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A B S T R A C T

Purpose: When it comes to third and higher-order dispersion, the Schrödinger–Hirota equation
is one of the main models developed outside the classical NLSE management models for optical
soliton transmission. The cubic–quartic Fokas–Lenells equation is also one of the recently
developed equations, which has importance in the field of telecommunications regarding
optical soliton transmission in the absence of chromatic dispersion. In this study, in order to
examine the optical solitons, the Schrödinger–Hirota equation in the presence of the chromatic
dispersion and the cubic–quartic Fokas–Lenells equation discarding the chromatic dispersion
were investigated. For this intent, by obtaining certain soliton types using the unified Riccati
equation expansion method (UREEM), optical soliton solutions were obtained for both models
and graphical representations and comments were made.
Methodology: By developing appropriate computer algorithms and applying UREEM in the
following ways, symbolic calculation software was made and analytical optical soliton solutions
were obtained.
Findings: Through computer algebra software, we plotted the obtained results via 3D, 2D views
and we also illustrated the investigation of wave behavior caused by parameter change on 2D
graphics.
Originality: Different soliton behavior under the parameters effect of the Schrödinger–Hirota
equation having chromatic dispersion and the cubic–quartic Fokas-Lenells equation is investi-
gated and the obtained results are reported.

. Introduction

The role of the nonlinear partial differential equations (NLPDEs) in explaining many events or actions in the universe has
ndisputed importance. Especially many studies have been done last 50 years; moreover, the studies have gained acceleration in
he last 25 years. Progression in software technologies parallel with innovation in computer science and electronics caused these
tudies have been increased. In particular, obtaining effective results in computational mathematics and symbolic programming (with
atlab, Maple, Mathematica, etc.) and supporting these results via computer base also affected the increase. Many researchers can

ntroduce new theories, areas and different solution techniques through computer-based processes. Nonlinear wave propagation and
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especially nonlinear optics have a unique research field in these areas. The invention of lasers and usage in many fields and parallel
with advances in fiber technologies, communication and fiber usage in data transfer, reasoned that many researchers intend these
fields.

After approaches such as Hirota bilinear form, Lax pair, and perturbation [1–5], many models have been made in this
rea. Schrödinger–Hirota [6], Fokas–Lenells [7], complex Ginzburg–Landau [8], Chen–Lee–Liu model [9], Manakov model [10],
adhakrishnan–Kundu–Lakshmanan [11], Kundu–Mukherjee–Naskar [12], Sasa–Satsuma [13], Gerdjikov–Ivanov [14], Lakshmanan–
orsezian–Daniel [15], Kaup–Newell [16], Biswas–Arshed [17], Biswas–Milovic [18] as examples of models developed only in the
ield of nonlinear optics. Although these models seem not to be too many, they have different dimensional forms (1+1, 2+1,
+1, 4+1), different structures (dimensionless, perturbed, unperturbed, cubic, quartic, quintic, cubic–quartic, septic, sextic etc.),
ifferent forms of nonlinearity (Kerr, power, parabolic, dual-power, quadratic–cubic, log, anti-cubic, generalized anti-cubic, triple-
ower, polynomial, arbitrary refractive index [19–21]), different dispersion terms (group velocity dispersion (GVD), spatio-temporal
ispersion (STD), polarization mode dispersion (PMD), the third order dispersion (TOD), the fourth order dispersion) (FOD), self
hase modulation (SPM), cross phase modulation (XPM), inter modal dispersion (IMD) etc. [22–29] considering many other factors
uch as having or not, the range of work in this field includes thousands of problems. All these have also led to the development
f many methods and different methods have been applied in many studies. For example, Lie symmetry analysis [30], modified
udryashov’s method [31], the improved extended tanh-equation method [32], the extended trial equation method [33], the
romion-like structures [34], new mapping scheme [35], stationary solitons [36], semi-inverse variational principle [37,38], the
ntegration scheme [39], sine-Gordon equation approach [40], 𝐺′∕𝐺–expansion scheme [41], Laplace–Adomian decomposition [42],

the improved Adomian decomposition scheme [43].
Chromatic dispersion (CD) and nonlinear refractive index (NRI) are two elements of the fundamentals of soliton propagation

in optical fibers. As it is known, the CD is the phase and group velocity of light emitted in a transparent medium depends on the
optical frequency. So, the CD is caused by changes in wavelength and propagation velocity. Although the effect of the CD in fibers
can be reset, the CD is a natural process in producing glass fibers. The CD is compulsory for adjusting (minimizing) the effect of the
nonlinear terms in wavelength-division multiplexing systems.

Nevertheless, in general, adjusting these balances is a big problem. The issue of the CD occurs in fibers as corrupted signal quality,
requiring dispersion compensation. The fiber gratings approach is the most effective method for the CD issue [44–47]. Much work
has been done on CD, especially on single-mode fibers [48–50]. In recent years, not only theoretical but also some experimental
studies have been carried out regarding the role of CD in soliton conduction. The most notable among these studies is the structural
experimental study, replacing the term CD with the fourth-order dispersion term [51]. With this study, the concept of pure-quartic
soliton entered the literature and some studies were carried out and reported [52–55], some of which were experimental, by
replacing the term CD and some perturbation terms with both TOD and FOD terms due to ignoring [56–60].

In the framework of the manuscript, the first problem which is Schrödinger–Hirota equation examined by taking into account
the CD term. The effect of CD was investigated for different parameter values and the second model equation, the CQ-FL equation,
which was formed by ignoring the CD term, was examined as the second step. The Schrödinger–Hirota equation with chromatic
dispersion is given [61]:

𝑖𝑢𝑡 + 𝑎1𝑢𝑥𝑥 + 𝑏1|𝑢|
2𝑢 + 𝑖

(

𝑐1𝑢𝑥𝑥𝑥 + 𝑑1|𝑢|
2𝑢𝑥

)

= 0, (1)

where 𝑎1, 𝑏1, 𝑐1 and 𝑑1 are the coefficients of GVD, Kerr-law nonlinearity, TOD and nonlinear dispersion terms, respectively. The
cubic–quartic Fokas Lenell equation by discarding the chromatic dispersion is given [62]:

𝑖𝑢𝑡 + 𝑖𝑎2𝑢𝑥𝑥𝑥 + 𝑏2𝑢𝑥𝑥𝑥𝑥 + |𝑢|2
(

𝑐2𝑢 + 𝑖𝑑2𝑢𝑥
)

− 𝑖
[

𝜆(|𝑢|2𝑢)𝑥 + 𝜇(|𝑢|
2)𝑥𝑢

]

= 0, (2)

where Eq. (2) 𝑎2, 𝑏2, 𝑐2, 𝑑2, 𝜆, 𝜇 stand for TOD, FOD, Kerr-law nonlinearity, nonlinear dispersion, self-steepening, higher-order
dispersion terms coefficients. Various modeling studies have been carried out regarding optical solitons. Among the main purposes
of these studies is to maintain the shape and quality of the soliton in soliton transmission and to control it by nonlinear effects. In
this context, terms such as Lie transform, Hamiltonian perturbation, and quasi-stationarity are among the main actors that come to
the fore [63]. Other studies related to these models are given in [31,43,61,62,64–75].

The organization of the paper is as follows; in Section 2 we did a mathematical analysis of the models. Section 3 includes the
application of the UREEM on both models. Then, Section 4 includes the plotting of the obtained results. Lastly, Section 5 includes
the conclusion part of the study.

2. Mathematical analysis

2.1. Obtaining NODE form of the Schrödinger–Hirota equation

In this section, we obtained the nonlinear ordinary differential equation (NODE) form of Eq. (1). Consider the following wave
transformation:

𝑢(𝑥, 𝑡) = 𝑈 (𝜉)𝑒𝑖𝜃 , 𝜉 = 𝑥 − 𝑣𝑡, 𝜃 = −𝛼𝑥 + 𝛽𝑡 + 𝜓0. (3)

Where 𝑣 is the velocity, 𝛼 is frequency, 𝛽 wave number and 𝜓0 is phase constant of soliton. Insert Eq. (3) into Eq. (1) and separate
the real and imaginary parts as follows:

( ) 3 ( 3 2 ) ( ) ′′
2

𝛼𝑑1 + 𝑏1 𝑈 + −𝛼 𝑐1 − 𝑎1𝛼 − 𝛽 𝑈 + 3𝛼𝑐1 + 𝑎1 𝑈 = 0, (4)
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𝑑1𝑈
2𝑈 ′ +

(

−3𝛼2𝑐1 − 2𝑎1𝛼 − 𝑣
)

𝑈 ′ + 𝑐1𝑈 ′′′ = 0, (5)

where (′) sign denotes ordinary differential as 𝑑𝑈
𝑑𝜉 . If we integrate Eq. (5) with respect to the 𝜉 and assume the integration constant

as zero, we obtain;

𝑑1𝑈
3 +

(

−9𝛼2𝑐1 − 6𝑎1𝛼 − 3𝑣
)

𝑈 + 3𝑐1𝑈 ′′ = 0. (6)

If the homogeneous balance principle is applied between Eqs. (4) and (6), the following formula is gained:
(

𝛼𝑑1 + 𝑏1
)

𝑑1
=

(

−𝛼3𝑐1 − 𝑎1𝛼2 − 𝛽
)

(

−9𝛼2𝑐1 − 6𝑎1𝛼 − 3𝑣
) =

(

3𝛼𝑐1 + 𝑎1
)

3𝑐1
. (7)

From Eq. (7), we get the following constraint conditions;

𝑑1 =
3𝑏1𝑐1
𝑎1

, 𝛽 =
8𝛼3𝑐21 + 8𝑎1𝛼2𝑐1 + 2𝑎21𝛼 + 3𝛼𝑐1𝑣 + 𝑎1𝑣

𝑐1
. (8)

Under these constraints, we can consider Eq. (4) (or Eq. (6)) as a NODE representation of Eq. (1) in the following form:
(

𝛼𝑑1 + 𝑏1
)

𝑈3 +
(

−𝛼3𝑐1 − 𝑎1𝛼2 − 𝛽
)

𝑈 +
(

3𝛼𝑐1 + 𝑎1
)

𝑈 ′′ = 0. (9)

Applying the balancing principle between 𝑈3 and 𝑈 ′′, the balance number is computed as 𝑁 = 1.

2.2. Obtaining NODE form of CQ-FL equation

In this section, we obtained the NODE form of the CQ-FL equation. Let us assume that the following wave transformation:

𝑢(𝑥, 𝑡) = 𝑈 (𝜉)𝑒𝑖𝜃 , 𝜉 = 𝑥 − 𝑣𝑡, 𝜃 = −𝑘𝑥 + 𝜔𝑡 + 𝜓0, (10)

where 𝑣 is the velocity, 𝑘 is frequency, 𝜔 wave number and 𝜓0 is phase constant. Substituting Eq. (10) into Eq. (2), we derive the
following equations;

((

−𝜆 + 𝑑2
)

𝑘 + 𝑐2
)

𝑈3 +
(

𝑏2𝑘
4 − 𝑎2𝑘3 − 𝜔

)

𝑈 +
(

−6𝑏2𝑘2 + 3𝑎2𝑘
)

𝑈 ′′ + 𝑏2𝑈 (4) = 0, (11)

− 3
(

𝜆 − 1
3
𝑑2 +

2
3
𝜇
)

𝑈2𝑈 ′ +
(

4𝑏2𝑘3 − 3𝑎2𝑘2 − 𝑣
)

𝑈 ′ +
(

−4𝑏2𝑘 + 𝑎2
)

𝑈 ′′′ = 0. (12)

rom Eq. (12), we obtain the following constraint conditions;

𝜆 = 1
3
𝑑2 −

2
3
𝜇, 𝑣 = 4𝑏2𝑘3 − 3𝑎2𝑘2, 𝑎2 = 4𝑏2𝑘. (13)

Substituting these constraints into Eq. (11), the NODE form of Eq. (2) is derived:
(( 2

3
𝑑2 +

2
3
𝜇
)

𝑘 + 𝑐2
)

𝑈3 +
(

−3𝑏2𝑘4 − 𝜔
)

𝑈 + 6𝑏2𝑘2𝑈 ′′ + 𝑏2𝑈 (4) = 0. (14)

Referencing the balancing rule between the terms 𝑈3 and 𝑈 (4), balancing constant is calculated as 𝑁 = 2.

3. Application

3.1. Implementation of UREEM on the Schrödinger–Hirota equation

Considering the balance constant 𝑁 = 1, we assume that the NODE in Eq. (9) has a solution as following form;

𝑈 (𝜉) = 𝜎0 + 𝜎1𝜙(𝜉), (15)

where 𝜎0 and 𝜎1 are constants with 𝜎1 ≠ 0, also 𝜙(𝜉) feeds the following formula;
𝑑𝜙
𝑑𝜉

= 𝜅0 + 𝜅1𝜙(𝜉) + 𝜅2𝜙(𝜉)2. (16)

Eq. (16) has the following conditional solutions.

• If 𝛥 > 0, 𝑟2 ≠ 𝑟1 and 𝑟21 + 𝑟
2
2 ≠ 0:

𝜙1(𝜉) = −
𝜅1
2𝜅2

−

√

𝛥
(

𝑟1 tanh
(

√

𝛥
2 𝜉

)

+ 𝑟2

)

2𝜅2

(

𝑟1 + 𝑟2 tanh
(

√

𝛥 𝜉
)) . (17)
3

2
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• If 𝛥 < 0 and 𝑟23 + 𝑟
2
4 ≠ 0:

𝜙2(𝜉) = −
𝜅1
2𝜅2

−

√

−𝛥
(

𝑟3 tan
(

√

−𝛥
2 𝜉

)

− 𝑟4

)

2𝜅2

(

𝑟3 + 𝑟4 tan
(

√

−𝛥
2 𝜉

)) . (18)

Where 𝛥 = 𝑟21−4𝑟0𝑟2. Substitute Eq. (15) with considering Eq. (16) into Eq. (9) and collecting each coefficients of the 𝜙(𝜉)𝑖, 𝑖 = (0…3)
then equate every coefficient to the zero and get the following algebraic system:

𝜙(𝜉)0 ∶𝑎1𝑐1𝜎1𝜅1𝜅0 − 2𝜎0
(

𝑎21𝛼 +
( 3
2
𝑐1𝛼

2 + 1
2
𝑣
)

𝑎1 −
1
2
𝜎20𝑏1𝑐1

)

= 0,

𝜙(𝜉)1 ∶ − 2𝜎1
(

𝑎21𝛼 +
(( 3

2
𝛼2 − 𝜅0𝜅2 −

1
2
𝜅21

)

𝑐1 +
1
2
𝑣
)

𝑎1 −
3
2
𝜎20𝑏1𝑐1

)

= 0,

𝜙(𝜉)2 ∶3𝜎1𝑐1
(

𝑎𝜅1𝜅2 + 𝑏1𝜎0𝜎1
)

= 0,

𝜙(𝜉)3 ∶2𝑎1𝑐1𝜅22𝜎1 + 𝑏1𝑐1𝜎
3
1 = 0.

(19)

y using computer algebra software, we solve the system in Eq. (19) and get the following solution sets;

𝐒𝐄𝐓1 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎0 =
1
2
𝜅1𝜎1
𝜅2

, 𝑏1 =
1
2

(

6𝛼2𝑐1 − 4𝑐1𝜅0𝜅2 + 𝑐1𝜅21 + 2𝑣
)

𝜅22
𝛼𝜎21

,

𝜎1 = 𝜎1, 𝑎1 = −1
4
6𝛼2𝑐1 − 4𝑐1𝜅0𝜅2 + 𝑐1𝜅21 + 2𝑣

𝛼

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(20)

𝐒𝐄𝐓2 ∶

{

𝜎0 =
1
2
𝜅1𝜎1
𝜅2

, 𝑏1 = −
2𝑎1𝜅22
𝜎21

, 𝜎1 = 𝜎1, 𝜅0 =
1
4
6𝛼2𝑐1 + 𝑐1𝜅21 + 4𝑎1𝛼 + 2𝑣

𝑐1𝜅2

}

. (21)

Substituting the obtained sets in Eqs. (20) and (21) into Eq. (15) with considering the solutions in Eqs. (17) and (18) together the
constraint conditions in Eq. (8), then, applying the wave transformation in Eq. (3), we obtain the following solutions of Eq. (1);

𝑢1,1(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜅1𝜎1
2𝜅2

+ 𝜎1

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜅1
2𝜅2

−

√

𝛥1

(

𝑟1 tanh
(

√

𝛥1 (−𝑣𝑡+𝑥)
2

)

− 𝑟2

)

2𝜅2

(

𝑟1 + 𝑟2 tanh
(

√

𝛥1 (−𝑣𝑡+𝑥)
2

))

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

ei(−𝛼𝑥+𝛽𝑡+𝜓0), (22)

𝑢1,2(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜅1𝜎1
2𝜅2

+ 𝜎1

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜅1
2𝜅2

−

√

𝛥2

(

𝑟3 tan
(

√

𝛥2 (−𝑣𝑡+𝑥)
2

)

− 𝑟4

)

2𝜅2

(

𝑟3 + 𝑟4 tan
(

√

𝛥2 (−𝑣𝑡+𝑥)
2

))

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

ei(−𝛼𝑥+𝛽𝑡+𝜓0), (23)

𝑢1,3(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜅1𝜎1
2𝜅2

+ 𝜎1

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜅1
2𝜅2

−

√

𝛥3

(

𝑟3 tanh
(

√

𝛥3 (−𝑣𝑡+𝑥)
2

)

− 𝑟4

)

2𝜅2

(

𝑟3 + 𝑟4 tan
(

√

𝛥3 (−𝑣𝑡+𝑥)
2

))

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

ei(−𝛼𝑥+𝛽𝑡+𝜓0), (24)

𝑢1,4(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜅1𝜎1
2𝜅2

+ 𝜎1

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜅1
2𝜅2

−

√

𝛥4

(

𝑟3 tan
(

√

𝛥4 (−𝑣𝑡+𝑥)
2

)

− 𝑟4

)

2𝜅2

(

𝑟3 + 𝑟4 tan
(

√

𝛥4 (−𝑣𝑡+𝑥)
2

))

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

ei(−𝛼𝑥+𝛽𝑡+𝜓0), (25)

here 𝛥1 = −4𝜅0𝜅2 + 𝜅21 > 0, 𝛥2 = −𝛥1, 𝛥3 = −4
(

1
4
6𝛼2𝑐1+𝑐1𝜅21+4𝑎1𝛼+2𝑣

𝑐1𝜅2

)

𝜅2 + 𝜅21 > 0, 𝛥4 = −𝛥3, 𝛽 =

(

8𝛼3𝑐21+8𝑎1𝛼
2𝑐1+2𝑎21𝛼+3𝛼𝑐1𝑣+𝑎1𝑣

)

𝑐1
.

.2. Implementation of UREEM on the CQ-FL equation

Considering the balance constant 𝑁 = 2, it is accepted that Eq. (26) is the solution of Eq. (14);

𝑈 (𝜉) = 𝜎0 + 𝜎1𝜙(𝜉) + 𝜎2𝜙(𝜉)2, (26)

where 𝜎0, 𝜎1 and 𝜎2 are constants with 𝜎2 ≠ 0, also 𝜙(𝜉) admits the following formula;
𝑑𝜙
𝑑𝜉

= 𝜅0 + 𝜅1𝜙(𝜉) + 𝜅2𝜙(𝜉)2. (27)

According to the UREEM, the Riccati equation in Eq. (27) has the same conditional solutions in Eqs. (17) and (18). Substitute Eq. (26)
into Eq. (14) by considering Eq. (27) and separate each coefficients of the 𝜙(𝜉)𝑖, 𝑖 = (0…6) then equate every coefficient to the zero
4
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and get the following algebraic system:

𝜙(𝜉)0 ∶12
(

𝑘2 + 4
3
𝜅2𝜅0 +

7
6
𝜅21

)

𝜅20𝑏2𝜎2 +
1
3

(

18𝜅1
(

𝑘2 + 4
3
𝜅2𝜅0 +

1
6
𝜅21

)

𝜅0𝜎1 − 9𝑘4𝜎0
)

𝑏2

+ 2
3
𝜎0

(

𝜎20
(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝜎20𝑐2 −

3
2
𝜔
)

= 0,

𝜙(𝜉)1 ∶36𝜅1
(

𝑘2 + 10
3
𝜅2𝜅0 +

5
6
𝜅21

)

𝜅0𝑏2𝜎2 − 3
((

𝑘4 +
(

−4𝜅0𝜅2 − 2𝜅21
)

𝑘2 − 16
3
𝜅22𝜅

2
0 − 22

3
𝜅2𝜅0𝜅

2
1

−1
3
𝜅41

)

𝑏2 −
2
3
𝜎20

(

𝜇 + 𝑑2
)

𝑘 − 𝜎20𝑐2 +
1
3
𝜔
)

𝜎1 = 0,

𝜙(𝜉)2 ∶1
3
((

−9𝑘4 +
(

144𝜅0𝜅2 + 72𝜅21
)

𝑘2 + 408𝜅22𝜅
2
0 + 696𝜅2𝜅0𝜅21 + 48𝜅41

)

𝑏2 + 6𝜎20
(

𝜇 + 𝑑2
)

𝑘 + 9𝜎20𝑐2

−3𝜔) 𝜎2 + 18
(

𝜅2𝜅1
(

𝑘2 + 10
3
𝜅2𝜅0 +

5
6
𝜅21

)

𝑏2 +
1
9

(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎0𝜎1
)

𝜎1 = 0,

𝜙(𝜉)3 ∶1
3

(

180𝜅1𝜅2
(

𝑘2 + 22
3
𝜅2𝜅0 +

13
6
𝜅21

)

𝑏2 + 12
(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎0𝜎1
)

𝜎2

+ 12
(

𝜅22
(

𝑘2 + 10
3
𝜅2𝜅0 +

25
6
𝜅21

)

𝑏2 +
1
18

(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎21
)

𝜎1 = 0,

𝜙(𝜉)4 ∶2
(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎0𝜎
2
2 +

1
3
((

108𝑘2𝜅22 + 720𝜅0𝜅32 + 990𝜅21𝜅
2
2
)

𝑏2

+6
(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎21
)

𝜎2 + 60𝜅32𝜎1b2𝜅1 = 0,

𝜙(𝜉)5 ∶2
(

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎1𝜎
2
2 + 336𝜅32𝜎2b2𝜅1 + 24𝜅42𝜎1b2 = 0,

𝜙(𝜉)6 ∶2
3
𝜎2

((

(

𝜇 + 𝑑2
)

𝑘 + 3
2
𝑐2
)

𝜎22 + 180𝜅42𝑏2
)

= 0.

(28)

By using computer algebra software, solving the system in Eq. (28), we get the following solution set:

𝐒𝐄𝐓3 ∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜔 = −219
25

𝑏2𝑘
4, 𝜅0 =

((

−2𝜇 − 2𝑑2
)

𝑘 − 3𝑐2
)

𝜎21 + 432𝑏2𝑘2𝜅22
1440𝑏2𝜅32

,

𝜅1 =
𝜎1

(

2𝑑2𝑘 + 2𝑘𝜇 + 3𝑐2
)

6𝜅2
√

−10𝑏2
(

2𝑑2𝑘 + 2𝑘𝜇 + 3𝑐2
)

, 𝜅2 = 𝜅2, 𝜎1 = 𝜎1,

𝜎0 = − 1
24

432𝑏2𝑘2𝜅22 − 2𝑑2𝑘𝜎21 − 2𝑘𝜇𝜎21 − 3𝑐2𝜎21
√

−10𝑏2
(

2𝑑2𝑘 + 2𝑘𝜇 + 3𝑐2
)

𝜅22

,

𝜎2 =
6
√

−10𝑏2
(

2𝑑2𝑘 + 2𝑘𝜇 + 3𝑐2
)

𝜅22
2𝑑2𝑘 + 2𝑘𝜇 + 3𝑐2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (29)

Substituting the obtained set in Eq. (29) into Eq. (26) by considering the solutions in Eq. (17), Eq. (18) and the constraint conditions
in Eq. (13), then, applying the wave transformation in Eq. (10), we obtain the following solutions of Eq. (2):

𝑢2,1(𝑥, 𝑡) =
(

𝜎0 + 𝜎1
(

𝜙1(𝑥, 𝑡)
)

+ 𝜎2
(

𝜙1(𝑥, 𝑡)
)2
)

𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜓0), (30)

𝑢2,2(𝑥, 𝑡) =
(

𝜎0 + 𝜎1
(

𝜙2(𝑥, 𝑡)
)

+ 𝜎2
(

𝜙2(𝑥, 𝑡)
)2
)

𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜓0), (31)

where 𝜙1(𝑥, 𝑡) and 𝜙2(𝑥, 𝑡) are defined as in Eqs. (17) and (18). In Eqs. (30) and (31), we preferred to give the general form of the
solution functions rather than the very long form. Also 𝜎0, 𝜎1, 𝜎2, 𝜅0, 𝜅1, 𝜅2 and 𝜔 are obtained from Eq. (29).

4. Results and discussion

In this section, we depicted some plots of obtained results and investigated the wave behavior depending on the parameter
changes.

In Fig. 1, we depicted some plots of 𝑢1,1(𝑥, 𝑡) in Eq. (22). Fig. 1(a), shows 3D plots of |𝑢1,1(𝑥, 𝑡)| with 𝜎1 = 2, 𝜅0 = −1, 𝜅1 =
𝜅2 = 1, 𝑟1 = 2, 𝑟2 = 0.8, 𝑣 = −0.5, 𝛼 = 1, 𝑐1 = 0.8 and 𝑎1 = 0.8. Fig. 1(b), shows 2D plots of |𝑢1,1(𝑥, 𝑡)| at 𝑡 = 1, 2, 3 in Eq. (22)
with aforementioned values. According to Figs. 1(a) and 1(b), |𝑢1,1(𝑥, 𝑡)| has dark soliton solution and the soliton travels through
positive-x direction due to time. On the other hand, Fig. 1(c), represents 3D plot of |𝑢1,1(𝑥, 𝑡)| with aforementioned values when
𝑟2 = 2.8. Also, Fig. 1(d) shows the 2D plots of the solution in Fig. 1(c) at 𝑡 = 1, 2, 3. The traveling direction of the singular soliton
in Fig. 1(c) is positive-x direction as shown in Fig. 1(d). As a result, Figs. 1(c) and 1(d) show that the change in the parameter 𝑟2,
transforms the solution into a singular soliton solution.

Fig. 2 illustrates some views of 𝑢1,2(𝑥, 𝑡) in Eq. (23). Fig. 2(a), shows the 3D plot of |𝑢1,2(𝑥, 𝑡)| and Fig. 2(b), shows the 2D plots
of |𝑢1,2(𝑥, 𝑡)| at 𝑡 = 1, 2, 3. Figs. 2(a) and 2(b) are plotted with 𝜎1 = 2, 𝜅0 = 1, 𝜅1 = 𝜅2 = 2, 𝑟3 = 1, 𝑟4 = 0.5, 𝑣 = −0.5, 𝛼 = 1, 𝑐1 = 0.8
and 𝑎1 = 0.8 values. According to Figs. 2(a) and 2(b), |𝑢1,2(𝑥, 𝑡)| has a periodic-singular soliton solution and the traveling direction
is positive-x direction due to time.
5
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Fig. 1. Various plots of |𝑢1,1(𝑥, 𝑡)| in Eq. (22).

Fig. 2. Various plots of |𝑢1,2(𝑥, 𝑡)| in Eq. (23).
6
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Fig. 3. Graphical demonstrations of |𝑢2,1(𝑥, 𝑡)| in Eq. (30).

Fig. 4. Some portraits of |𝑢2,2(𝑥, 𝑡)| in Eq. (31).

In Fig. 3, we plotted some graphs of 𝑢2,1(𝑥, 𝑡) in Eq. (30). Fig. 3(a), represents 3D plot of |𝑢2,1(𝑥, 𝑡)| with 𝑏2 = 1, 𝜅2 = 3, 𝑘 = 1.8, 𝜇 =
−2, 𝑑2 = −3.9, 𝑐2 = 1, 𝑟1 = 2, 𝑟2 = 1, 𝜓 = 2 and 𝜎1 = 1 values. On the other hand, Fig. 3(b) shows 2D plots of |𝑢2,1(𝑥, 𝑡)| in Eq. (30)
with aforementioned parameters at 𝑡 = 1, 2, 3. According to Figs. 3(a) and 3(b), the solution |𝑢2,1(𝑥, 𝑡)| is a mixed kink–dark soliton
solution and travels through the negative-x direction.

In Fig. 4, we depicted some plots of |𝑢2,2(𝑥, 𝑡)| in Eq. (31). Fig. 4(a), shows the 3D plot and Fig. 4(b) shows the 2D plots of
|𝑢2,2(𝑥, 𝑡)| in Eq. (31) with 𝑏2 = 1, 𝜅2 = 3, 𝑘 = 1.8, 𝜇 = −2, 𝑑2 = −3.9, 𝑐2 = 1, 𝑟3 = 2, 𝑟4 = 1, 𝜓 = 2 and 𝜎1 = 1 values at 𝑡 = 0.01, 0.02, 0.03.
Also, Figs. 4(a) and 4(b) show that the solution is a mixed kink-dark soliton solution and travels along to the negative-x direction.

Figs. 3 and 4 are graphically similar and categorically look like a combination of dark and kink soliton, but they are not physically
identical. Because if the graphs of Figs. 3 and 4 are examined carefully, the kink soliton image formed in the graph of Fig. 3 is
left-oriented and to the left of the dark soliton kink soliton, and the opposite in the graph of Fig. 4.

In Fig. 5, we depicted some 2D plots of 𝑢1,1(𝑥, 𝑡) in Eq. (23). In order to observe the effect of the chromatic dispersion parameter
on the wave behavior, we depicted Fig. 5. Fig. 5(a) has three different styled plots. Blue, red and yellow waves are plotted for
𝑎1 = 1, 1.2 and 𝑎1 = 1.3 values respectively. Depending on the change of 𝑎1 it is seen that the wave amplitude also changes. According
to Fig. 5(a), while 𝑎1 takes the positive values and decreasing, wave amplitude increases. On the other hand, in Fig. 5(b). Therefore,
it is obvious that the effect originating from the chromatic dispersion term for the Schrödinger–Hirota equation has consequences
on the soliton behavior, whether it is dark or singular soliton behavior. The parameter values selected in these graphic presentations
are the parameters chosen in line with the requirements of the problem and the applied method. In this context, it is not possible to
accept these parameters as an arbitrary real number and give them values. Here, to observe the effect of the chromatic dispersion,
one of the most basic elements was to preserve the physical shape of the soliton.

In Fig. 6, we depicted some 2D plots of |𝑢2,1(𝑥, 𝑡)| in Eq. (30). The parameter 𝑏2 represents the quartic nonlinearity (FOD) of the
model in Eq. (2). Fig. 6(a) shows the different wave behavior due to the parameter 𝑏 change. Fig. 6(a) has three different styled
7
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Fig. 5. Various plots of |𝑢1,1(𝑥, 𝑡)| in Eq. (24).

Fig. 6. Various plots of |𝑢2,1(𝑥, 𝑡)| in Eq. (30).

lots (blue, red and yellow demonstrations) for 𝑏2 = 1, 2, 3 values respectively. When 𝑏2 is positive and increasing, soliton generally
preserves the appearance of dark (left) kink soliton combination, that is, its physical feature. Depending on the increment of 𝑏2, the
soliton’s position changes to the left and upwards. We can say that this change is directly proportional to the increase of 𝑏2, but
we cannot say that it is proportional to the change in amplitude and the change in the position of the signal. The graph Fig. 6(b)
represents the graph in which the same examination was made against the negative values of 𝑏2. This graph also shows similar
characteristics with Fig. 6(a) in terms of general behavior. In other words, if 𝑏2 takes negative and increasing values, the position of
he soliton changes horizontally to the left and vertically upwards. However, the soliton wings in the previous part, which shows the
ink soliton behavior gives an image parallel to each other without crossing each other. While 𝑏2 is negative, there is an intersection.

This is due to the non-proportional change in the amplitude of the signal.
In Fig. 7, we depicted some 2D plots of |𝑢2,1(𝑥, 𝑡)| in Eq. (30). The parameter 𝑎2 represents the cubic nonlinearity (TOD) of the

model in Eq. (2). Fig. 7(a) shows the different wave behavior due to the parameter 𝑎2 change. Fig. 7(a) has three different styled plots
(blue, red and yellow demonstrations) for 𝑎2 = 1, 2, 3 values, respectively. The soliton behavior is generally similar when 𝑎2 takes
positive and negative values. In other words, when 𝑎2 is positive and increasing, the soliton preserves its dark–kink combination,
and depending on the increase in 𝑎2, the soliton shifts horizontally to the left and vertically upwards. As can be clearly seen, the
change in vertical also indicates an increase in distance. However, solitons do not exhibit any intersection. In the case where 𝑏2
is negative and increasing, the same situation is repeated, but the distance between the solitons is closer. Therefore, a model that
allows soliton transmission by ignoring the chromatic dispersion term for the CQ-FL equation and adding third and fourth-order
dispersion terms instead, has been investigated via Figs. 6 and 7. It has been observed that within the scope of this model, soliton
transmission is possible and it is possible to balance the interactions that occur in this transmission with such nonlinear terms.
Within the framework of the study conducted for this purpose, the selected terms were also made on the basis of preserving the
shape of the soliton obtained by taking into account the restrictions of the investigated models and the method.
8
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Fig. 7. Various plots of |𝑢2,1(𝑥, 𝑡)| in Eq. (30).

. Conclusion

In this study, we did an investigation on Schrödinger–Hirota equation having chromatic-dispersion and Cubic–Quartic Fokas–
enells equation by discarding the chromatic dispersion. This study basically serves two main purposes. The first objective, the
chrödinger–Hirota equation with chromatic dispersion term was chosen and the chromatic dispersion effect in soliton transmission
as successfully examined on this equation and also graphic presentations were made via 3D and 2D plots. In this sense, the effect
f the chromatic dispersion term on soliton transmission is shown. The second aim is to examine the CQ-FL equation, which is one
f the new models developed by adding the third and fourth-order nonlinear dispersion term by discarding the chromatic dispersion
erm, and similarly soliton transmission and its effects on it are examined. Detailed graphic presentations of the examination were
ade via 2D and 3D plots. Although these studies were conducted on dark, singular and mixed dark–kink soliton types within the

cope of the study, it would be possible to expand similar studies for other soliton types. The study will also be beneficial for possible
esearch since the study was investigated in this way, new experimental models, especially quartic soliton solutions, have started
o be developed in recent years regarding the chromatic dispersion problem, and the field is still open for extensive research.
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