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Abstract: This paper introduces a new methodology to estimate time-varying alphas and betas
in conditional factor models, which allows substantial flexibility in a time-varying framework.
To circumvent problems associated with the previous approaches, we introduce a Bayesian time-
varying parameter model where innovations of the state equation have a spike-and-slab mixture
distribution. The mixture distribution specifies two states with a specific probability. In the first
state, the innovation variance is set close to zero with a certain probability and parameters stay
relatively constant. In the second state, the innovation variance is large and the change in parameters
is normally distributed with mean zero and a given variance. The latent state is specified with a
threshold that governs the state change. We allow a separate threshold for each parameter; thus, the
parameters may shift in an unsynchronized manner such that the model moves from one state to
another when the change in the parameter exceeds the threshold and vice versa. This approach offers
great flexibility and nests a plethora of other time-varying model specifications, allowing us to assess
whether the betas of conditional factor models evolve gradually over time or display infrequent,
but large, shifts. We apply the proposed methodology to industry portfolios within a five-factor
model setting and show that the threshold Capital Asset Pricing Model (CAPM) provides robust beta
estimates coupled with smaller pricing errors compared to the alternative approaches. The results
have significant implications for the implementation of smart beta strategies that rely heavily on the
accuracy and stability of factor betas and yields.

Keywords: time-varying beta; risk premium; asset pricing; bayesian estimation; thresholds

JEL Classification: C11; C32; G11; G12; G14

1. Introduction

Factor investing or smart beta strategies that involve portfolio allocations based on
factor exposures have been increasingly utilized in the finance industry with the total
value of smart beta assets under management expanding by 257% from $280 billion in
2012 to over $999 billion at the end of 2017 [1]. The factor industry is estimated to grow to
$3.4 trillion by 2022 [2]. These investment strategies exploit return predictability patterns
driven by exposures to a given set of systematic risk factors and design portfolio allocations
based on the risk exposures to those factors [3–5]. At the heart of these strategies lies the
determination of the beta values of the target portfolio relative to each factor. A major
challenge in this regard is the instability of the factor loadings (e.g., [6–8]), which in turn
leads to incorrect portfolio allocations, exposing the strategy to unnecessary risks, thus
resulting in inferior risk-adjusted returns. This paper presents a novel perspective to
estimate time-varying alphas and betas in conditional factor models via the threshold
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CAPM (Capital Asset Pricing Model) methodology by introducing the threshold time-
varying parameter with stochastic volatility (TTVP-SV) model. Using a fundamental
economic variable called a threshold variable to model factor exposures, the model accounts
for distinct beta regimes in which the risk exposures remain stable. This, in turn, allows us
to assess whether factor betas evolve gradually over time or display infrequent, but large,
shifts. In an application to industry portfolios, we show that the TTVP-SV model indeed
yields significantly lower pricing errors compared to the static and rolling regression-
based alternatives.

The relationship between risk and expected return in financial markets has been
examined in a large strand of the literature (e.g., [9–11]). Starting with the pioneering
works of Sharpe [12] and Lintner [13] the literature has produced a plethora of multivariate
models that incorporate a wide variety of firm-level, financial and macroeconomic factors
as determinants of expected stock market returns. The traditional approach to these models,
however, has generally adopted a static specification which ignores the time-variation in
factor exposures as well as factor yields. This assumption, however, has critical implications
for factor investing (or smart beta) strategies as factor yields vary over time, and thus the
beta of the portfolio with regard to the factor needs to be revised accordingly [14]. To
that end, many studies make use of overt or implicit short-term memory mechanisms to
simulate beta dynamics. An example is the autoregressive (AR) mechanism employed
in studies by Ang and Chen [15] and Levi and Welch [16] as well as the autoregressive
moving average (ARMA) framework of Pagan [17]. Extending the research to non-linear
specifications, Chen et al. [6] proposed a two-stage procedure to detect breaks in factor
loadings, while Han and Inoue [7] tested for structural breaks in factor exposures based
on the second moments of the estimated factors. Nonetheless, the evidence indicating
time-varying patterns in factor exposures is overwhelming, which is of high importance in
the implementation of smart beta strategies that rely on the accuracy and stability of factor
exposures associated with target portfolios.

Recent studies provide fresh support to the time-variation in beta estimates in factor
models. Adopting a single factor framework and examining the role of uncertainty on
industry betas, Yu et al. [18] established a link between market stress conditions, proxied
by economic policy uncertainty, and industry betas, arguing that industry betas are driven
by market uncertainty. More recently, utilizing a smooth transition regime-switching
framework, Aslanidis and Hartigan [19] showed that the instability in factor loadings is
mainly concentrated on financial variables, while Becker et al. [20] argued that accounting
for long memory in beta dynamics not only provides superior beta estimates but also
generates payoffs for portfolio formation. The economic value of accounting for the
time-variation in beta patterns was further supported by Wang [21] who showed that a
regime-based beta model conditional on market volatility can help improve diversification
strategies. Extending the analysis to global stock markets, Hollstein [22] further showed
that the accuracy of the estimated global and local beta values depends on the historical
window size used in the estimation as well as the particular estimator employed in the
analysis. Coupled with the earlier evidence by Arshanapalli et al. [23] that risk factors
exhibit heterogeneous patterns during normal and distressed market conditions, one can
thus argue that failing to account for the dynamic nature of factor exposures can lead to
significant underperformance of smart beta strategies that have experienced remarkable
growth over the past decade.

The extant literature has proposed several time-varying extensions of factor models in
order to consider the time-variation in betas. Several studies explicitly model time variation
via parametric models, relating betas to time-varying risk [24–27]. Others have accounted
for time-variation by allowing betas to vary through a dynamic stochastic specification
such as an autoregressive (AR) process, random walk or a time varying parameter (TVP)
model [28–32]. Analogous to time varying parameter models, several studies estimate time-
varying betas using the rolling window regression approach (see [33–37]). Another, more
common, approach is based on the conditional covariance matrix wherein time-varying be-
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tas are estimated via multivariate generalized autoregressive conditional heteroskedasticity
(GARCH) models [38–40]. Despite the multitude of studies that address the time-variation
in betas, the literature does not offer conclusive proof or evidence on the choice of the
conditional models over the multivariate GARCH models [41–43].

As Bauwens et al. [44] pointed out, multivariate GARCH model are either not flexible
or suffer from overparameterization. Moreover, most multivariate GARCH models do not
involve time-varying correlations and those that involve dynamic correlations, such as the
dynamic conditional correlation GARCH, are shown to be inconsistent and do not directly
yield conditional correlations, as shown by Caporin and McAleer [45].

This study contributes to the literature by proposing a novel, threshold time-varying
parameter (TTVP) model with slab and spike mixture distribution to model dynamic factor
exposures. Our model is motivated by the argument by Ghysels [46] that betas change
steadily and linearly over time and linear models such as the conditional CAPM tend to
overestimate the pace and frequency of changes in the estimated betas, thus resulting in
significant pricing errors. Building on the threshold regression framework [47–49], our
model improves the conditional CAPM framework by introducing the threshold CAPM
that can reliably measure the shifts in business cycles and the time-variation in betas in
response to business cycle fluctuations. To that end, we use a fundamental economic
variable called a threshold variable to model market risk. If the threshold variable gets to a
certain level, the model is designed to allow for two distinct beta regimes during which the
beta value remains stable. Given the evidence in prior works of a non-linear relationship
between factor exposures and expected returns and the lack of a time-varying asset pricing
model that is shown to provide accurate results, the threshold approach to modeling betas
and allowing for a slowly shifting continuous beta pattern within a conditional CAPM
framework presents a favorable approach to simulate beta dynamics and address the
time-variation in betas within the standard asset pricing model setting.

The TTVP model we introduce remedies some of the issues in the previous studies.
The conditional beta approach to estimating time-varying betas essentially employs three
techniques: (i) modeling beta as a function of various relevant variables by including
polynomial time functions; (ii) specifying beta as a stochastic process; and (iii) rolling
regression approaches. Modeling betas as a function of various seemingly related variables
is prone to misspecification errors and there is no guidance on the selection of the set of
relevant variables that should be employed in the model. The rolling regression method
avoids this misspecification issue; however, it has the inherent difficulty of choosing the
right window size, as also highlighted recently by Hollstein [22]. The stochastic beta
specification offers an alternative approach that avoids the problems associated with the
other conditional beta estimation methods and one such stochastic beta specification is the
time-varying parameter (TVP) model that is also adopted in our approach. The Kalman
filter method for estimating the TVP model is used in a number of studies to estimate
time-varying betas [28–32].

The TTVP model we advocate allows substantial flexibility in a time-varying frame-
work. To circumvent problems associated with the previous approaches, we introduce a
Bayesian time-varying parameter model where innovations of the state equation have a
spike-and-slab mixture distribution. The mixture distribution specifies two states with
each state having a specific probability. In the first state, the innovation variance is set close
to zero with a certain probability and parameters stay relatively constant. In the second
state, the innovation variance is large and the change in parameters is normally distributed
with mean zero and a given larger variance value. The latent state is specified with a
threshold that governs the state change. We allow a separate threshold for each parameter
so that the parameters may shift in an unsynchronized manner and so the model moves
from one state to another when the change in the parameter exceeds the threshold and
vice versa. This approach has great flexibility and nests a plethora of other time-varying
model specifications. For instance, the parameters may tend to show strong variation over
a certain passage of time and stay constant over some horizons. Accordingly, the TTVP
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model allows us to assess whether the betas of conditional factor models evolve gradually
over time or display infrequent, but large, shifts.

In our empirical application, we implement the TTVP model to examine the dynamic
factor exposures for selected U.S. industries that account for the consumption and pro-
duction sides of the economy. In particular, we examine industry portfolio returns for
Consumer Durables (DURBL), Manufacturing (MANUF), Energy (ENRGY) and Technol-
ogy (HITEC) and estimate their time-varying factor exposures to the well-established risk
factors associated with market, size, value, momentum and the recently proposed profitabil-
ity and investment factors based on the five-factor specification of Fama and French [46].
To that end, we conduct a scenario analysis similar to that of Ghysels [46] and measure the
pricing errors associated with the CAPM specification augmented with threshold risk. Our
results show that, while the estimated factor exposures exhibit significant time variation
for most industries, there is also a great deal of heterogeneity in the factor exposures
across the industries. Risk exposures to the investment factor in particular are found to
exhibit the greatest variability, consistently across all industries, while market risk exposure
displays a relatively more stable pattern. More importantly, we observe significantly lower
pricing errors obtained from the TTVP-SV model compared to the static alternative as
well as the model that ignores the stochastic volatility component. Overall, the findings
suggest that the threshold CAPM model can reasonably address the time-variation in factor
exposures and minimize pricing errors in multi-factor asset pricing models, which is an
important consideration for the implementation of smart beta strategies that rely on the
accuracy and stability of factor exposures in the determination of investment positions in
the target portfolio.

The rest of the paper is structured as follows. Section 2 presents a brief review of
the extant literature on the pricing models and the popularly utilized factors suggested
in the literature. Section 3 describes the data and the econometric methodology behind
the TTVP-SV model. Section 4 presents the empirical findings. Section 5 concludes with a
discussion of investment implications.

2. Literature Review

The pioneering works of Sharpe [12] and Lintner [13] serve as baseline to investigate
the risk and return nexus in stock markets. Recognizing the shortcomings of the single-
factor Capital Asset Pricing Model (CAPM), numerous works have proposed a wide
range of firm-level, financial and macroeconomic variables that serve as a determinant of
expected stock returns. As Kumar et al. [50] noted, starting with the pioneering studies by
Fama and French [51–53], the evidence in the asset pricing literature generally points to
an economically significant risk premium embedded in the cross-section of stock returns
associated with market risk, firm size and book-to-market factors. Later studies including
those by Jegadeesh and Titman [54] and Carhart [55] further document the presence of
a momentum effect in which the past performance of an asset drives excess returns in
subsequent periods. The dominant benchmark model in most asset pricing studies today
is generally specified in terms of the four-factor model that includes the market, size,
value and the momentum factors, as proposed by Fama and French [51,56], followed by a
multitude of subsequent studies.

In a more recent extension of the multi-factor model to describe the cross-section of
stock returns, Fama and French [57] introduced a five-factor model (FF5) that integrates
profitability and investment factors to their popularly employed three-factor model. The
five-factor model has since been employed in a number of applications, while the ex-
planatory power of the factors is generally found to be specific to the market examined.
For example, examining a large number of anomalies, Hou et al. [58] showed that about
half of the anomalies are insignificant in the broad cross-section of stock returns, while
a model that includes the market, size, investment, and profitability factors performs at
least comparable to, and in many cases better than, the Fama–French [57] three-factor and
the Carhart [55] four-factor models in capturing the remaining significant anomalies. In
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an application to the Australian market, Chiah [59] showed that the five-factor model
of Fama and French [57] describes more observed anomalies than other competitive as-
set pricing models such as the Fama–French three-factor and Carhart four-factor models.
Despite the evidence that supports the five-factor pricing model, however, there is also
growing evidence in the opposite direction, suggesting that the FF5 model is not suited to
every market context. For example, in an examination of global stock markets, Fama and
French [60] showed that the investment factor does not necessarily add explanatory power
for European and Asian Pacific stocks, while Kubota and Takehara [61] found evidence
against the profitability and investment factors in Japan. Similarly, in an application to
the Chinese stock market, Guo et al. [62] observed that the investment factor is redundant,
while strong profitability patterns are found in average returns. Accordingly, the evidence
on a robust set of factors that can explain the cross-section of stock market returns is weak
at best with a number of other factors proposed in the literature including asset growth [63],
accrual [64] and profitability [65], among others.

One can argue that the inconclusive evidence regarding the explanatory power of sys-
tematic risk factors in the cross-section of stock returns could be due to the assumption of
static factor exposures that fails to consider the time-variation in betas with respect to chang-
ing market conditions. Indeed, examining the risk premia associated with market, size,
value and momentum factors under various economic scenarios, Arshanapalli et al. [20]
showed that factor exposures exhibit heterogeneous patterns during normal and distressed
market conditions with the market and size factors performing as risk factors offering
investors high (low) returns during good (bad) economic conditions, while the value factor
does not. This finding is then supported by the finding of Lustig and Verdelhan [66] of
higher risk-adjusted cost of capital estimates during economic expansions. The instability
of betas was further supported in an application to U.S. industry portfolios by Yu et al. [18],
who showed that industry betas display regime specific patterns conditional on market
uncertainty. In more recent studies, utilizing a wide range of time series forecasting meth-
ods on U.S. stock returns, Becker et al. [20] showed that betas display consistent long-term
memory features, while Hollstein et al. [67] extended this evidence to 48 global stock
markets, rejecting the short-term memory and the random walk features in the evolution
of betas. Overall, while the evidence presents inconclusive evidence regarding the validity
of risk factors as determinants of the cross-section of stock market returns, the literature
presents overwhelming evidence for the time-variation in factor exposures as well as factor
returns. To that end, our study presents a methodological innovation by introducing a
flexible time-varying parameter model to capture factor exposures and comparing the
performance of this model against the standard, linear specification with respect to the
pricing errors obtained from the models

3. Data and Methodology
3.1. Data

We utilize monthly returns for U.S. industries including Consumer Durables (DURBL),
Manufacturing (MANUF), Energy (ENRGY) and Technology (HITEC) over the period July
1963 to December 2020, obtained from Kenneth French’s data library [68]. The choice of
these particular industries is motivated by the preference to cover the production and
consumption sides of the economy as one would expect a great deal of association between
firm-level uncertainty in these industries and business cycles captured by the threshold
framework adopted in the TTVP-SV model. Likewise, the data on monthly factor returns for
Market (MKT), Size (SMB), Book-to-Market (HML), Profitability (RMW), and Investment
(CMA) factors, based on the five-factor specification of Fama and French [57], are obtained
from the same database maintained by Kenneth French.

Table 1 presents the descriptive statistics for monthly return series. Not surprisingly,
the Technology sector experiences the greatest return volatility coupled with the highest
mean returns, likely due to the high growth experienced in this innovation driven industry.
Durables and Energy exhibit high kurtosis indicating the occurrence of extreme fluctuations
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in the time series of these industry returns. Expectedly, the Jarque–Bera statistic rejects
the null hypothesis of normality in all series, implying the presence of possible non-linear
patterns in the time-variation of monthly return series. The effects of the 2008 global credit
crunch and the COVID-19 pandemic are evident in the time series plots for the monthly
industry returns, as presented in Figure 1. Clearly, consumer durables and manufacturing
have experienced a great deal of return variability during these two periods of increased
market uncertainty, while Energy firms have been particularly hit by the recent COVID-
19 pandemic. Not surprisingly, we observe the greatest level of return volatility in the
Technology sector during the infamous dot-com period in early 2000s when the new
economy bubble finally burst following a steady bull run in the late 1990s.

Table 1. Descriptive statistics.

Statistic DURBL MANUF ENRGY HITEC MKT SMB HML RMW CMA

Mean 0.624 0.610 0.537 0.711 0.568 0.230 0.251 0.249 0.256
S.D. 6.726 4.955 5.901 6.394 4.468 3.026 2.867 2.167 1.988
Min −32.710 −27.930 −34.730 −26.530 −23.240 −14.890 −13.960 −18.480 −6.860
Max 42.620 17.500 32.330 20.320 16.100 18.080 12.580 13.380 9.560

Skewness 0.602 −0.504 0.005 −0.241 −0.507 0.334 0.013 −0.327 0.316
Kurtosis 5.975 2.506 4.032 1.290 1.878 2.947 2.358 12.238 1.603

Jarque–Bera (JB) 1077.237 * 212.099 * 472.145 * 55.471 * 132.675 * 265.584 * 161.942 * 4349.274 * 86.602 *
Q(1) 8.152 * 1.676 0.717 2.408 2.652 2.947 * 21.859 * 15.273 * 9.901 *
Q(6) 23.302 * 7.253 4.158 4.806 7.417 10.664 * 30.461 * 20.396 * 19.610 *

ARCH(1) 14.192 * 10.178 * 83.967 * 55.253 * 18.336 * 58.167 * 40.465 * 122.214 * 69.473 *

Note: This table presents the descriptive statistics for monthly industry portfolio excess returns for Consumer Durables (DURBL),
Manufacturing (MANUF), Energy (ENRGY) and Technology (HITEC) firms over July 1963–December 2020. The last five columns are the
Fama–French factors including Market (MKT), Size (SMB), Book-to-Market (HML), Profitability (RMW) and Investment (CMA) factors
based on the five-factor specification of [57]. The Jarque–Bera normality test (JB), the first- [Q(1)] and sixth-order [Q(6)] serial correlation
test and first- [ARCH(1)] and sixth-order [ARCH(6)] autoregressive conditional heteroskedasticity test. * denotes significance at 1% level.Mathematics 2021, 9, x FOR PEER REVIEW 7 of 21 
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3.2. Methodology

In this paper, we extend the FF5 model of Fama and French [57] by modeling factor
betas as a flexible threshold time-varying process. Specifically, the excess return, rit, on
industry portfolio i in period t is defined as:

rit = βi0t + βi1t MKTt + βi2tSMBt + βi3tHMLt + βi4tRMWt + βi5tCMAt + εit (1)

where MKTt is the excess return on the market portfolio; SMBt, HMLt, RMWt and CMAt
are the returns on a zero-cost portfolio of small minus big stocks, high minus low book-
to-market value stocks, high minus low operating profitability stocks and low minus
high investment stocks, respectively; and εit is independently and normally distributed
pricing error at time t with potentially heteroskedastic (time-varying) variance σ2

it, that is
εit ∼ N

(
0, σ2

it
)
. In this setting, the intercept βi0t represents the alpha of the portfolio, while

the other parameters, βi1t, βi2t βi3t, βi4t and βi5t, represent factor exposures associated with
the market, size, value, profitability and investment factors, respectively.

For ease of exposition, we introduce a compact notation for the time-varying FF5
model. Defining a (6× 1) vector at time t as zt = (1, MKTt, SMBt, HMLt, RMWt, CMAt )

′

and (n× 1) portfolio excess returns as rt = (r1t, r2t, . . . , rnt )
′, we represent the system of

equations in Equation (1) with the compact notation as:

rt = x′tβt + εt (2)

where xt = (z′t
⊗

In )
′, with In as an (n× n) identity matrix. Time varying alphas (βi0t)

and betas for all portfolios are collected into the k = (5n× 1) vector

βt = (β10,t, β20,t, . . . , βn0,t, β12,t, β21,t, . . . , βn1,t, . . . , β15,t, β25,t, . . . , βn5,t )
′

and the (n× 1) vector of white noise pricing errors (shocks) εt = (ε1t, ε2t, . . . , εnt )
′ is dis-

tributed as
εt ∼ N(0n, Σt) (3)

In Equation (3), 0n denotes a (n× 1) zero vector and Σt = VtHtV′t is a time-varying
variance-covariance matrix. Here, Vt is a lower triangular matrix with unit diagonal and
Ht = diag

(
eh1t , eh2t , . . . , ehnt

)
is a diagonal matrix with time-varying variances σ2

it = ehit on
the diagonal; thus, hit is the logarithm of conditional variance of the ith portfolio.

We introduce time-variation into the five-factor model by assuming that the rela-
tionship between the factors xt and returns rt is not constant through time and the time-
variation is governed by a law of motion that defines how βt evolves over time. As
mentioned above, the most typical of such specifications is the random walk TVP model,
which assumes that the (ij)th element of βt, βij,t, i = 1, 2, . . . , n, j = 1, 2, . . . , 5 is given by

βij,t = βij,t−1 + υij,t, υij,t ∼ N
(

0, ξ2
ij

)
(4)

where υij,t is a white noise innovation with variance ξ2
ij. Thus, Equations (1)–(4) together

define a latent state TVP model where the latent states are defined by Equation (4) with
the latent state innovation variance given by ξ2

ij. As can be seen, the model subsumes the

constant parameter case when ξ2
ij ≈ 0, which would imply βij,t ≈ βij,t−1 for all t.

Although the FF5-TVP model defined in Equations (1)–(4) is conceptually flexible
and looks appealing for modeling factor betas in the presence of structural breaks, i.e.,
time-varying or conditional betas, it suffers a serious shortcoming in that the model may
generate spurious beta changes that can significantly reduce the empirical performance
of the model, thus leading to large pricing errors (see, e.g., [69]). In TVP models wherein
a random walk process governs parameter changes, the parameters are programmed to
evolve gradually over time, which may rule out adaptation to abrupt changes. Indeed, a
random walk parameter process has unit root memory, and it will not forget the past in the
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absence of any new shock. Accordingly, the FF5-TVP model that imposes a pre-specified
random walk parameter structure on the time variation process may be restrictive for
modeling asset returns, since financial markets often experience sudden changes driven by
market shocks. Loosely speaking, the coefficients in TVP models are assumed to change
every time period, whereas the innovation variance ξ2

ij in the state Equation (4) is generally
estimated to be small, thus βij,t will be close to βij,t−1. Thus, one can think of TVP models
as models of “many small breaks” which is usually not consistent with return dynamic
in financial markets since regime changes occur less frequently and coefficient changes
are usually large. In contrast with TVP models, several studies consider structural change
models with fewer breaks in parameters, bu.t when parameters do change, the size of the
change is unrestricted and is allowed to be large (see, e.g., [70–77]).

Against this backdrop, following studies by, e.g., [70,71,74,75], who built on the
previous literature that considers fewer structural breaks with unrestricted coefficient
changes, we specify a spike-and-slab mixture distribution for the innovations υij,t of the
state Equation (1). Specifically, we specify the state equation innovation as follows:

υij,t ∼ N
(

0, ξ2
ij,t

)
(5)

where ξ2
ij,t is the time-varying innovation variance given by

ξ2
ij,t =

(
1− sij,t

)
ξ2

ij,0 + sij,tξ
2
ij,1 (6)

In Equation (6), ξ2
ij,0 and ξ2

ij,1 are two distinct state innovation variances. Specifically,

ξ2
ij,0 is the spike variance which is set close to zero and ξ2

ij,1 � ξ2
ij,0 is the slab variance.

The state innovation variances are endogenously determined from the data using indi-
cator variables sij,t, which are independent sequence of Bernoulli distributed variables,
defined as:

sij,t =

{
1 with probability πij

0 with probability 1−πij
(7)

Equations (1)–(7) thus form a mixture innovation model, which is relatively standard
in the literature [70–72,75]. This specification also relates to multiple structural change
models Pesaran et al. [77] and Koop and Potter [75], which build on the former work of
Chib [70]. The mixture innovation model with Bernoulli distributed indicator variables sij,t
states that when sij,t equals one, the change in the parameters βij,t is normally distributed
with zero mean and variance ξ2

ij,1. In contrast, when sij,t equals zero, the innovation

variance is equal to ξ2
ij,0, which implies that the parameters have almost no variability,

effectively making βij,t constant, that is βij,t ≈ βij,t−1. This last case occurs because the
innovation variance ξ2

ij,0 is close to zero when sij,t = 0. Therefore, the coefficients in the
mixture innovation model alters between constant coefficient state and changing coefficient
state with unrestricted magnitude of change in the latter case.

The mixture innovation TVP model has quite appealing features for modeling time
varying betas. The difficulty arises from the stochastic nature of indicators sij,t and their
joint simulation along with latent states, which in turn can make the model computationally
cumbersome. Huber et al. [78] and Cuaresma et al. [79] circumvented the computational is-
sue by introducing a deterministic threshold switching mechanism to identify the indicator
sequences sij,t, leading to a TTVP model. Analogous to mixture innovation models, the
TTVP approach also conditions on the states in order to simulate the indicator sequences
sij,t during the Monte Carlo Markov Chain simulation (MCMC), but the sij,t are not directly
simulated from their full conditional distribution, and, instead, they are identified from a

threshold parameter dij defined for each of the βij,t process. Specifically, let
{

β
(l)
ij,t

}T

t=1
be

the draws of βij,t in the lth iteration of the MCMC simulation, conditional on draws of sij,t
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in the (l− 1)th, that is
{

s(l−1)
ij,t

}T

t=1
iteration and the remaining parameters. Then, sij,t in the

lth iteration is defined as

sij,t =

 1 if |∆β
(l)
ij,t| > d(l−1)

ij

0 if |∆β
(l)
ij,t| ≤ d(l−1)

ij

(8)

where d(l−1)
ij denotes the (l − 1)th draw of the threshold parameter dij specific to the

coefficient βij,t and ∆β
(l)
ij,t = β

(l)
ij,t − β

(l)
ij,t−1. The threshold identification specification for sij,t

in Equation (8) makes it conditionally deterministic, freeing the MCMC algorithm from
simulating sij,t from its full conditional distribution. According to Equation (8), sij,t is
set equal to 1 if the absolute period-on-period change of the lth draw of βij,t exceeds the
(l − 1)th draw of the corresponding threshold dij. In this case, the innovation variance is
set to a large value for ξ2

ij,1 and the motion of betas is in the change state. In contrast, if
the absolute period-on-period change of the lth draw of βij,t is smaller than the (l − 1)th
draw of the threshold dij, then sij,t = 0 and the innovation variance is set close to zero,
i.e., ξ2

ij,0, effectively making βij,t constant with βij,t = βij,t−1. The model with the threshold
specification in Equation (8) can thus be called the threshold mixture innovation model
wherein regime shifts are governed by a deterministic law of motion. Compared to the
standard threshold models, this model allows each parameter to switch across regimes
independently of the state of other parameters. That is, the model does not require all
parameters to simultaneously move into or out of a certain regime which allows some
parameters to be constant during a given period while others might be changing.

Given that most financial return series display conditional heteroskedasticity, our
model can easily incorporate this statistical feature into the modeling framework. Indeed,
the specification for εt in Equation (3) is quite general with a time-varying variance feature
that allows for conditional heteroskedasticity commonly observed for financial returns.
Additionally, the model also allows time varying covariances via the matrix Vt. Conditional
heteroskedasticity is commonly modeled using GARCH models. In this paper, we model
the conditional volatility using a stochastic volatility (SV) model due to its several attractive
features and modeling flexibility in our framework (see, e.g., [80]). Hence, we specify the
logarithm of the variances to follow the first-order stationary SV process:

hit = µi + ρi(hi,t−1 − µi) + uit, i = 1, 2, . . . , n (9)

where white noise error uit is normally distributed with zero mean and variance ω2
i ,

i.e., uit ∼ N
(
0, ω2

i
)
, µi is the mean parameter and ρi is the persistence (autoregressive)

parameter satisfying the stationarity condition |ρi| < 1. For the covariances Vt, we specify
a random walk process with spike-and-slab error variances [70–72,75], as explained above.
With the introduction of the conditional heteroskedasticity through the SV process in
Equation (9), we label the extended model as TTVP with stochastic volatility or TTVP-SV.

4. Empirical Results

In our empirical application, we compare the performance of the TTVP-SV model
with the TTVP and two additional FF5 factor model specifications. One of the specifications
is the standard, static FF5 factor model and the other is a rolling regression specification
(see, e.g., [33,36]. We use prior specifications and MCMC posterior simulation algorithm
of Huber et al. [78] and Cuaresma et al. [79] for the estimation of the TTVP-SV and TTVP
models. The rolling regression estimation is performed with a window size of 120 months.
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Tables 2–5 present the descriptive statistics for the time-varying beta estimates for the
industry portfolios obtained from the threshold TVP with stochastic volatility (Panel A)
and rolling regression models (Panel B). Static beta estimates obtained using ordinary least
squares are also reported in Panel C for comparison purposes. The profitability and invest-
ment factor exposure estimates generally display the greatest variability compared to the
market, size and value factors, consistently for all industry portfolios. The uncertainty in
factor exposures is particularly large for the Energy industry relative to the other industries,
while factor exposures for the Manufacturing industry display the least variability. Clearly,
considering that betas are not directly observable and uncertainty in betas potentially indi-
cates greater possibility of disagreement about beta among investors, the relatively large
variability of factor betas for the Energy industry could be a manifestation of the disagree-
ment among market participants regarding energy market fundamentals. Nevertheless,
given the recent finding by Hollstein et al. [67] that beta uncertainty carries an economically
large and statistically significant negative premium in the cross-section of stock returns,
the variability in factor exposures of industry portfolios implies possible trading strategies
based on factor exposures, which could be exploited in smart beta strategies.

Table 2. Time-varying, rolling and static factor betas—Consumer Durables.

Variable Mean Median S.D. Min Max 5th Percentile 95th Percentile

Panel A: TTVP-SV Model

Intercept −0.338 −0.381 0.093 −0.436 −0.037 −0.431 −0.153
MKT 1.165 1.162 0.010 1.153 1.180 1.154 1.180
SMB 0.224 0.378 0.192 0.000 0.415 0.002 0.414
HML 0.287 0.267 0.073 0.162 0.421 0.171 0.416
RMW 0.157 0.097 0.110 0.047 0.356 0.050 0.350
CMA 0.094 0.057 0.098 −0.023 0.269 −0.018 0.266

Panel B: Rolling Model

Intercept −0.443 −0.506 0.288 −0.978 0.208 −0.827 0.105
MKT 1.221 1.181 0.182 0.954 1.623 0.991 1.583
SMB 0.303 0.256 0.246 −0.149 0.838 −0.106 0.762
HML 0.376 0.406 0.333 −0.408 1.030 −0.277 0.887
RMW 0.264 0.198 0.424 −0.382 1.150 −0.287 1.034
CMA 0.117 0.071 0.300 −0.575 0.632 −0.340 0.583

Panel C: Static Model

Intercept −0.340 0.150 −0.586 −0.094
MKT 1.267 0.037 1.207 1.327
SMB 0.214 0.052 0.128 0.300
HML 0.377 0.069 0.263 0.491
RMW 0.254 0.072 0.136 0.373
CMA 0.147 0.106 −0.027 0.320

Note: Panels A and B present the descriptive statistics for the time-varying beta estimates from the threshold TVP with stochastic volatility
(TTVP-SV) and rolling regression models, respectively. MKT, SMB, HML, RMW and CMA represent the Market, Size, Book-to-Market,
Profitability and Investment factors based on the five-factor specification of [57]. Static beta estimates are also reported in Panel C for
comparison purposes. The window size for the rolling beta estimates is 120 months. Estimation is carried out over the July 1963–December
2020 period with 690 months (covering July 1963–December 2020 period) and 570 months (covering July 1973–December 2020 period) for
the TTVP-SV and rolling methods, respectively. The static model is estimated using ordinary least squares for which the Median, Min and
Max estimates are not available.
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Table 3. Time varying, rolling and static factor betas—Manufacturing.

Variable Mean Median S.D. Min Max 5th Percentile 95th Percentile

Panel A: TTVP-SV Model

Intercept −0.086 −0.083 0.033 −0.135 −0.001 −0.133 −0.025
MKT 1.067 1.067 0.000 1.066 1.067 1.066 1.067
SMB 0.102 0.102 0.001 0.101 0.104 0.101 0.104
HML 0.085 0.085 0.001 0.084 0.086 0.085 0.086
RMW 0.240 0.240 0.003 0.235 0.245 0.236 0.245
CMA 0.053 0.075 0.036 0.002 0.108 0.006 0.107

Panel B: Rolling Model

Intercept −0.118 −0.095 0.148 −0.471 0.120 −0.369 0.078
MKT 1.105 1.091 0.058 0.980 1.265 1.022 1.200
SMB 0.103 0.115 0.062 −0.024 0.258 0.001 0.198
HML 0.014 0.018 0.106 −0.253 0.263 −0.204 0.161
RMW 0.222 0.281 0.230 −0.337 0.606 −0.225 0.478
CMA 0.116 0.127 0.134 −0.175 0.406 −0.105 0.336

Panel C: Static Model

Intercept −0.164 0.061 −0.265 −0.063
MKT 1.084 0.015 1.059 1.108
SMB 0.110 0.021 0.074 0.145
HML 0.088 0.028 0.041 0.134
RMW 0.320 0.030 0.271 0.369
CMA 0.126 0.043 0.055 0.197

Note: Panels A and B present the descriptive statistics for the time-varying beta estimates from the threshold TVP with stochastic volatility
(TTVP-SV) and rolling regression models, respectively. MKT, SMB, HML, RMW and CMA represent the Market, Size, Book-to-Market,
Profitability and Investment factors based on the five-factor specification of [57]. Static beta estimates are also reported in Panel C for
comparison purposes. The window size for the rolling beta estimates is 120 months. Estimation is carried out over the July 1963–December
2020 period with 690 months (covering July 1963–December 2020 period) and 570 months (covering July 1973–December 2020 period) for
the TTVP-SV and rolling methods, respectively. The static model is estimated using ordinary least squares for which the Median, Min and
Max estimates are not available.

Table 4. Time varying, rolling and static factor betas—Energy.

Variable Mean Median S.D. Min Max 5th Percentile 95th Percentile

Panel A: TTVP-SV Model

Intercept −0.087 −0.117 0.129 −0.302 0.099 −0.292 0.094
MKT 0.963 0.954 0.017 0.951 1.007 0.952 1.003
SMB −0.118 −0.181 0.143 −0.255 0.335 −0.250 0.261
HML 0.096 0.026 0.172 −0.018 0.547 −0.011 0.527
RMW −0.086 −0.103 0.184 −0.404 0.195 −0.400 0.192
CMA 0.415 0.168 0.403 −0.084 1.261 −0.047 1.256

Panel B: Rolling Model

Intercept 0.022 0.131 0.529 −1.181 1.010 −0.823 0.815
MKT 0.967 0.973 0.135 0.680 1.348 0.739 1.153
SMB −0.161 −0.196 0.218 −0.577 0.518 −0.487 0.172
HML 0.031 −0.063 0.261 −0.362 0.733 −0.279 0.563
RMW 0.042 0.052 0.545 −0.991 0.921 −0.910 0.773
CMA 0.304 0.145 0.605 −0.689 1.748 −0.510 1.675

Panel C: Static Model

Intercept −0.224 0.168 −0.499 0.052
MKT 1.008 0.041 0.941 1.075
SMB −0.063 0.058 −0.159 0.033
HML 0.230 0.078 0.102 0.357
RMW 0.209 0.081 0.076 0.342
CMA 0.365 0.118 0.170 0.559

Note: Panels A and B present the descriptive statistics for the time-varying beta estimates from the threshold TVP with stochastic volatility
(TTVP-SV) and rolling regression models, respectively. MKT, SMB, HML, RMW and CMA represent the Market, Size, Book-to-Market,
Profitability and Investment factors based on the five-factor specification of [57]. Static beta estimates are also reported in Panel C for
comparison purposes. The window size for the rolling beta estimates is 120 months. Estimation is carried out over the July 1963–December
2020 period with 690 months (covering July 1963–December 2020 period) and 570 months (covering July 1973–December 2020 period) for
the TTVP-SV and rolling methods, respectively. The static model is estimated using ordinary least squares for which the Median, Min and
Max estimates are not available.
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Table 5. Time varying, rolling and static factor betas—High Tech.

Variable Mean Median S.D. Min Max 5th Percentile 95th Percentile

Panel A: TTVP-SV Model

Intercept 0.227 0.247 0.057 0.105 0.318 0.151 0.315
MKT 1.054 1.053 0.002 1.051 1.056 1.051 1.056
SMB 0.075 0.084 0.021 0.025 0.088 0.026 0.087
HML −0.234 −0.278 0.119 −0.362 −0.010 −0.359 −0.028
RMW −0.149 −0.163 0.219 −0.646 0.181 −0.619 0.179
CMA −0.466 −0.462 0.054 −0.561 −0.387 −0.556 −0.392

Panel B: Rolling Model

Intercept 0.326 0.178 0.390 −0.150 1.452 −0.104 1.181
MKT 1.043 1.032 0.124 0.835 1.376 0.873 1.266
SMB 0.125 0.107 0.127 −0.222 0.398 −0.035 0.379
HML −0.290 −0.263 0.306 −0.860 0.318 −0.768 0.202
RMW −0.131 −0.246 0.320 −0.718 0.573 −0.508 0.493
CMA −0.398 −0.419 0.407 −1.357 0.365 −1.088 0.242

Panel C: Static Model

Intercept −0.224 0.168 −0.499 0.052
MKT 1.008 0.041 0.941 1.075
SMB −0.063 0.058 −0.159 0.033
HML 0.230 0.078 0.102 0.357
RMW 0.209 0.081 0.076 0.342
CMA 0.365 0.118 0.170 0.559

Note: Panels A and B present the descriptive statistics for the time-varying beta estimates from the threshold TVP with stochastic volatility
(TTVP-SV) and rolling regression models, respectively. MKT, SMB, HML, RMW and CMA represent the Market, Size, Book-to-Market,
Profitability and Investment factors based on the five-factor specification of [57]. Static beta estimates are also reported in Panel C for
comparison purposes. The window size for the rolling beta estimates is 120 months. Estimation is carried out over the July 1963–December
2020 period with 690 months (covering July 1963–December 2020 period) and 570 months (covering July 1973–December 2020 period) for
the TTVP-SV and rolling methods, respectively. The static model is estimated using ordinary least squares for which the Median, Min and
Max estimates are not available.

Interestingly, we observe that the threshold CAPM model yields the smallest model
alphas (the intercept term), consistently for all industries, compared to the rolling and
static regression models. The largest alphas (in absolute value) are observed for Consumer
Durables followed by Technology, suggesting the presence of industry specific factors
driving stock returns in these industries. The lower alpha estimates obtained from the
TTVP-SV model are coupled with the lowest variability in alpha estimates, consistently
for all sectors, suggesting that the threshold CAPM model performs favorably against the
popularly employed rolling window and static alternatives in explaining return patterns
in industry portfolios. Overall, the analysis of estimated beta statistics provides robust
support for the reliability of factor exposures obtained from the TTVP-SV model, which is
an important consideration for factor investing strategies that utilize factor exposures to
determine asset allocations in target portfolios.

Figures 2–5 present the plots for the posterior medians (solid line) with 68% confidence
bands (gray shaded region) of the time varying beta estimates from the TTVP model with
stochastic volatility. The figures present a visual confirmation of the inferences obtained
from the results in Tables 2–5 that the profitability and investment factor betas exhibit
relatively greater variability over time. While market beta (MKT) exhibits a relatively
stable pattern over time compared to the rest of the factors, we observe significant pattern
changes in the other factor betas. For example, Consumer Durables industry experiences
a jump in its exposure to the size and value factors in 1990s, while a similar jump in
betas is observed for Energy during the post-global financial crisis period. Interestingly,
Manufacturing stands out from the rest of the industries with quite stable factor exposures
to the market, size, value and profitability factors, suggesting that smart beta strategies
would be less costly for target portfolios that concentrate on stocks in this industry. At the



Mathematics 2021, 9, 915 13 of 20

same time, Energy and Technology industries show relatively more variable exposures
to the profitability and investment factors, while, in some cases, the sign of the exposure
alternates between positive and negative, suggesting that positions in these industries will
require more frequent rebalancing between long and short positions, which in turn would
lead to great transaction costs associated with the investment strategy.
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Figure 5. Threshold time-varying parameter beta estimates—High Tech. Note: The figure presents the plots for the posterior
medians (solid line) with 68% confidence bands (gray shaded region) of the time varying beta estimates from the TTVP
model with stochastic volatility. Gibbs sampling is used with 10,000 posterior and 10,000 burn-in draws. MKT, SMB, HML,
RMW and CMA represent the Market, Size, Book-to-Market, Profitability and Investment factors based on the five-factor
specification of Fama and French [57].

Finally, these findings are further confirmed by the pricing errors reported in Table 6.
We observe that the threshold TVP model (both variations) yields smaller pricing errors,
measured by the in-sample root mean square errors, consistently for all four industries,
compared to the rolling and static regression alternatives. Overall, the findings present
robust evidence that betas indeed exhibit time-varying patterns and the threshold CAPM
model successfully captures the time-variation in factor exposures, which in turn leads to
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smaller pricing errors. From an investment perspective, the findings suggest that threshold-
based pricing models can offer a great advantage for smart beta strategies by reducing beta
uncertainty, which in turn helps to mitigate the risk of over/under exposing the target
portfolio to selected factors.

Table 6. In-sample Pricing Errors.

Model DURBL MANUF ENRGY HITEC

TTVP-SV 3.670 1.531 3.796 2.403
TTVP 3.525 1.520 3.696 2.372

Rolling 3.708 1.544 4.163 2.484
Static 3.747 1.533 4.195 2.575

Note: The table reports in-sample root mean square error (pricing error) estimates from the threshold TVP with
stochastic volatility (TTVP-SV), the threshold TVP without stochastic volatility (TTVP), rolling regression and
static regression models. The window size for the rolling beta estimates is 120 months. Estimation is carried
out over the July 1963–December 2020 period with 690 months (covering July 1963–December 2020 period) and
570 months (covering July 1973–December 2020 period) for the TVP and rolling methods, respectively. The static
model is estimated using ordinary least squares.

5. Conclusions

Factor exposures play a central role in the design and implementation of factor in-
vesting or smart beta strategies that have gained increasing interest among institutional
investors with a projected value of assets under management of $3.4 trillion by 2022 [2].
Successful implementation of these strategies, however, relies heavily on the accuracy of
models that can explain the dynamics of factor betas and yields. A major challenge in this
regard is that betas are unobservable and highly unstable, driven by market uncertainty
and/or business cycles. This study contributes to the literature by proposing a novel,
threshold time-varying parameter (TTVP) model that can reliably measure the shifts in
business cycles and the time-variation in betas in response to business cycle fluctuations.
Our findings suggest that factor betas indeed display significant variation over time, partic-
ularly in the case of the profitability and investment factors. The threshold CAPM model is
found to reduce beta uncertainty for all industries in the sample compared to the rolling
and static regression alternatives. The lower beta uncertainty offered by the threshold
CAPM model is coupled with smaller pricing errors achieved by this model, suggesting
that the proposed approach not only allows for a more accurate representation of return
dynamics but also has the potential to minimize transaction costs and the potential for
over/under exposure to factors in factor investing strategies. It will be interesting for fu-
ture research to examine the economic implications of implementing the threshold CAPM
model in factor-based portfolio strategies and compare with static strategies that ignore the
time-variation in factor betas.
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