E−06 0.158980E−06

0
◦

45
◦

0
◦ 0.761479E−06 − 0.919320E−06 0.222933E−06

45
◦

0
◦

45
◦ 0.129078E−05 − 0.155935E−05 0.385350E−06

0
◦

90
◦

0
◦ 0.795346E−06 − 0.959850E−06 0.228626E−06

3 0
◦

0
◦

0
◦ 0.379600E−06 0.373460E−06 0.130905E−07

0
◦

45
◦

0
◦ 0.510533E−06 0.501713E−06 0.137022E−07

45
◦

0
◦

45
◦ 0.864759E−06 0.848953E−06 0.199075E−07

0
◦

90
◦

0
◦ 0.533466E−06 0.524550E−06 0.161777E−07

Table 6   Node displacement 
values for KII materials group

Node number Stacking sequence Ut(m) Un(m) Ωb(Rad.)

2 0
◦

0
◦

0
◦ 0.671357E−06 − 0.809934E−06 0.188829E−06

0
◦

45
◦

0
◦ 0.790089E−06 − 0.953656E−06 0.228914E−06

45
◦

0
◦

45
◦ 0.211366E−05 − 0.255449E−05 0.634050E−06

0
◦

90
◦

0
◦ 0.815536E−06 − 0.984089E−06 0.232558E−06

3 0
◦

0
◦

0
◦ 0.450480E−06 0.443184E−06 0.154654E−07

0
◦

45
◦

0
◦ 0.529845E−06 0.520864E−06 0.152792E−07

45
◦

0
◦

45
◦ 0.141538E−05 0.138859E−05 0.312859E−07

0
◦

90
◦

0
◦ 0.547088E−06 0.538050E−06 0.174086E−07
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element of the frame is divided into 5, 10 and 20 parts. It 
can be understood from the results presented for the frame 
systems that increasing the number of divisions for each 
element provides a fast convergence. After a precise review-
ing of the analysis done by the FE-based package program, 

it can be understood that hundreds of elements should be 
used to achieve the results with intended sufficient preci-
sion, while doing the same analysis by the CFM, in order to 
achieve the results with the intended precision, it is enough 
to divide the solution zone into a few elements.

Table 7   Effects of E1/E2 ratio on displacement values for KI material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

0
◦

0
◦

0
◦ 2 U

t
 (m) 5.1264E−07 5.4217E−07 5.5855E−07 5.7491E−07 6.0760E−07

U
n
 (m) − 6.1915E−07 − 6.5439E−07 − 6.7393E−07 − 6.9344E−07 − 7.3244E−07

Ω
b
 (Rad.) 1.5455E−07 1.5702E−07 1.5838E−07 1.5974E−07 1.6245E−07

3 U
t
 (m) 3.4353E−07 3.6360E−07 3.7473E−07 3.8584E−07 4.0806E−07

U
n
 (m) 3.3739E−07 3.5746E−07 3.6859E−07 3.7970E−07 4.0192E−07

Ω
b
 (Rad.) 7.1983E−09 1.0513E−08 1.2312E−08 1.4082E−08 1.7547E−08

Table 8   Effects of E1/E2 ratio on displacement values for KI material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30
0
◦

45
◦

0
◦ 2 U

t
 (m) 5.1264E−07 7.2783E−07 7.5435E−07 7.7348E−07 8.0324E−07

U
n
 (m) − 6.1916E−07 − 8.7889E−07 − 9.1076E−07 − 9.3370E−07 − 9.6935E−07

Ω
b
 (Rad.) 1.5455E−07 2.1550E−07 2.2134E−07 2.2495E−07 2.2964E−07

3 U
t
 (m) 3.4354E−07 4.8785E−07 5.0572E−07 5.1864E−07 5.3878E−07

U
n
 (m) 3.3739E−07 4.7927E−07 4.9695E−07 5.0977E−07 5.2980E−07

Ω
b
 (Rad.) 7.1984E−09 1.2014E−08 1.3355E−08 1.4582E−08 1.6896E−08

Table 9   Effects of E1/E2 ratio on displacement values for KI material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

45
◦

0
◦

45
◦ 2 U

t
 (m) 5.1264E−07 1.1634E−06 1.2626E−06 1.3255E−06 1.4046E−06

U
n
 (m) − 6.1917E−07 − 1.4058E−06 − 1.5254E−06 − 1.6013E−06 − 1.6964E−06

Ω
b
 (Rad.) 1.5455E−07 3.4852E−07 3.7701E−07 3.9454E−07 4.1541E−07

3 U
t
 (m) 3.4354E−07 7.7923E−07 8.4579E−07 8.8809E−07 9.4126E−07

U
n
 (m) 3.3739E−07 7.6473E−07 8.3022E−07 8.7191E−07 9.2440E−07

Ω
b
 (Rad.) 7.1984E−09 1.7414E−08 1.9447E−08 2.0983E−08 2.3420E−08

Table 10   Effects of E1/E2 ratio on displacement values for KI material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

0
◦

90
◦

0
◦ 2 U

t
 (m) 5.1264E−07 7.6006E−07 7.8817E−07 8.1054E−07 8.4939E−07

U
n
 (m) − 6.1915E−07 − 9.1758E−07 − 9.5129E−07 − 9.7807E−07 − 1.0245E−06

Ω
b
 (Rad.) 1.5455E−07 2.2310E−07 2.2803E−07 2.3121E−07 2.3578E−07

3 U
t
 (m) 3.4353E−07 5.0960E−07 5.2859E−07 5.4373E−07 5.7008E−07

U
n
 (m) 3.3739E−07 5.0082E−07 5.1967E−07 5.3475E−07 5.6102E−07

Ω
b
 (Rad.) 7.1983E−09 1.3408E−08 1.5386E−08 1.7269E−08 2.0903E−08
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Four different cross-sectional schemes are designed with 
different stacking sequences and both KI and KII mate-
rial properties. The frame system is solved for each cross-
sectional layout, and the effects of stacking sequences are 
examined. Along with the axial and normal displacements 
the rotations are highly affected by the changes in stacking 
sequences, and it can be clearly seen from the numerical 
results presented for KI and KII materials.

In order to study the effects of E1/E2 ratio on the node 
displacements and rotations, five different E1/E2 ratios are 
introduced by keeping the E1 constant and decreasing the 
value of E2. The results obtained from the solution of the 
problem for each of the composed ratios (E1/E2 = 1, 10, 15, 
20, 30) are examined elaborately. The problem is analyzed 
for several lamination schemes considering E1/E2 ratio 
from 1 to 30 separately; thus, the effects of E1/E2 ratio 
together with the fiber angles are examined for the frame 
system. As a result, the maximum displacement values of 
the system are detected, while the orthotropicity ratio is 
equal to 30 at case III ( 45◦

0
◦

45
◦ ) cross-sectional layout.

It must be highlighted once again that the main objec-
tive of this work is to implement the CFM to the static 
analysis of composite laminated frames. This framework 
may be used as a benchmark solution for future studies on 
the related subject.

Appendix A: Formulations for composite 
materials

The stress–strain and strain–stress relations for composite 
materials in 1, 2, 3 coordinate systems are written, respec-
tively, as:

In the above relations the notation C′
ij
 and S′

ij
 shows the 

transformed stiffness and compliance matrices and can be 
calculated as follows [38, 43].

The transformation matrices components are defined as

(47)�i = C�
ij
�j �i = S�

ij
�j (i, j = 1, 2,… , 6)

(48)

[
C�
]
=
[
T

◦
]−1

[C][∀]
[
T

◦
]
[∀]−1,

[
S�
]
= [∀]

[
T

◦
]−1

[∀]−1[S]
[
T

◦
]

Fig. 11   Frame system containing straight and curved elements

Fig. 12   Degrees of freedom of nodes and code numbers

Table 11   Effects of E1/E2 ratio on displacement values for KII material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

0
◦

45
◦

0
◦ 1 U

t
 (m) − 9.5936E−06 − 1.1630E−05 − 1.1789E−05 − 1.1883E−05 − 1.1995E−05

U
n
 (m) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Ω
b
 (Rad.) − 1.3638E−06 − 1.6517E−06 − 1.6734E−06 − 1.6858E−06 − 1.7001E−06

2 U
t
 (m) − 1.9384E−06 − 2.3166E−06 − 2.3309E−06 − 2.3319E−06 − 2.3189E−06

U
n
 (m) − 2.8346E−06 − 3.4485E−06 − 3.5022E−06 − 3.5364E−06 − 3.5828E−06

Ω
b
 (Rad.) − 8.5937E−07 − 1.0414E−06 − 1.0555E−06 − 1.0636E−06 − 1.0733E−06

3 U
t
 (m) − 1.4790E−06 − 1.7600E−06 − 1.7667E−06 − 1.7634E−06 − 1.7453E−06

U
n
 (m) − 3.8390E−06 − 4.6656E−06 − 4.7358E−06 − 4.7795E−06 − 4.8371E−06

Ω
b
 (Rad.) 5.3255E−07 6.4274E−07 6.5006E−07 6.5371E−07 6.5691E−07
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in which m = cos (�) and n = sin (�).

(49)
�
T

◦
�
=

⎡⎢⎢⎢⎢⎢⎢⎣

m2 n2 0 0 0 2mn

n2 m2 0 0 0 −2mn

0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−mn mn 0 0 0 m2 − n2

⎤⎥⎥⎥⎥⎥⎥⎦

Table 12   Effects of E1/E2 ratio on displacement values for KII material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

0
◦

0
◦

0
◦ 1 U

t
 (m) − 9.5937E−06 − 9.6274E−06 − 9.6461E−06 − 9.6648E−06 − 9.7023E−06

U
n
 (m) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Ω
b
 (Rad.) − 1.3638E−06 − 1.3664E−06 − 1.3678E−06 − 1.3692E−06 − 1.3721E−06

2 U
t
 (m) − 1.9384E−06 − 1.8999E−06 − 1.8786E−06 − 1.8572E−06 − 1.8144E−06

U
n
 (m) − 2.8346E−06 − 2.8612E−06 − 2.8760E−06 − 2.8908E−06 − 2.9205E−06

Ω
b
 (Rad.) − 8.5938E−07 − 8.6186E−07 − 8.6324E−07 − 8.6461E−07 − 8.6736E−07

3 U
t
 (m) − 1.4790E−06 − 1.4393E−06 − 1.4172E−06 − 1.3951E−06 − 1.3509E−06

U
n
 (m) − 3.8391E−06 − 3.8685E−06 − 3.8849E−06 − 3.9013E−06 − 3.9340E−06

Ω
b
 (Rad.) 5.3255E−07 5.3055E−07 5.2944E−07 5.2833E−07 5.2611E−07

Table 13   Effects of E1/E2 ratio on displacement values for KII material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

45
◦

0
◦

45
◦ 1 U

t
 (m) − 9.5939E−06 − 2.8236E−05 − 3.1930E−05 − 3.4348E−05 − 3.7347E−05

U
n
 (m) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Ω
b
 (Rad.) − 1.3638E−06 − 4.0140E−06 − 4.5388E−06 − 4.8821E−06 − 5.3074E−06

2 U
t
 (m) − 1.9384E−06 − 5.6946E−06 − 6.4331E−06 − 6.9133E−06 − 7.5016E−06

U
n
 (m) − 2.8346E−06 − 8.3486E−06 − 9.4429E−06 − 1.0160E−05 − 1.1053E−05

Ω
b
 (Rad.) − 8.5940E−07 − 2.5295E−06 − 2.8603E−06 − 3.0768E−06 − 3.3452E−06

3 U
t
 (m) − 1.4791E−06 − 4.3432E−06 − 4.9048E−06 − 5.2693E−06 − 5.7141E−06

U
n
 (m) − 3.8391E−06 − 1.1305E−05 − 1.2786E−05 − 1.3757E−05 − 1.4963E−05

Ω
b
 (Rad.) 5.3257E−07 1.5669E−06 1.7713E−06 1.9048E−06 2.0697E−06

Table 14   Effects of E1/E2 ratio on displacement values for KII material properties

Stacking sequence Node Displacement E1/E2 ratios

1 10 15 20 30

0
◦

90
◦

0
◦ 1 U

t
 (m) − 9.5937E−06 − 1.1834E−05 − 1.1954E−05 − 1.2025E−05 − 1.2114E−05

U
n
 (m) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Ω
b
 (Rad.) − 1.3638E−06 − 1.6802E−06 − 1.6960E−06 − 1.7048E−06 − 1.7150E−06

2 U
t
 (m) − 1.9384E−06 − 2.3473E−06 − 2.3465E−06 − 2.3356E−06 − 2.3033E−06

U
n
 (m) − 2.8346E−06 − 3.5127E−06 − 3.5575E−06 − 3.5874E−06 − 3.6323E−06

Ω
b
 (Rad.) − 8.5938E−07 − 1.0596E−06 − 1.0700E−06 − 1.0760E−06 − 1.0834E−06

3 U
t
 (m) − 1.4790E−06 − 1.7810E−06 − 1.7746E−06 − 1.7605E−06 − 1.7243E−06

U
n
 (m) − 3.8391E−06 − 4.7511E−06 − 4.8080E−06 − 4.8450E−06 − 4.8984E−06

Ω
b
 (Rad.) 5.3255E−07 6.5318E−07 6.5770E−07 6.5945E−07 6.6010E−07
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A, B,  F and D matrices are (3 × 3) in dimensions and are 
dependent to the material properties and geometry of the cross 
section and can be written as follows (see [43] and [50]):

In the above equations �ijk is the permutation tensor and Q̃ij 
is reduced stiffness matrix [43].

The transformed stress–strain relations can be written as

in which the  Q̃′

ij
 show the reduced and transformed stiffness 

matrix. The nonzero elements of Q̃′

ij
 are obtained in terms of 

the general three-dimensional transformed stiffness and com-
pliance matrices.

The transformed stiffness and compliance matrices for an 
orthotropic material are obtained in the following form.

(50)

(51)Aij = ∫
A

Q̃ijdA Bij = 𝜀mjk ∫
A

Q̃imxkdA

(52)Fij = 𝜀ikm ∫
A

xkQ̃mjdA Dij = 𝜀ihk𝜀mjp ∫
A

xhxpQ̃kmdA

(53)𝜎̃i = Q̃
�

ij
𝜀̃j (i , j = 1, 2,… , 6)

(54)
Q̃

�

11
= C�

11
+
(
C�
12
S�
12
+ C�

13
S�
31

)
𝛼�
11
+
(
C�
12
S�
26
+ C�

13
S�
36

)
𝛼�
61

(55)
Q̃

�

12
= C�

16
+
(
C�
12
S�
21
+ C�

13
S�
31

)
𝛼�
16
+
(
C�
12
S�
26
+ C�

13
S�
36

)
𝛼�
66

(56)
Q̃

�

22
= C�

66
+
(
C�
62
S�
21
+ C�

63
S�
31

)
𝛼�
16
+
(
C�
62
S�
26
+ C�

63
S�
36

)
𝛼�
66

(57)Q̃
�

22
= C�

55

(58)

��
11

=
S�
66

S�
11
S�
66
− S�2

16

��
16

= ��
61

=
−S�

66

S�
11
S�
66
− S�2

16

��
66

=
S�
11

S�
11
S�
66
− S�2

16

(59)
�
C�
�
=

⎡⎢⎢⎢⎢⎢⎢⎣

C�
11

C�
12

C�
13

0 0 C�
16

C�
21

C�
22

C�
23

0 0 C�
26

C�
31

C�
32

C�
33

0 0 C�
36

0 0 0 C�
44

C�
45

0

0 0 0 C�
54

C�
55

0

C�
61

C�
62

C�
63

0 0 C�
66

⎤⎥⎥⎥⎥⎥⎥⎦

The nonzero components of the transformed stiffness 
matrix are obtained as follows

The nonzero components of the compliance matrix are 
obtained in the following form.

(60)
�
S�
�
=

⎡⎢⎢⎢⎢⎢⎢⎣

S�
11

S�
12

S�
13

0 0 S�
16

S�
21

S�
22

S�
23

0 0 S�
26

S�
31

S�
32

S�
33

0 0 S�
36

0 0 0 S�
44

S�
45

0

0 0 0 S�
54

S�
55

0

S�
61

S�
62

S�
63

0 0 S�
66

⎤⎥⎥⎥⎥⎥⎥⎦

(61)C�
11

= m4C11 + 2n2m2C12 + n4C22 + 4n2m2C66

(62)
C�
12

= n2m2C11 +
(
n4 + m4

)
C12 + n2m2C22 − 4n2m2C66

(63)C�
13

= m2C13 + n2C23

(64)
C�
16

= nm3C11 + nm
(
n2 − m2

)
C12 − n3mC22 + 2nm

(
n2 − m2

)
C66

(65)C�
22

= n4C11 + 2n2m2C12 + m4C22 + 4n2m2C66

(66)C�
23

= n2C13 + m2C23

(67)
C�
26

= nm3C11 + nm
(
m2 − n2

)
C12 − nm3C22 − 2nm

(
m2 − n2

)
C66

(68)C�
33

= C33

(69)C�
36

= nmC13 − nmC23

(70)C�
44

= m2C44 + n2C55

(71)C�
45

= −nmC44 + nmC55

(72)C�
55

= n2C44 + m2C55

(73)
C�
66

= n2m2C11 − 2n2m2C12 + n2m2C22 +
(
m2 − n2

)2
C66

(74)S�
11

= m4S11 + 2n2m2S12 + n4S22 + n2m2S66

(75)S�
12

= n2m2S11 +
(
n4 + m4

)
S12 + n2m2S22 − n2m2S66

(76)S�
13

= m2S13 + n2S23
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B = F = 0 relation is valid for symmetric laminates.
The nonzero elements of A and D matrices are given in the 

following equations.

The nonzero elements of the transformed A′ and D′ matri-
ces are calculated by using the following equations.

(77)
S�
16

= 2nm3S11 + 2nm
(
n2 − m2

)
S12 − 2n3mS22 + nm

(
n2 − m2

)
S66

(78)S�
22

= n4S11 + 2n2m2S12 + m4S22 + n2m2S66

(79)S�
23

= n2S13 + m2S23

(80)
S�
26

= 2n3mS11 + 2nm
(
m2 − n2

)
S12 − 2nm3S22 + nm

(
m2 − n2

)
S66

(81)S�
33

= S33

(82)S�
36

= 2nmS13 − 2nmS23

(83)S�
44

= m2S44 + n2S55

(84)S�
45

= −nmS44 + nmS55

(85)S�
55

= n2S44 + m2S55

(86)
S�
66

= 4n2m2S11 − 8n2m2S12 + 4n2m2S22 +
(
m2 − n2

)2
S66

(87)A11 =

N∑
k=1

Q̃
�(k)

11
A(k) A12 =

N∑
k=1

Q̃
�(k)

12
A(k)

(88)A22 =

N∑
k=1

Q̃
�(k)

22
A(k) A33 =

N∑
k=1

Q̃
�(k)

33
A(k)

(89)D11 =

N∑
k=1

Q̃
�(k)

33
I
(k)

3
+

N∑
k=1

Q̃
�(k)

22
I
(k)

2

(90)D12 = −

N∑
k=1

Q̃
�(k)

21
I
(k)

2

(91)D22 =

N∑
k=1

Q̃
�(k)

11
I
(k)

2
D33 =

N∑
k=1

Q̃
�(k)

11
I
(k)

3

(92)A
�

11
=

A22

A11A22 − A2
12

A
�

12
= −

A12

A11A22 − A2
12
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