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Abstract
We have extracted some soliton solutions of the fractional longitudinal wave equation with 
the M-truncated derivative (M-LWE), which emerges in a magneto electro-elastic circu-
lar rod. To obtain new results of this model, the unified Riccati equation expansion and 
new Kudryashov methods have been utilized for the first time. The presented methods 
have been productively implemented to the considered model. With the help of these two 
methods, new soliton waves of the M-LWE have been obtained successfully. For a better 
understanding of the subject and analysis of the results, 3D, contour, and 2D graphs of 
some soliton solutions have been presented. The interesting part of our work is that both 
methods, named unified Riccati equation expansion and the new Kudryashov methods have 
successfully been applied for the first time to get new soliton solutions of M-LWE.

Keywords Unified Riccati equation expansion method · New Kudryashov method · The 
longitudinal wave equation with local M-derivative · Soliton solutions

1 Introduction

Soliton theory is of great significance as numerous mathematical physical models have 
various soliton solutions. The models that produce soliton solutions are being used in 
different sciences and engineering fields, especially in physical models that symbolize 
nonlinear partial differential equations (NLPDEs) such as the expansion of wave and 
heat flow phenomena, mathematical biology, chemical kinematics, electricity, optical 
fibers, plasma physics, and quantum mechanics. Therefore, many authors have attached 
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great importance to studying soliton structures with various analytical approaches in 
nonlinear models. Such as, the bell-shaped perturbed dispersive optical solitons of the 
Biswas Arshed by the new Kudryashov’s method (Ozisik et  al. 2022), optical soliton 
to Fokas–Lenells model via the enhanced modified extended tanh-expansion technique 
(Esen et  al 2022), perturbation of dispersive optical solitons with Schrödinger–Hirota 
equation with Kerr law and Spatio-temporal dispersion via the direct algebraic scheme 
of the enhanced modified extended tanh expansion method (Ozdemir et  al. 2022), the 
F-expansion technique to the dimensionless form of the nonlinear Schrödinger model 
with Kerr law nonlinearity (Biswas et  al. 2019), the solitary wave solutions of Cha-
fee–Infante and (2 + 1)-dimensional breaking soliton models (Habiba et  al. 2019), the 
bright and dark solitons of a weakly nonlocal Schrödinger model with the parabolic law 
nonlinearity (Hosseini et al. 2021), the Sine–Gordon and Kudryashov techniques (Akbar 
et  al. 2021), the analytical solutions to Zoomeron model utilizing extended rational 
sin–cos and sinh–cosh approaches (Cinar et al. 2021), optical solitons to Chen–Lee–Liu 
equation (Ozdemir et al. 2021), convex-periodic, kink-periodic, peakon-soliton and kink 
bidirectional wave-solutions to Cahn–Allen model (Alquran and Alhami 2022), the 
exact traveling wave solutions and analysis of the dual-mode Hirota–Satsuma coupled 
KdV equations (Alquran et al. 2019), cubic-quartic optical solitons with Kudryashov’s 
law of refractive index via Lie symmetry analysis (Kumar and Malik 2021), integra-
bility, stability analysis, and soliton solutions for the (2  +  1)-dimensional combined 
KdV–mKdV model (Malik et al. 2022), optical soliton to generalized coupled nonlinear 
schrödinger KdV model (Akinyemi et al. 2021), soliton solutions of generalized (2 + 1)

-dimensional Boussinesq–Kadomtsev–Petviashvili-like model (Akinyemi et  al. 2022), 
the higher-order modified Korteweg-de Vries equation (Ntiamoah et al. 2022), the soli-
tary wave solutions and stability analysis in liquid with gas bubbles (Zhao et al. 2022), 
the new Kudryashov method (Malik et  al. 2023), the ansatz method (Akinyemi and 
Morazara 2023), and numerous kinds of research.

The M-LWE that we focused in this study is defined as: (Xue et al. 2011; Yépez-Mar-
tínez and Gómez-Aguilar 2018):

in which D2�,�

M,t
Θ(x, t) expresses the M-truncated derivative of order � of Θ with respect to t. 

For � = 1 , Eq. (1) is defined as the longitudinal wave equation (LWE). � express the disper-
sion parameter, and �0 states the linear longitudinal wave velocity for a MEE circular rod; 
moreover, all of them hinge on geometry of the rod and the material characteristics. What 
motivates us for this study is that M-LWE and LWE have been studied few in the literature. 
Some of approaches utilized in the studies are the modified exp(Ω(�))-expansion function 
method in Yépez-Martínez and Gómez-Aguilar (2018), the Bernoulli sub-equation func-
tion method in Baskonus and Gómez-Aguilar (2019), the generalized exponential rational 
function method (Aljahdaly et al. 2021), the modified (G�∕G)-expansion method (Ma et al. 
2013), the modified Kudryashov method (Hosseini et al. 2018), the extended trial equation 
method (Seadawy and Manafian 2018).

The configuration of the article is presented as: In Sect. 2, we give the definition of the 
M-derivative. The nonlinear ordinary differential equation form of the M-LWE is acquired 
in Sect. 3. Sections 4 and 5 offer the main stages of the proposed methods and their appli-
cations to M-LWE. Physical interpretations of the graphs depicted in this study were ful-
filled in Sect. 6. Section 7 is the conclusion part.

(1)D
2�,�

M,t
Θ(x, t) − �2

0
D

2�,�

M,x
Θ(x, t) − D

2�,�

M,x

[�2

0

2
Θ2(x, t) + �D

2�,�

M,t
Θ(x, t)

]
= 0,
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2  Definition of truncated M‑fractional derivative

In this part, we provide descriptions of the local M-derivative.

Definition The truncated Mittag–Leffler function is expressed as follows (Sousa and de 
Oliveira 2017):

where 𝛾 > 0 and z ∈ C.

Definition Assume that P ∶ [0,∞) → ℝ be a function, the local M-derivative of order 
� ∈ (0, 1), with respect to t is defined by (Sousa and de Oliveira 2017)

where 𝛾 , t > 0 and jE� (⋅) states Mittag–Leffler function.

Theorem Suppose that P(t) be � order differentiable function at t0 > 0 for � ∈ (0, 1] and 
𝛾 > 0 . Then, P(t) is continuous at t0 (Sousa and de Oliveira 2017).

Theorem Presume that P,  Q is �-differentiable at any t > 0 where 
0 < 𝛼 ≤ 1, 𝛾 > 0, p, q ∈ ℝ . Then, 

1. D
�,�

M,t
(pP + qQ)(t) = p D

�,�

M,t
P(t) + q D

�,�

M,t
Q(t),

2. D
�,�

M,t
(PQ)(t) = P(t) D

�,�

M,t
Q(t) + Q(t) D

�,�

M,t
P(t),

3. D
�,�

M,t

(
P

Q

)
(t) =

P(t) D
�,�

M,t
Q(t)−Q(t) D

�,b−�

M,t
P(t)

P(t)2
,

4. If P is differentiable, then D�,�

M,t
(P)(t) =

t1−�

Γ(�+1)

dP(t)

dt
.

3  Nonlinear ordinary differential form of the M‑LWE

To acquire the more soliton solution of the nonlinear M-LWE utilizing the unified Ric-
cati equation expansion and new Kudryashov methods. With the help of the following 
fractional wave transformation:

in which � and � are non-zero contants, Eq. (1) reduced to the following NLODE,

jE� (z) =

j∑
n=0

zn

Γ(�n + 1)
,

D
�,�

M,t
P(t) = lim

�→0

P
(
t iE� (�t

−�)
)
− P(t)

�
,

(2)Θ = Θ(x, t) = Θ(𝜂), 𝜂 =
𝜆

𝛼
Γ(1 + 𝛾)(x𝛼 + 𝜈t𝛼), 0 < 𝛼 ≤ 1,

(3)�2�2�Θ���� + (�2

0
Θ − �2 + �2

0
)Θ�� + �2

0
(Θ�)2 = 0.
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Integrating Eq. (3) twice and considering the integration constant as zero, we get the fol-
lowing equation:

4  Sketch and practice of new Kudryashov’s method to M‑LWE

In this part, the fundamental steps of the new Kudryashov method presented in 
Kudryashov (2020) and Rezazadeh et al. (2021) are explained as follows.

Presume that a solution of the form of Eq. (4) is taken as follow:

in which Al, 0 ≤ l ≤ m are real constants to be evaluated. The function �l(�) accomplishes 
the following first order differential equation,

where � , and � are nonzero values to be figured out later. The solution of Eq.  (6) is 
expressed as follows:

where � is a real constant. Utilizing form the homogeneous balance rule and the terms Θ�� 
and Θ2 in Eq. (4), m = 2 is derived. So, Eq. (5) converts into the following expression:

If the Eq. (8) and its derivatives according to Eq. (6) are substituted into Eq. (4), then the 
polynomial of �(�) is acquired. Gathering all the �l coefficients and equalizing the coeffi-
cients to zero, then the following system is generated:

Solving this algebraic system with the aid of a Computer Algebraic Software, the following 
parameters families are derived:

(4)2�2�2�Θ�� + (2�2

0
− 2�2)Θ + �2

0
Θ2 = 0.

(5)Θ(�) =

m∑
l=0

Al�
l(�), Al ≠ 0,

(6)(��(�))2 = �2�2(�)[1 − ��2(� )],

(7)�(�) =
4�

4�2e�� + �e−��
,

(8)Θ(�) = A0 + A1�
1(�) + A2�

2(�), A2 ≠ 0.

�0(�) ∶ −2A0

((
−
A0

2
− 1

)
�2

0
+ �2

)
= 0,

�1(�) ∶ 2A1

((
A0 + 1

)
�2

0
+ �2

(
�2� �2 − 1

))
= 0,

�2(�) ∶
(
A2

1
+ 2A2

(
A0 + 1

))
�2

0
+ 8�2A2

(
�2� �2 −

1

4

)
= 0,

�3(�) ∶ −4A1

(
�2�2�� �2 −

A2�
2

0

2

)
= 0,

�4(�) ∶ −12�2� �2� v2A2 + �2A2

2
= 0.
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Case 1:

Utilizing the parameters in Case 1, we acquire the following solution functions:

Case 2:

Using the parameters in Case 2, we obtain the following solution functions:

5  Sketch and practice of unified Riccati equation expansion method 
to M‑LWE

In this part, the fundamental steps of the unified Riccati equation expansion method 
defined in Sirendaoreji (2017) are explained as follows.

Presume that the solution form of Eq. (4) as follow:

(9)� = ±

√
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.
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in which Bl, 0 ≤ l ≤ m are constants to be evaluated. The function �l(�) satisfies the follow-
ing first order differential equation,

The special solutions of Eq. (16) are proposed as follows:
Set 1: If Δ > 0 , then

Set 2: If Δ = 0 , then

Set 3: If Δ < 0 , then

in which Δ = �2
1
− 4�0�2 and k is an arbitrary real constant. In spite of Eq.  (16) having 

twenty-seven solutions expressed in many types of research (Zhu 2008; Guo et al. 2011; Li 
and Dai 2010), these solutions correspond to the solutions expressed above.

Taking into account the terms Θ�� and Θ2 in Eq. (4), and utilizing the homogeneous balance 
rule, m = 2 is achieved. So, Eq. (15) convert into the following expression:

When the Eq. (17) and its derivatives according to Eq. (16) are inserted into Eq. (4), then 
acquire a polynomial of �(�) . When we collect all the �l coefficients and equalize the coef-
ficients to zero, then the following system is achieved:

(15)Θ(�) =

m∑
l=0

Bl�
l(�), Bl ≠ 0,

(16)��(�) = �0 + �1�(�) + �2�
2(�).

�1 = −
�1

2�2
−

√
Δ

2�2
tanh

�√Δ

2
�

�
,

�2 = −
�1

2�2
−

√
Δ

2�2
coth

�√Δ

2
�

�
.

�3 = −
�1

2�2
−

1

�2� + k
.

�4 = −
�1

2�2
−

√
−Δ

2�2
tan

�√−Δ

2
�

�
,

�5 = −
�1

2�2
−

√
−Δ

2�2
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�√−Δ

2
�

�
.

(17)Θ(�) = B0 + B1�(�) + B2�
2(�), A2 ≠ 0.

�0(�) ∶
(
4�2� �2

0
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)
�2 + �2

0
A0

(
A0 + 2

)
= 0,

�1(�) ∶

(
12A2� �

2�0�1 + 4

(
−
1

2
+

(
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1

2

)
� �2

)
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)
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2

0
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)
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1

)
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)
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0
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2A0 + 2

)
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1

)
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)
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2

0
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2
A2 + �2
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A2

2
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Solving the derived algebraic system with the aid of a Computer Algebraic Software, the 
following parameters families are acquired:

Family 1:

Thus, we attain the following solution functions utilizing the parameters in Family 1:

where Δ = �2
1
− 4�0�2 and Δ > 0.

where Δ = �2
1
− 4�0�2 and Δ < 0.

Family 2:

We get the following solution functions using the parameters in Family 2:

(18)

�1 =

√
�
(
4�2�2��0�2 + �2 − �2

0

)

���
, A0 = −

12�2�2��0�2

�2

0
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A1 = −
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√
�
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0

)
���2

�2

0
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12� �2�22�2
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0

.
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2
,
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2
.
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3�2 − 3�2

0
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0
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⎛⎜⎜⎝

�
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� �2�2
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⎞⎟⎟⎠

2
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(22)
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⎛⎜⎜⎝
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�
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4�2�2��0�2 − �2 + �2
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���
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(
6�2�2��0�2 − �2 + �2

0

)

�2

0

,

A1 = −
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√
�
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4�2�2��0�2 − �2 + �2
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where Δ = �2
1
− 4�0�2 and Δ > 0.

where Δ = �2
1
− 4�0�2 and Δ < 0.

Family 3:

We derive the following solution functions utilizing the parameters in Family 3:

(24)Θ2,1(x, t) =
(

�2 − �2
0
)

�2
0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 − 3

cosh
⎛

⎜

⎜

⎝

√

−�2+�20
� �2�2

�Γ(1+�)(x�+� t� )

2�

⎞

⎟

⎟

⎠

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(25)Θ2,2(x, t) =

⎛⎜⎜⎝
2

⎛⎜⎜⎝
cosh

2

⎛⎜⎜⎝

�
−�2+�2

0

� �2�2
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

⎞⎟⎟⎠
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⎞⎟⎟⎠
�
�2 − �2

0

�

�2

0
sinh

⎛⎜⎜⎝

�
−�2+�2

0

� �2�2
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

2
,

(26)Θ2,3(x, t) =

�
�2 − �2

0

�

�2

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −
3
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⎛⎜⎜⎝

�
�2−�2

0

� �2�2
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(27)Θ2,4(x, t) = −

⎛⎜⎜⎝
2

⎛⎜⎜⎝
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⎛⎜⎜⎝

�
�2−�2

0

� �2�2
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

⎞⎟⎟⎠
+ 1

⎞⎟⎟⎠
�
�2 − �2

0

�

�2

0
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⎛⎜⎜⎝

�
�2−�2

0

� �2�2
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

2
,

(28)

�0 =

�
6�2��0�2 + 1 �, �1 =

√
−2�0�2,A0 = −

12�2��0�2

6�2��0�2 + 1
,

A1 =
24�2��0 �

2

2�
6�2��0�2 + 1

�√
−2�0�2

,A2 = −
12�2� �2

2

6�2��0�2 + 1
.

(29)
Θ3,1(x, t) = −

18�2��0�2

�
6�2��0�2 + 1

�
cosh

�√
6
√
−�0�2 �Γ(1+�)(x

�+� t� )

2�

�2
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where 𝜚0𝜚2 < 0 , Δ = �2
1
− 4�0�2 and Δ > 0.

where 𝜚0𝜚2 > 0 , Δ = �2
1
− 4�0�2 and Δ < 0.

Family 4:

We generate the following solution functions utilizing the parameters in Family 4:

where Δ = �2
1
− 4�0�2 and Δ > 0.

where Δ = 0.

(30)
Θ3,2(x, t) =

18�2��0�2

�
6�2��0�2 + 1

�
sinh

�√
6
√
−�0�2 �Γ(1+�)(x

�+� t� )

2�

�2
,

(31)
Θ3,3(x, t) = −

18�2��0�2

�
6�2��0�2 + 1

�
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�√
6
√
�0�2 �Γ(1+�)(x

�+� t� )

2�

�2
,

(32)
Θ3,4(x, t) = −

18�2��0�2

�
6�2��0�2 + 1

�
sin

�√
6
√
�0�2 �Γ(1+�)(x

�+� t� )

2�

�2
,

(33)

� =

√
−4� �2�0�2 + � �2�2

1
+ 1 �,A0 =

2�2�
(
2�0�2 + �2

1

)

4� �2�0�2 − � �2�2
1
− 1

,

A1 =
12�2��1�2

4� �2�0�2 − � �2�2
1
− 1

,A2 =
12�2� �2

2

4� �2�0�2 − � �2�2
1
− 1

.

(34)

Θ4,1(x, t) =

�
4�0�2 − �2

1

�
�2�

⎛
⎜⎜⎜⎜⎝
−2 +

3

cosh

⎛⎜⎜⎝

√
−4�0�2+�

2
1
�Γ(1+�)(x�+� t� )

2�

⎞⎟⎟⎠

2

⎞
⎟⎟⎟⎟⎠

4� �2�0�2 − � �2�2
1
− 1

,

(35)Θ4,2(x, t) = −

�2�

�
2

�
cosh

2

�√
−4�0�2+�

2

1
�Γ(1+�)(x�+� t� )

2�

��
+ 1

��
4�0�2 − �2

1

�

�
−1 + �2�

�
4�0�2 − �2

1

��
sinh

�√
−4�0�2+�

2

1
�Γ(1+�)(x�+� t� )

2�

�2
,

(36)Θ4,3(x, t) = −
12�2� �2

2
�2

(
�2�Γ(1 + �)(x� + � t�) + k�

)2 ,
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where Δ = �2
1
− 4�0�2 and Δ < 0.

(37)

Θ4,4(x, t) =

�
4�0�2 − �2

1

�
�2�

⎛
⎜⎜⎜⎜⎝
−2 +

3

cos

⎛
⎜⎜⎝

√
4�0�2−�

2
1
�Γ(1+�)(x�+� t� )

2�

⎞
⎟⎟⎠

2

⎞
⎟⎟⎟⎟⎠

4� �2�0�2 − � �2�2
1
− 1

,

(38)Θ4,5(x, t) =

�2�

�
2

�
cos2

�√
4�0�2−�

2

1
�Γ(1+�)(x�+� t� )

2�

��
+ 1

��
4�0�2 − �2

1

�

�
−1 + �2�

�
4�0�2 − �2

1

��
sin

�√
4�0�2−�

2

1
�Γ(1+�)(x�+� t� )

2�

�2
,

Fig. 1  The plots of bright soliton of Θ2,1(x, t) in Eq.  (19) for 
�0 = 0.5, �2 = 0.5, � = 0.5, � = 0.9, � = 1, � = 2, � = −1,� = 0.5
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6  Results and discussion

In this part, we introduce the graphs of the solutions in Eqs. (19), (24), and (32) to com-
mentate some physical properties of the M-LWE. The portraits of the solutions are depicted 
in Matlab. Utilizing proper values of the parameters, we give four shapes to explain the 
manner of the solutions.

For the parameters �0 = 0.5, �2 = 0.5, � = 0.5, � = 0.9, � = 1, � = 2, � = −1,� = 0.5 , 
the chart of Θ1,1(x, t) in Eq. (19) for is given in Fig. 1. In Fig. 1a, b, we illustrate the 3D and 
contour graphs for Θ1,1(x, t) in Eq. (19), respectively. 2D visualisation for t = 1, 5, 7 is also 
shown in Fig. 1c. From Fig. 1c, we say that the soliton moves to the left if t decreases.

for the parameters �0 = 2, �2 = 1, � = 1, � = 1.75, � = −2, � = −1,� = 0.5 , the chart of 
Θ2,1(x, t) in Eq. (24) is presented in Fig. 2. In Fig. 2a, b, we illustrate the 3D and contour 
charts for Θ2,1(x, t) in Eq.  (24), respectively. Besides, 2D chart for t = 2, 4, 6 and t = 8 is 
represented in Fig. 2c. Figure 3d shows 2D portrait for � = 0.6, 0.7, 0.8 , and � = 0.9 . From 
Fig. 2c, we interpret that the soliton acts to the right if t increases. It can be noticed from 
Fig. 2d that the soliton horizontally narrows as � increases.

For the parameters �0 = 2.5, �2 = − 1.5, � = 2, � = − 1.5, � = 3, � = −1 , the chart of 
Θ3,4(x, t) in Eq. (32) is proposed in Fig. 3. In Fig. 3a, b, we illustrate the 3D and contour 
graphs of Θ3,4(x, t) in Eq.  (32), respectively. Furthermore, 2D visualization for t = 2, 4, 6 
and t = 8 is represented in Fig. 3c. Figure 3d shows 2D portrait for � = 0.6, 0.7, 0.8 , and 

Fig. 2  The plots of anti-bell-shape soliton of Θ2,1(x, t) in Eq.  (24) for 
�0 = 2, �2 = 1, � = 1, � = 1.75, � = −2, � = −1,� = 0.5
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� = 0.9 . From Fig.  3c, we see that the soliton acts to the right as t increases. It can be 
noticed from Fig. 3d that the soliton horizontally narrows as � increases.

7  Conclusion

In this study, some solutions of the M-LWE in a magneto-electro-elastic circular rod utiliz-
ing the unified Riccati equation expansion method and the new Kudryashov method have 
been productively established for the first time. The choice of the presented methods is that 
it allows more than one soliton solution, these methods can be applied easily and effec-
tively, and they can also be applied for the fractional form. A number of soliton solutions 
have been acquired, and 3D, contour and 2D dimensional portraits of the resulting soliton 
solutions have been exhibited. Singular, bright, and dark solitons have been acquired uti-
lizing the proposed methods, and the impact of some parameters in the solutions has been 
examined. Moreover, it has been exhibited that the � parameter has an effect. The presented 

Fig. 3  The portraits of singular soliton of Θ3,4(x, t) in Eq.  (32) for the parameters 
�0 = 2.5, �2 = −1.5, � = 2, � = −1.5, � = 3, � = −1
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graphics will aid in the understanding of the physical properties of M-LWE. It is seen that 
soliton solutions of numerous fractional nonlinear models in mathematical physics can be 
effectively derived via the presented methods in this study.
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