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ÖZET 

Günümüzde Dijital Sinyal İşleme (DSP), özellikle Alan Programlanabilir Geçit 

Dizilimi (FPGA) kullanarak devre uygulaması gibi donanım tasarımı ile ilgili 

konularda aktif bir araştırma alanıdır. Buna ek olarak, çarpıcılar DSP uygulamalarında 

çok fazla kaynak tükettiği için araştırmacılar, Çoklu Sabit Çarpma (MCM) olarak da 

bilinen shift / add ağ tasarımını kullanarak çarpmaları uygulamaktadırlar. Hcub, 

FRYER ve DiffAG dahil olmak üzere MCM problemini verimli bir şekilde çözen 

birkaç algoritma vardır. Bu çalışmada DiffAG algoritması Matlab kullanılarak 

geliştirilmiştir. Ardından, MCM çözümünü kullanarak FPGA üzerinde Ayrık Kosinüs 

Dönüşümü (DCT) tasarımı uygulanır. DCT tasarımı, satır-sütun ayrıştırma yöntemi 

kullanılarak geliştirilmiştir. Karşılaştırmak için, FREYR’ın MCM çözümü 

kullanılarak başka bir tasarım geliştirilmiştir. Sonuçlar, DiffAG algoritmasından elde 

edilen MCM çözümlerini kullanan DCT tasarımının% 18,2 oranında daha fazla işlem 

hızı elde ettiğini göstermektedir. Bununla birlikte, FREYR’in MCM çözümü 

kullanılarak elde edilen sonuçlar,% 9,2 oranında daha az alan kullanarak DCT'ye 

ulaşmaktadır. 

Anahtar Kelimeler: 2-D DCT, FPGA tasarımı, MCM algoritması, satır-sütun 

ayrıştırma, DiffAG, FREYR, DSP uygulaması, görüntü sıkıştırma, Matlab.  
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SUMMARY 

Nowadays, Digital Signal Processing (DSP) is an active research field especially 

topics related to hardware design such as circuit implementation using Field 

Programmable Gate Arrays (FPGA). In addition, since multipliers take up a lot of 

resources in DSP applications, researchers have been implementing multiplications 

using shift/add network design, also known as Multiple Constant Multiplication 

(MCM). There are several algorithms that solve the MCM problem efficiently, 

including Hcub, FRYER and DiffAG. In this work, the DiffAG algorithm has been 

developed using Matlab. Then, using its MCM solution, a Discrete Cosine Transform 

(DCT) design is implemented using FPGA. The DCT design is developed using the 

row-column decomposition method. In order to compare, another design is developed 

using FREYR’s MCM solution. The results suggest that the DCT design using MCM 

solutions obtained from DiffAG algorithm achieve more processing speed by 18.2%. 

However, results obtained using FREYR’s MCM solution achieve the DCT using less 

area by 9.2%.  

Key Words: 2-D DCT, FPGA design, MCM algorithm, row-column decomposition, 

DiffAG, FREYR, DSP application, image compression, Matlab.  
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CHAPTER ONE 

INTRODUCTION 

1. PROLOGUE  

1.1. Motivation 

In this technologically advancing world, communications and data processing 

are ever expanding and developing at an accelerating rate. Digital Signal Processing 

(DSP) has become a crucial section in all aspects. That includes industry, health, 

information, security, transportation, safety, etc. To develop technology and 

communications towards a better future, it is necessary that scientists innovate and 

invent methods that increase the rate of data processing while at the same time reduce 

power consumption and data storage allocation. DSP is one of the most vital fields that 

research is focusing on. That field is expanding rapidly and with it there are many 

opportunities to find improvements and optimizations of older technologies. The field 

of image compression takes place in a wide variety of applications that could use some 

improvement.  

A well-known reliable method for image compression uses Discrete Cosine 

Transform (DCT). The benefits of transforming the data of images using the discrete 

cosine transform are several. First, it reduces storage without distorting the images 

much. Second, it improves information processing rate later on, since less time and 

power are needed, then. 

Field Programmable Gate Arrays (FPGAs) are a common type of chip that is 

considered a superior solution to generic processors and Application-Specific 

Integrated Circuits (ASICs) in terms of capabilities in image processing while having 

design flexibility to reach an optimal solution. FPGAs are considered the best option 

when it comes to designing new circuits for image processing purposes in general.  

Recently, researchers developed algorithms that implement constant 

multiplications in terms of additions and shift operations. Such methods, via the use 

of FPGAs, proved superior to generic multipliers in terms of speed, power and silicon 

area needed, especially in large scale image, video or audio processing. Thus, this work 

is motivated by making an algorithm that implements image compression using 

discrete cosine transform built on an FPGA board.  
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1.2. Organization of this work 

Briefly, this is how this thesis is organized, explaining the contributions made to 

the research field.  

In section II, necessary topics are covered as background information. A brief 

explanation of FPGAs and their features are given. In addition, reasons why FPGAs 

are suitable for image compression are provided. Next, an understanding of image 

compression is presented. Furthermore, to implement image compression, it is 

essential to understand its method as well as the DCT that is used to compress the 

images. After that, a brief explanation of Multiple Constant Multiplication (MCM) 

problem is given. It is important for the application of shift/add solutions. 

Consequently, MCM problems are typically solved by algorithms such as FREYR or 

DiffAG. Such algorithms are many and rely on different concepts. More details are 

provided regarding that topic as needed. 

In section III, one of the algorithms for solving MCM problems is the Difference 

Based Adder Graph (DiffAG) algorithm. It is extensively explained since it is 

considered the heart of the project. The algorithm is provided in a concise form as well. 

In addition, reasons why this algorithm is picked, how it is developed on Matlab are 

stated. Then, results obtained by DiffAG are compared to a recent algorithm called 

FREYR in terms of number of additions and adder depth. Thus, some notes are drawn 

from the comparison.  

In section IV, a DCT code developed using Matlab is presented. The code relies 

on MCM solutions from the DiffAG algorithm. Then, a simple code is developed for 

image compression that uses the DCT algorithm. This is the first step to simulate the 

results as MCM blocks inside a DCT algorithm in image processing. Consequently, a 

brief illustration of that step is given. 

In section V, simulations are developed in preparation for hardware 

implementation. A Verilog code is written to implement the image compression 

model. It gets simulated similar to the algorithm previously used in Matlab.  

In section VI, once everything is simulated, the code is then turned into a circuit 

on the FPGA chip. Thus, results and comments are drawn in comparison of other 

previous works in that field. At the end, sections VII and VIII state the conclusion and 

tell what the future work will be on. 
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CHAPTER TWO 

BACKGROUND 

2. RELATED WORK 

2.1. Field Programmable Gate Arrays 

A Field Programmable Gate Array (FPGA) is a device that allows the design of 

digital circuits using a hardware description language (HDL). There are several HDLs 

such as VHDL or Verilog. Digital design using FPGAs provides the flexibility in 

design and cuts costs down since reprogramming is easy and fast. FPGAs consist of 

Configurable Logic Blocks (CLBs), interconnections and I/O pads. Logic blocks are 

used to make logic gates via reconfiguration. There are look-up tables (LUTs) that are 

useful for combinational logic implementation. LUTs can sometimes be called RAM 

units. There are input ports and output ports for entering and extracting data. Via 

programming the interconnections, it is possible to connect two logic networks 

throughout the FPGA or to interconnect several CLBs for making a logic design. 

Figure 1 is a simplistic illustration of the FPGA architecture. It shows logic blocks, 

I/O cells and the interconnections between them (Patil, 2010).  

 

Figure 1: Illustration of FPGA’s architecture  

Source: (Ronak & Fahmy, 2016).  

Details of the configurable logic blocks are presented. They consist of D flip-

flops, a look-up table and a multiplexer. Logic functions are implemented via look-up 
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tables. Figure 2 illustrates a 4-input look-up table of one output. The output is a result 

from the combination of several signals. D flip-flops are memory elements and 

multiplexers are for selecting which data to forward to the output (Patil, 2010).   

 

Figure 2: Illustration of a logic block. 

Source: (Patil, 2010). 

FPGAs are invented based on the idea that logic blocks surrounded by I/O blocks 

allows for assembling the whole design in various arrangements. Modern FPGAs have 

high capabilities such as high operation speed, large number of cells, supported 

protocols, etc. Via the use of FPGAs, it is easy to design custom hardware such as 

custom accelerators that get embedded in other hardware to implement time 

consuming computations (Paulitsch et al., 2011). In addition, FPGAs are very useful 

when it comes to replacing a failed old digital component, such as legacy system 

components in an old industrial control system (Anghel et al., 2003; Bomar, 2002; 

Rodriguez-Andina et al., 2007).  

2.2. Image Compression 

Image compression is still an important application in Digital Signal Processing. 

Minimizing storage and data transmission, it is necessary to increase the effectiveness 

of image compression. This reduces bandwidth as well as reduces costs for storage in 

various applications. Image compression applications span widely from TV, mobile, 

all the way to professional photography and video recording. Thus, part of research is 

still interested in developing algorithms and tools to enhance low bit image encoding 

(Stephen A. Martucci, 1996). Essentially, an image is a signal of two dimensions (2D) 

which get perceived by the human system. A large proportion of the imagery data is 

represented in several image types, especially data in the field of biomedical, remote 

sensing and large-screen digital imagery (Woods, 2008).  

Image compression aims to decrease the data used to represent an image. 

Compression is a process that compacts the image data in order to store or transmit it. 
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This is done by ridding of data redundancy such as coding, psychovisual, or interpixel 

redundancies. There are two types of image compression: lossless and lossy image 

compression. Lossless image compression techniques allow the image to be perfectly 

recovered. It relies on the idea of entropy coding. It uses decomposition to minimize 

redundancies. This type of compression is relatively ineffective since compression 

ratios are low compared to lossy compression. However, it is needed to preserve the 

quality of the image as is. This is important in medical imaging where quality of the 

image matters. However, the more common and effective type of image compression 

is the lossy technique. It provides high ratio of compression, however, the original 

image is not completely recovered. There are several types of lossy compression 

depending on the quality of the retrieved image and the application in use 

(Vrindavanam, 2012). 

To compress an image there are two requirements: there should be a significant 

correlation among nearby pixels within a single image. This correlation is known as 

spatial correlation. Secondly, for acquired data from several images, there should be a 

significant correlation among pixels of those images. This correlation is known as 

spectral correlation. Thus, to compress an image, this correlation must be taken 

advantage of. By removing most of the correlated pixels before compression, this 

increases effectivity of the compression in later steps (Vrindavanam, 2012).  

Image compression process can be broken down into several steps, see figure 3. 

At first the image data are reduced. This happens by turning the image into grey level. 

If necessary, the image could be reduced by spatial quantization or noise removal. 

Next, the mapping process takes place where image data gets transformed into another 

mathematical spectrum to make the compression easier. Furthermore, during the 

encoding process, the quantization step turns the data into a discrete form. Finally, the 

last step is symbol coding the data for transmission or storage.  
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Figure 3: Stages of image compression.   

Source: (Tresa & Sundararajan, 2013) 

The most important step is the mapping step since data usually are highly 

correlated. Generally, the data in a certain pixel is quite similar to the neighboring one. 

To decorrelate data, it is useful to find an appropriate equation that find the redundancy 

and remove it (Hussain et al., 2018). 

2.3. Discrete Cosine Transform: 

Discrete cosine transform is an effective coding scheme that is well known and 

widely used. It is a transformation that is separable, real and orthogonal. It transforms 

the data from spatial domain into the frequency domain in a more compact 

representation. DCT is considered the basis of several image compression standards.  

This formula is used commonly for image processing applications. It is a two 

dimensional DCT of a square block of pixels, f(x, y) can be defined as: 

 

𝐶(𝑢, 𝑣) = 𝛼(𝑢)𝛼(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦)𝑐𝑜𝑠 (
(2𝑥 + 1)𝑢𝜋

2𝑁
) 𝑐𝑜𝑠 (

(2𝑦 + 1)𝑣𝜋

2𝑁
)

𝑁−1

𝑥=0

𝑁−1

𝑥=0

− − − − − (1) 

Where, f(x, y) is a two dimensional sequence of N x N points, C(u, v) denotes N 

x N points DCT of the block f(x, y) and x, y = 0,1,…,N-1; u, v = 0,1,…,N-1.  

The zero frequency coefficient (C (0, 0)) of the DCT matrix is known as the DC 

coefficient. The rest of the coefficients are called AC coefficients. They show the 

amount of variations using the grey level at a particular rate and in a particular 

direction. 
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Typically, the image information is concentrated in the DC component and in 

the low AC frequency data. The data now are ordered from low frequency to high 

frequency in a zigzag manner. See figure 4 below.   

These frequencies are placed in the top left corner of the image whereas the high 

frequency data are set in the right bottom corner. Thus, it is best to condense the data 

by keeping the low frequency coefficients while removing the higher ones. This step 

is called quantization step. It scales the values in the image down depending on the 

frequency, high components get reduced to almost zero while low components stay 

large. This is where the high frequencies get removed to free space. And since 

Huffman coding stores data in a zigzag manner, only the very few beginning values 

are non-zeros while the rest become zeros. A series of zeros is easily coded using 

Huffman and does not take up much storage.  

DCT has the property of decorrelation for most images. The fundamental vectors 

that represent the original image block are independent. This property can be seen in 

the Figure 5 (Hussain et al., 2018). 

 

Figure 4: DCT values are ordered by 

frequency  

Source: (Hussain et al., 2018). 

  

 

Figure 5: Illustration of DCT 

components and the property of energy 

compaction. 

DCT possesses the property of energy compaction when dealing with highly 

correlated data. This is why DCT is a widely used transform for image processing. 

However, DCT has a disadvantage that appear during high image compression. The 

decompressed image shows tiling artifacts due to the fact that DCT is implemented in 

blocks rather than for the complete image (Garrido et al., 2018). Below is an 

illustration of the effect of tiling, see figure 6. 
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Figure 6: Example of tiling in image compression in DCT. 

2.4. Related DCT Implementations 

2.4.1. An Efficient Low Area Implementation of 2D DCT on FPGA 

The discrete cosine transform has several applications such as MPEG in 

multimedia, JPEG in image compression and H.261 in teleconferencing. Typically, to 

compress an image using JPEG, the image data is divided into 8x8 blocks. Each block 

gets shifted down from unsigned integer range to signed integer range. Then, the 2D 

DCT is applied for each block.  

One of the common effective methods for 2D DCT is called the row-column 

decomposition method (Agostini et al., 2007; Kusuma & Widodo, 2010; Pradeepthi & 

Ramesh, 2011). This method has several advantages. First, since this method has the 

separable property, the 2D DCT can be implemented into two 1D DCT parts, row-wise 

first then column-wise or vice versa. Also, this method is quite regular and modular 

which makes the control logic needed for implementation less complex. Furthermore, 

this method of 2D DCT requires less computations because of the symmetry inherent 

in the DCT coefficients. Thus, the computational complexity is decreased by a factor 

of 4 (Doǧan, 2016). 

2.4.2. The High Efficiency Video Coding standard 

A recent standard for video compression called High Efficiency Video Coding 

(HEVC) has been developed (ITU-T, 2019; Pourazad et al., 2012). Its efficiency 

achieved 50% more video compression than the previous standard known as H.264. 

Both standards rely on the discrete cosine transform and its inverse to implement the 

video compression. However, the H.264 standard has only sizes of 4x4 and 8x8 

Transform Units (TU) for DCT while the HEVC extended the sizes to include 16x16 

and 32x32 TU sizes. Using TU sizes of 16x16 or 32x32 for DCT increases energy 
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compaction. The catch is, the computational complexity increases exponentially. Also, 

the HEVC standard involves the Discrete Sine Transform (DST) and its inverse in 

some cases. 

HEVC encoders rely heavily on transformations such as DCT, DST and their 

inverses (Vanne et al., 2012). Those transforms are computationally complex. They 

comprise about 11% of the computations in the HEVC encoder. 

A new technique for HEVC DCT is developed. It is made for all sizes of 

transform units and it reduces energy consumption. Once the forward transform and 

the quantization stages are done, the high frequency coefficients become zero in each 

TU. Furthermore, low frequency coefficients of low value possess small effect on the 

later stages. Thus, in this technique, only the more significant values of low frequency 

are kept while the rest are assumed to be zero.  

The method used includes mode decision as well as the coding stage for HEVC 

encoder design. Note that DCT coefficients must be the same in encoding and 

decoding stages for HEVC in order to avoid mismatched results. The HEVC decoder 

does not require any modifications in this method. Consequently, using such method 

decreases complexity of the DCT significantly while the results have less Peak Signal-

to-Noise Ratio (PSNR) and more bit rate. The HEVC HM software encoder (Shen et 

al., 2013) provided reduction in execution time up to 12.74%. Also, the DCT 

operations provided a reduction of 37.27% in execution time within the HEVC HM 

encoding stage.  

An implementation of low power HEVC 2D DCT technique has been developed 

for hardware (Kalali et al., 2016). The design is made for all TU sizes using Verilog 

HDL. This design can compute 4, 8, 16 and 32 coefficients per cycle for the TU sizes 

4x4, 8x8, 16x16 and 32x32 sizes, respectively. This design at least implement 48 

frames per second having a specification of quad full HD (3840x2160). Moreover, 

another hardware design of low power HEVC 2D DCT is made but has higher 

utilization. The difference is that this design can compute two 8x8 TUs or four 4x4 

TUs in parallel. Thus, it computes 16 DCT coefficients per cycle for TU sizes of 4x4, 

8x8 and 16x16, and 32 DCT coefficients for 32x32 TU size in each cycle. This at least 

provides a video processing of 53 frames per second of specification Ultra HD 

(7680x4320). 
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To minimize power consumption, clock gating is exploited for the designs. Also, 

to optimize the design, Hcub is used to find the MCM solution reducing the number 

and size of adders. The Hcub provides a reduction in power consumption in both lower 

utilization design and higher utilization design reaching up to 5.9% and 13.1%, 

respectively. Furthermore, the method used reduces power consumption in both 

designs. The lower utilization and higher utilization designs both recorded a reduction 

in power by 17.9% and 18.9, respectively (Kalali et al., 2016). 

2.4.3. Efficient MCM Using DSP Blocks in FPGA 

In modern FPGAs, there are built-in blocks that compute specific tasks 

efficiently without taking up much area. Such blocks reduce the need for LUTs and 

registers. Design implementation using such blocks improves power consumption and 

executes operation faster than design made onto a network of LUTs. Such built-in 

blocks perform various tasks in several applications. In modern FPGAs, DSP blocks 

are used in several applications involving image, video and audio processing since 

they have customizable multiplier blocks (Azgin et al., 2019).  

DSP multiplier blocks execute the MCM operation faster and more efficiently 

than an equivalent network of shifter and adders. If properly used, a single DSP block 

can compute several constant multiplications given suitable value assigned to it as a 

constant. 

Using DSP blocks, an efficient method is used for implementing the MCM 

operation on FPGAs. This method decreases the number of DSP multipliers needed 

for computing MCM block via handling the constants in that block.  

The design is implemented using FPGAs. The design is realized by 2D DCT in 

the HEVC algorithm. The efficiency of the implementation using DSP blocks 

compared to shift/add MCM blocks is 35.8% (Azgin et al., 2019). 

2.4.4. HEVC 2D DCT 

Within an HEVC, the 2D DCT is computed in Transform Units. HEVC has TU 

sizes of 4x4, 8x8, 16x16 and 32x32 pixels. As is the norm, the 2D DCT is computed 

via applying the 1D DCT vertically then horizontally. The DCT matrices are calculated 

using the basis DCT equations. Nevertheless, it is simpler to deal with integer values 

for hardware implementation.  
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All TU sizes of HEVC 2D DCT are prepared and implemented. For comparison, 

three cases are considered. First, the constant multiplications are developed using DSP 

blocks, tying a single DSP block for each multiplication (baseline). The second design 

(concatenate) relies on the method presented in (Fu et al., 2017). In the third case, a 

technique is used for minimizing the number of DSP blocks used by mapping constants 

to them.  

Comparing the three techniques, the third design (proposed) uses less DSP 

multipliers than the baseline and the concatenate designs by 35.8% and 13%, 

respectively (Mert et al., 2018). 

2.5. Multiple Constant Multiplication Algorithms 

Throughout the last two decades, the Multiple Constant Multiplication (MCM) 

has been attracting a lot of attention in the field of digital signal processing (DSP) area 

(Aksoy et al., 2011, 2014; Chandra & Chattopadhyay, 2016; Dempster & Macleod, 

1995; Gately et al., 2012; Gustafsson, 2007; Johansson et al., 2011; Kumm & Zipf, 

2012; Thong & Nicolici, 2010; Voronenko & Püschel, 2007). Most DSP applications 

such as audio, image, and video processing require multiplications. Multipliers are 

costly in terms of hardware. An MCM block works as follows: via a set of coefficients 

known beforehand, the multiplication process gets realized as a network of additions, 

subtractions and shifts of the input. The MCM problem aims to find the least required 

number of additions/subtractions to realize the MCM block (Aksoy et al., 2014). This 

process is sometimes called the multiplierless implementation and it is a bit-parallel 

arithmetic.  

It is well known that this implementation assumes additions and subtractions to 

cost the same in term of hardware. Shifts are considered free since they can be 

hardwired into the circuit. The MCM problem finds common coefficients among the 

required constants so that an implementation is realized using the least number of 

adders/subtractors. Also since shifts are considered free, all even numbers can be 

realized by shifting other odd numbers. Moreover, although the MCM typically deals 

with positive coefficients, it is assumed that negative coefficients are simply found by 

switching the addition into subtraction in the previous step or vice versa. These 

assumptions are used in most of the literature (Gustafsson, 2007; Thong & Nicolici, 

2010).  
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The problem of MCM has several applications such as Finite Impulse Response 

(FIR) filters, Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), etc. 

Much research has been done using the FIR filters to validate and compare the results 

of MCM blocks generated by the various algorithms (Aksoy et al., 2014; Chandra & 

Chattopadhyay, 2016). Furthermore, FPGAs were successfully used to implement 

MCM designs. This is due to the fact that FPGAs are programmable and can be simply 

redesigned with ease (Aksoy et al., 2014).  

It is known that to guarantee an optimal solution of an MCM problem, the 

algorithm used must be an exhaustive search algorithm. Such algorithms are proven to 

be NP-complete (Thong & Nicolici, 2010). However, many researchers have 

developed more efficient algorithms to solve the MCM problem in several ways 

without the need to deal with such complexity (Aksoy et al., 2014).  

Adder graph algorithms are one of the best algorithms throughout the literature. 

They rely on two parts. The first part tries to realize the solution as shifts and 

additions/subtractions of previously realized coefficients. When all coefficients get 

realized, the result is optimal. Otherwise, if there are no coefficients realizable using 

previously realized coefficients, a heuristic finds which additional “useful” coefficient 

needed to allow for the optimal part to carry on. However, having the heuristic part 

means that the solution is no longer guaranteed to be optimal (Gustafsson, 2007).  

Recently, one of the better adder graph algorithms is called FREYR (Aksoy et 

al., 2014). Repetitively, the algorithm solves the MCM problem using an efficient 

graph based algorithm (Voronenko & Püschel, 2007). Using that solution, FREYR 

chooses which multiplications to get realized using at most a certain number of generic 

multipliers. This results in a minimum number of additions/subtractions required in 

the MCM block. FREYR is considered one of the best algorithms in terms of delay, 

power consumption and area, compared to the state-of-art algorithms (Aksoy et al., 

2014; Chandra & Chattopadhyay, 2016). 

Nevertheless, there is also the difference based adder graph algorithm (DiffAG) 

(Gustafsson, 2007). Similar to adder graph algorithms, the difference algorithm relies 

on the optimal part, realizing a required coefficient using adds/shifts of previously 

realized coefficients. However, it uses a different heuristic part to pick its new required 

coefficient. To explain, the difference algorithm computes all differences between any 
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pair of coefficients. Then, it finds the difference that has the minimum realization cost 

amongst those differences. That difference enables the optimal part to realize more 

required coefficients using the newly added ones. The difference heuristic provides 

results better than RAG-n in terms of adder cost while it provides solutions better than 

Hcub in terms of average adder cost even though some specific solutions could be less 

ideal in some instances (Gustafsson, 2007). 

 

Figure 7: An example of MCM solution using HCUB algorithm  

Source: (Voronenko, n.d.). 
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CHAPTER THREE 

THE DIFFERENCE BASED ADDER GRAPH 

3. THE DIFFERENCE BASED ADDER GRAPH 

3.1. Steps of the algorithm: 

The detailed algorithm has been detailed in (Gustafsson, 2007). However, for 

the purpose of implementing the algorithm using Matlab, some important parts are 

emphasized. 

1) Create a matrix for the realized coefficients. Each row has a coefficient along 

with how it was realized. Also, include an extra column for keeping the 

(cost/adder depth) of realized coefficients. At first, store the realized coefficient 

1. For example, the coefficient 1 can be realized using 1 = 20(1) + 20(0). The 

first row of realized matrix is (1, 1, 1, 0, 0). Moreover, create the required 

coefficients vector. 

2) Now, if there are no required coefficients the code terminates. Otherwise, make 

all possible realizable values using an adder/subtractor with inputs from 

realized coefficients, i.e.  

𝐶 =  |2𝑖𝑣1 ± 2𝑗𝑣𝑗| − − − − − −(2)  

v1, v2 are realized coefficients, i, j, are integers inferring that the realized 

values can be shifted in both directions left and right.  

Note that when a number gets realized, its components – i.e. how it was realized 

– and its cost/adder depth should also be stored. It is important to store the realizable 

list of coefficients, their components and costs/adder depths. This is crucial when 

choose the most “useful” difference in next steps (step 7 or in step 8), since all of these 

components are ready to be used. 

3) Whenever a required coefficient gets realized, return to step 2. This is because 

the realized matrix has been expanded, meaning it is possible to realize other 

required coefficients using newly realized ones or their shifted values. Note 

that sometimes this could result in having higher adder depth solutions 

depending on what coefficients get realized first.  
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Those three steps are known as the optimal part of RAG-n and Hcub. If, using 

only that part, all the required coefficients got realized, then, the solution is optimal. 

There is one adder for each unique odd integer coefficient.  

Otherwise, the difference based adder graph heuristic takes place to choose an 

additional value in order to realize the required coefficients. To explain, the new value 

gets used as a realized value to build upon and eventually realize the required set using 

the same equation in step 2.  

4) Create a node for each coefficient. Also, create a single node that has all of the 

realized coefficients. Connect all nodes with each other such that there is a 

single line between any two nodes. Calculate all realizable values, known as 

differences, using the c_equation with inputs taken from any two nodes. Assign 

those differences to the line connecting those two nodes. Note that if one of the 

differences is already realized, one of the nodes becomes realizable whenever 

the other one has been realized. For the realized node, all realized coefficients 

must be considered.  

This heuristic helps choose which extra coefficient to get realized since it is 

assured to be used in the coming iterations realizing the required coefficients. 

5) If there were a realized coefficient on an edge, merge the two nodes. By 

merging those two nodes, their related edges and differences get merged. 

Alternatively, this could be done by merging the two nodes then regenerating 

the differences again as in step 4 and the c_equation. 

6) Keep track of the frequency of occurrence for all differences within all 

difference sets.  

7) Find any differences that are also realizable as obtained in step 2. If so, include 

the difference that has the most frequency to the required set. Then, return to 

step 2. 

8) Using a viable cost measure, e.g. the canonic signed digit (CSD) 

representation, calculate the costs for realizing all possible differences. Then, 

choose the difference that has the most frequency among the difference subset 

having the least cost. Include that chosen difference in the required set and 

return to step 2. 
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It is important to know that the difference that gets picked in step 8 cannot get 

realized right away. However, it is useful for realizing other required coefficients. 

Basically, the heuristic is trying to pick the most useful value realizing as many 

required coefficients as possible.  

3.2. The Formulated Algorithm 

For the purpose of implementation of the algorithm using Matlab, it is 

formulated into a concise form. This is also useful to become a reference later on.  

 

Figure 8: The difference based adder graph in concise form. 
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3.3. Results 

The performance of the developed algorithm is simulated in two experiments. 

Each has its own conditions in order to illustrate some characteristics of the algorithm.  

In experiment 1, several instances are generated randomly. This is useful to 

know the averages, norms, exceptions, etc. For example, 10 instances each having 10 

constants of 16 bit distributed randomly, are generated as in Figure 9. Similarly, 10 

instances of 20 constants of 16 bit are considered, as in Figure 10. Then, 10 instances 

of 30 constants of 16 bit are considered, as in Figure 11. Finally, 10 instances of 40 

constants of 16 bit are considered, as in Figure 12. 

 

Figure 9:  Comparison in terms of adder cost and depth. 16-bit 10-constant sets. 

 

Figure 10: Comparison in terms of adder cost and depth. 16-bit 20-constant sets. 
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Figure 11: Comparison in terms of adder cost and depth. 16-bit 30-constant sets. 

 

Figure 12: Comparison in terms of adder cost and depth. 16-bit 40-constant sets 
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Figure 13: Comparison in terms of adder cost and depth. Variable width 10-

constant sets 

 

Figure 14: Comparison in terms of adder cost and depth. Variable width 20-

constant sets 
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Figure 15: Comparison in terms of adder cost and depth. Variable width 30-

constant sets 

 

Figure 16: Comparison in terms of adder cost and depth. Variable width 40-

constant sets 
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helps DiffAG work better and find solutions of less adder depth. This can be observed 

where the average of adder depth decreases as the number of required coefficients 

increases, compared to FREYR’s results. However, the adder cost of these instances 

are more than FREYR’s results. This is because DiffAG does not rely on searching 

several solutions for that MCM instance. To illustrate, in either step 7 or step 8, it 

would be best to generate several solutions for the same set of required constants. 

However, the DiffAG has to pick a new required constant during either step 7 or step 

8 in an exhaustive manner in order to pick the best solution amongst them. 

This idea is especially important in step 8 since it could change the results 

drastically. The current code relies on finding the minimum cost constant in its 

Canonic Signed Digit (CSD) representation.  

As for experiment 2, when testing both algorithms over different bit widths, it is 

observed that the FREYR performs better over the range 12 – 19 bits whereas the 

DiffAG performs better of 19 bit widths and more. This is especially clear in the cases 

of 30-, 40-constant sets where having more bits and large set sizes gives the DiffAG 

more options to find a solution using already realized constants. See figures (15–16). 

However, sometimes the solution becomes chained, using few constants to realize 

most of the required constants, which results in a solution that has more depth. 

DiffAG works in a manner that gives results of low depth. This is inherent in its 

core idea. However, its results require more adders on average than FREYR’s.  

It is noticed that when the heuristic chooses a new required constant, the solution 

sometimes ends up worse than expected. Choosing another constant may result in a 

better solution in terms of adder cost or depth. Basically, steps 7 and 8 necessitate a 

method to explore all possible required coefficients then decide the best one depending 

on the end results.  
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CHAPTER FOUR 

IMAGE COMPRESSION 

4. IMAGE COMPRESSION USING DISCRETE COSINE TRANSFORM  

4.1. The Discrete Cosine Transform Using Multiple Constant 

Multiplications: 

A simple method for implementing 2D DCT is in matrix multiplication form. 

Typically, the transformation is done block by block. Several applications determined 

to fix the matrix to be 8x8 pixel blocks. This is useful since the transformation matrices 

are constant for one size. In addition, this size is practical and well known in various 

standards such as jpeg.  

Furthermore, since the DCT coefficients are constant for a certain TU size, this 

operation can be turned into a multiple constant multiplication problem that can be 

solved by an algorithm such as DiffAG. Thus, the DCT can be done without the use 

of multipliers. It is known that multipliers take up space in hardware design. MCM 

solutions implement the DCT using shifts and additions of the data input. This saves 

area on the hardware as well as reduces power and increases speed. The only necessity 

is that one matrix must be constant in order to develop the shift/add network for the 

MCM block. 

However, to implement the DCT using multiplierless matrix multiplications, 

coefficients must be calculated according to equation 1, previously discussed in section 

II. This results in an 8x8 matrix of constants to be multiplied with the image data. DCT 

is computed as below:   

[Z𝑁] = [CN][DN][CN]T            (3.a) 

Where [CN] and [DN] are the coefficient and input image data matrixes, respectively. 

Note that in DCT, the image must firstly be changed into grey level. This 

represents the useful information in the image without the colors. 

4.2. The Multiple Constant Multiplication Solution: 

In our work, a DCT block of 8x8 has been chosen similar to works in other 

research papers. Consequently, 8x8 matrix get constructed to implement the DCT.  
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Figure 17: DCT values before manipulation.  

However, to solve the MCM problem, this matrix must be entered as an integer 

matrix to the DiffAG algorithm. A simple solution is to shift the matrix by 10 to the 

left, or multiplying by 210. Thus, the integer matrix becomes:  

 

Figure 18: DCT values after shifting by 210 to the left. 

Note that these values do not affect the final output since the data in the 

compressed image will be shifted back after processing. Thus, the integer matrix gets 

entered to the algorithm and generates an MCM solution. Only 7 unique constants are 

used to implement the matrix multiplications. Each of these constants are implemented 

using a network of shifts and additions using input values. Below are the illustrations: 

 

Figure 19: Shift/add network for 1597 multiplier 

 

Figure 20: Shift/add network for 3134 multiplier 
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Figure 21: Shift/add network for 4549 multiplier 

 

Figure 22: Shift/add network for 5791 multiplier 

 

Figure 23: Shift/add network for 6810 multiplier. 

 

Figure 24: Shift/add network for 7567 multiplier. 

 

Figure 25: Shift/add network for 8033 multiplier. 

4.3. The Block Processing 

It is worth noting that the DCT operation must be implemented on all data 

blocks. This could be processed by one of two ways. Either implement the blocks via 

a Matlab function called blockproc. Otherwise, it can simply be done via a for loop 



25 

 

that determines the limits for each block, operates the DCT for that block and then 

moves to the next block.  

4.4. Image Compression 

One of the steps of image compression is quantization process. It is known as 

multiplying the data obtained after DCT by a quantization table. Below is an example 

of a quantization table for the JPEG compression standard in figure 26. This table 

scales that data down by a factor depending on the frequency. To illustrate, 

traditionally, looking at the results of the DCT operation, high frequency data are 

scaled down by a factor of 100 while low frequency data are scaled down by 20. In 

that way, after rounding to the nearest integer, most of the high frequency values are 

rounded to zero whereas the low frequency are kept.  

 

Figure 26: A JPEG quantization table. 

After using the quantization table and removing the high frequencies, data is 

ready for storage using Huffman coding technique. This technique register the data in 

a zigzag manner giving priority to the lowest frequency values first. More importantly, 

it stores data that end with a series of zeros in a very efficient way.  

However, since low frequency values are kept, the image can essentially be 

retrieved without noticeable difference. Ofcourse quantization tables differ vastly 

depending on the quality needed or compression ratio desired.  

To retrieve the image from its compressed version, inverse DCT process is 

required. Simply, the inverse DCT is computed as below:  

[D𝑁] = [CN]T[ZN][CN]         (3.b) 
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Again MCM blocks can be implemented instead of multipliers. Resulted image 

needs shifting to the right. Note that the image data must be written into an appropriate 

type of image in order to display properly. 

4.5. Image Compression Algorithm (concise version) 

The algorithm developed for image compression process is summarized in the 

flow chart of Figure 27.  

 

Figure 27: Flow chart of image compression 

The input image is turned into grey level as a square image and the image data 

is placed in a matrix. Using (1), DCT coefficients are obtained (in this case 8x8 size 

matrix) and DCT is applied to the image data (block by block). A quantization table is 

applied to the DCT image for all blocks. The resulting data is encoded for 

storage/transmission or retrieved by applying IDCT to the compressed image. Finally, 

an appropriate image type is assigned after returning the colors to the image. 

4.6. Simulation Results 

At first, the image compression algorithm is tested on Matlab. The tested picture 

is the cameraman.tiff in grey level having the size of 256x256 pixels. Two methods 

are used: one that involves regular matrix multiplications and one that relies on 

multiplierless MCM blocks. 

 There are several achievements from implementing the idea on Matlab. First, 

the MCM solution had to be verified. By using the 7 shift and add networks generated 
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above, the DCT has been implemented block by block via for loops. The reached 

values are practically the same, compared to the regular multiplication. In addition, a 

comparison between the regular multiplication script and the multiplierless 

multiplication script are made. The multiplierless method is twice as fast as the regular 

multiplication method, see table 1. 

Table 1: Simulation time for DCT in regular multiplication vs. MCM blocks. 

 

To reach a quick verification of how the results will perform, it is much easier 

to implement the whole algorithm on Matlab than on Verilog HDL. Below an example 

of image compression of the picture cameraman.tiff. See table 2 and figure 28. 

Table 2: Compression difference in size for 256x256 cameraman image. 

 Before compression After compression Compression Ratio 

Picture size 44 KB 19.3 KB 2.28  

 

 

Figure 28: (a) Original image and (b) compressed image of the cameraman. 

  

 Regular Multiplication Multiplierless MCM Blocks 

Time in sec 0.408 sec 0.1775 sec 
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CHAPTER FIVE 

SIMULATION 

5. DESIGN OVERVIEW 

5.1. Design Method 

In this stage, development of 2D DCT application using an HDL is necessary. 

Verilog language has been picked for developing the algorithm, since it is simpler and 

easier to read. The 2D DCT code is developed on the basis of row column 

decomposition method. There are several works that have implemented this method 

(Atani et al., 2008; Pradeepthi & Ramesh, 2011). However, for the purpose of 

comparing two MCM solutions, no multipliers are used. The first MCM block is 

obtained from our DiffAG algorithm presented in section III while the other MCM 

block is obtained from using FREYR algorithm (Aksoy et al., 2014). The overview of 

the code is presented below: 

This DCT method has been detailed in (Doǧan, 2016; Sanjeevannanavar & 

Nagamani, 2011). According to their works, the 2D DCT can be implemented using 

1D DCT twice. This method has been proven more efficient. Using the below 

equations (4.a – 4.h), a single 1D DCT is computed as follows: 

𝑍0  =  𝑑(𝑥0 + 𝑥7) + 𝑑(𝑥1 + 𝑥6) + 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4) − − − −(4. 𝑎) 

𝑍2  =  𝑏(𝑥0 + 𝑥7) + 𝑓(𝑥1 + 𝑥6) − 𝑓(𝑥2 + 𝑥5) + 𝑏(𝑥3 + 𝑥4) − − − −(4. 𝑏) 

𝑍4  =  𝑑(𝑥0 + 𝑥7) − 𝑑(𝑥1 + 𝑥6) − 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4) − − − −(4. 𝑐) 

𝑍6  =  𝑓(𝑥0 + 𝑥7) − 𝑏(𝑥1 + 𝑥6) + 𝑏(𝑥2 + 𝑥5) − 𝑓(𝑥3 + 𝑥4) − − − −(4. 𝑑) 

𝑍1  =  𝑎(𝑥0 − 𝑥7) + 𝑐(𝑥1 − 𝑥6) + 𝑒(𝑥2 − 𝑥5) + 𝑔(𝑥3 − 𝑥4)  − − − −(4. 𝑒) 

𝑍3  =  𝑐(𝑥0 − 𝑥7) − 𝑔(𝑥1 − 𝑥6) − 𝑎(𝑥2 − 𝑥5) − 𝑒(𝑥3 − 𝑥4) − − − −(4. 𝑓) 

𝑍5  =  𝑒(𝑥0 − 𝑥7) − 𝑎(𝑥1 − 𝑥6) + 𝑔(𝑥2 − 𝑥5) + 𝑐(𝑥3 − 𝑥4) − − − −(4. 𝑔) 

𝑍7  =  𝑔(𝑥0 − 𝑥7) − 𝑒(𝑥1 − 𝑥6) + 𝑐(𝑥2 − 𝑥5) − 𝑎(𝑥3 − 𝑥4) − − − −(4. ℎ) 

The main module is used for implementing DCT using MCM blocks. 

Traditionally, DCT coefficients are multiplied by the input. However, since they are 

constant, multiplication can be replaced by shift/add operations of the input data. For 

each 1D DCT vector, the shift/add networks constitute the MCM block that implement 

the multiplications.  
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In order to generate the MCM solution, coefficients are entered into the DiffAG 

algorithm. This provides shift/add networks that represent the coefficients. Thus, for 

each input from the image matrix that value gets connected to the appropriate network 

that implement the shift/add operation. In each iteration, a vector of DCT coefficients 

is computed until 1D DCT is executed in one direction. Then, another 1D DCT is 

implemented in the other direction using obtained results.  

In order to make a comparison between the two MCM solutions, another 2D 

DCT module is developed using FREYR’s solution, see table 3. Note the difference in 

number of adders and depths. Having less adders results in less area on the chip. 

However, the less adder depth a design has, the faster and less power consumption it 

brings about. 

Table 3: Comparison between FREYR and DiffAG MCM solutions 

MCM Solution FREYR algorithm DiffAG algorithm 

Number of Adders 12  14 

Adder Depth 5 4 

To transform the whole image using DCT, the same process must be repeated 

block by block in each iteration. For example, an image of 256x256 pixels requires to 

be segmented into 32 segments of size 8x8. Depending on the complexity of MCM 

blocks used, the performance of the DCT varies. In addition, the resources used in each 

cycle differs in terms of area and power.  

5.2. Simulation 

In this subsection, an explanation of the simulation is briefed. First, all modules 

are connected to a clock. On each positive edge of that clock the operations execute. 

The clock is initialized and runs continuously. A data vector gets entered to compute 

a vector of 1D DCT coefficients. This operation takes 9 clock cycles to compute and 

the resulted vector is registered. Eight vectors get computed and registered. Then, 

using the results obtained, another iteration starts. In the same manner, the second 1D 

DCT is computed and the 2D DCT coefficients are calculated for a block of 8x8. In 

order to compute DCT for the whole image, another 8x8 block of data is entered and 

the process repeats.  

For simulating the DCT algorithm, a short test bench is prepared using Xilinx 

Vivado. The design schematics are presented below, see figure 29 and figure 30.  
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Figure 29: 1D DCT simulation using data from an image. 
 

 

Figure 30: 1D DCT simulation using results from the previous step. 
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5.3. Register Transfer Level (RTL) Schematics 

In figure 31, the addition/subtraction of the input data is performed (called 

butterfly). Figure 32 shows an example for a 1D DCT coefficient network. Similarly, 

the rest of DCT vectors are designed using shift/add network modules by changing the 

first stage modules as needed according to equations (4.a – 4.h) shown previously. The 

shift/add networks are shown in figures 19–25 in part IV. 

 

Figure 31: RTL schematic of the butterfly block. 

 

Figure 32: Schematic of a single vector from 1D DCT.  
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CHAPTER SIX 

IMPLEMENTATION 

6. HARDWARE IMPLEMENTATION 

To implement the 2D DCT design using hardware, Genesys 2 Kintex-7 FPGA 

(XC7K325T) development board is used. The design has been simulated and 

synthesized using Xilinx Vivado. A comparison is made between two implementations 

of 2D DCT designed using FREYR and DiffAG MCM solutions.  

 

Figure 33: Kintex 7 FPGA board used for hardware implementation. 

6.1. Timing Analysis 

The DiffAG design has 9 stages that execute serially. Each stage takes a single 

clock cycle to compute. For a vector to execute, it has to pass through 9 clock cycles. 

However, an extra clock cycle is used to register the results into RAM. Then, since 

there are 8 vectors, 80 clock cycles are necessary to compute 1D DCT. An extra 

buffering stage is included to retrieve the 8 just-registered vectors to be used as input 

in the next stage. Thus, 80 cycles are necessary to compute the other 1D DCT. Then, 

an extra buffering clock cycle is necessary to enter the next block of data for 

processing. Thus, the total number of clock cycles used in this design is 80+1+80+1 = 

162 clock cycles.  

Similarly, the FREYR design requires 10 stages executed serially. Thus, a 1D 

DCT requires 88 clock cycles to execute. Then, the total number of clock cycles 
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needed for this design is 178 clock cycles. Table 4 illustrates the timing differences 

between the two designs.  

Table 4: Timing comparison between the two MCM designs using HD spec. 

Processing Speed FREYR DiffAG Difference 

# Cycles 178 clock cycles 162 clock cycles -16 clocks 

# FPS 35.70 fps 39.22 fps +3.52 fps 

# Speed 0.865 μs 0.787 μs +9.01% faster 

6.2. Logic Area Analysis 

The two designs also vary on how much area they takes up on the chip. Table 5 

shows the details of how much resources are used implementing 2D DCT in both 

DiffAG and FREYR MCM solutions.  

Table 5: Logic area comparison between the two MCM designs. 

Logic Utilization FREYR DiffAG Difference 

# LUTs 3588 4341 -20.99% 

# Flip-Flops 1944 1952 -0.41% 

# Registers 1614 1513 +6.25% 

Total % 7146 7806 -9.24% less area 

According to table 4 and table 5, since FREYR design is more optimized in terms 

of number of adders, it takes up less area in the FPGA. However, since DiffAG 

solution is more optimized in terms of adder depth, it computes DCT in less time than 

FREYR design. Depending on the application at hand, speed could be considered more 

important than area, especially since FPGAs nowadays have a plenty of resources to 

use.  

For our design, the execution of 2D DCT of size 8x8 pixel requires 162 clock 

cycles. When mapped to Kintex 7 FPGA, it takes about 0.787μs for the 8x8 DCT block 

to compute. This process still can be optimized further. Nevertheless, this design can 

be used to apply image processing of size 1920x1080 pixel at rate of 39 fps which 

could be suitable for HD image processing applications.  
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CONCLUSION 

CONCLUSION  

The purpose of this thesis is to develop an algorithm that implements 2D DCT 

using MCM blocks generated by the DiffAG algorithm. This is done in order to test 

the performance of the DiffAG algorithm and realize its solution on image processing 

applications. The DiffAG algorithm is first developed and verified using Matlab. Then, 

its solution has been implemented in image compression. Furthermore, another 2D 

DCT code is developed using Verilog to simulate and implement the DiffAG solution 

on FPGA.  

Regarding DiffAG, efficiency of the algorithm is validated through its Matlab 

implementation. The obtained results are compared to FREYR algorithm used in 

MCM. The DiffAG provides results that have low depth but at the expense of more 

adder cost. It is worth noting that DiffAG provides better performance when dealing 

with many constants of low bit width or when dealing with large constants. When 

compared, DiffAG gives results of adder depth less than FREYR by 17% on average, 

while FREYR gives results that have adder cost less than DiffAG by 11% on average. 

Finally, in order to verify the results obtained from the algorithms, two designs 

are developed using 2D DCT. Hardware design has been implemented on Kintex 7 

FPGA using Xilinx Vivado software. Two designs are used to compare the MCM 

solutions obtained from DiffAG and FREYR algorithms. Results show that design 

obtained using FREYR uses more logic area by about 9.2%. However, the design 

obtained using DiffAG achieves processing rate by about 9.01%. Nevertheless, this 

design can be used to apply image processing of size 1920x1080 pixel at rate of 39 fps 

which could be suitable for HD image processing applications. 
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APPENDICES 

A. DIFFAG MATLAB CODE 

 

clc; clear all; 

% echo find_edge_differences on 

% pause 

%% 0) get constants and make em posodd 

[file_name,file_coef,constants_list] = read_constants (); 

tic; 

constants_list = fix(constants_list*16384)'; 

constants_list_posodd = make_set_posodd(constants_list); 

time(1) = toc; 

%% 1) form two sets: required and realized 

tic; 

% required_set = constants_list(:,4)'; 

required_set = unique(constants_list_posodd(:,4))'; 

original_set = required_set; 

realized_set = [1,1,1,0,0,0]; 

bound = 4 * max(required_set); 

cycle = 0; total_time = 0; 

time(2) = toc; 

while 1 

    %% 2 & 3) try and realize any numbers using equation 1 

    tic; 

    [o,~]=size(realized_set); 

    for h = 1:o 

        if ismember(realized_set(h,1),required_set) 

            required_set(realized_set(h,1) == required_set) = [] 

            fprintf('found a required constant that was realized already 

\n'); 

            pause 

        end 

    end 

    [required_set,realized_set,realizable_list] = 

Hcub_optimal(required_set,realized_set,bound); 

%          realized_set 

    if isempty(required_set) 

        realized_set(1,:)=[] 

        fprintf('well done GG \n'); 

        break; 

    end 

    cycle = cycle + 1 ; 

    fprintf('cycle number %d \n',cycle); 

    time(3) = toc; 

    %% 4.a) form the nodes graph 

    tic; 

    [nodes_set] = form_nodes_set(required_set,realized_set); 

    time(4) = toc; 

    %% 4.b) find edge difference sets 

    tic; 

    [differences,field_names] = find_edge_differences (nodes_set,bound); 

    time(5) = toc; 

    %% 5) check for merging and merge if possible 

    tic; 

    [nodes_set,differences,field_names] = 

merge_nodes(realized_set,nodes_set,differences,field_names,bound); 

    [~,n] = size(nodes_set); 

%     required_set 

    time(6) = toc; 

    %% 6) statistics on difference occurance 

    tic; 

    [differences] = difference_stats(differences,field_names); 

    time(7) = toc; 

    %% 7) find most frequent realizable difference and add it to required 

set 

    tic; 
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    [freq_diff_list,max_occurance] = 

frequent_difference(differences,field_names,realizable_list); 

    if ~isempty(freq_diff_list) 

        [freq_diff_list,~] = lowest_cost_differences_ver2(freq_diff_list);  

% note we could choose the coefficient differently using random       

        required_set = [freq_diff_list(1,1),required_set];                  

% method/seed to find several solutions and pick the best one 

        time(8) = toc; 

    else 

        %% 8) find most frequent difference with least cost and add it to 

required set 

        tic; 

        [cheap_differences,cost] = 

lowest_cost_differences(differences,field_names); 

        [most_freq_diff] = 

find_freq_diff_among_all(differences,field_names,cheap_differences); 

        required_set = [most_freq_diff,required_set]; 

        time(9) = toc; 

    end 

    temp_time = sum(time(:)); 

    total_time = temp_time + total_time; 

end 

%% 9) write results 

file_name2=[file_name,'-1']; 

write_results(file_name2,file_coef,original_set,cycle,realized_set,total_tim

e); 

[m,~] = size(realized_set); 

fprintf('\n'); 

fprintf('* Summary of results \n'); 

fprintf('* Number of required constants %d \n',length(original_set)); 

fprintf('* Number of cycles: %d \n',cycle); 

fprintf('* Number of operations: %d \n',m); 

fprintf('* Number of adder-steps : %d \n',max(realized_set(:,6))); 

fprintf('* Total CPU time : %.2f \n',total_time); 

function [c] = c_equation (v1,c1,v2,c2,bound) 

w = 1; c = zeros(1,6); 

dynamic_limit = ceil(log2(bound)); 

limit = dynamic_limit; 

% for limit = 1:dynamic_limit 

for i = -limit:limit 

    for j = -limit:limit 

        for p = 0:1 

            mult_i = 2^i; mult_j = ((-1)^p)*(2^j); 

            temp = abs(mult_i*v1 + mult_j*v2); 

            if (temp ~= v1 && temp ~= v2)  

                if temp > bound 

                    continue 

                elseif ((fix(temp)==temp) && (mod(temp,2))) 

                    if c1 >= c2 

                        cost = 1+c1; 

                    else 

                        cost = 1+c2; 

                    end 

                    if temp > 1   

                        cond_i = (temp==c(:,1));  

                        if (sum(cond_i)>1) 

                            ind = find(cond_i); 

                            for e = 1:length(ind) 

                                if  cost<c(ind(e),6) 

                                    c(ind(e),:) = 

[temp,mult_i,v1,mult_j,v2,cost]; 

                                end 

                            end 

                        else 

                            c(w,:) = [temp,mult_i,v1,mult_j,v2,cost]; 

                            w = w+1; 

                        end 

                    end 
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                end 

            end 

        end 

    end 

end 

% end 

end 

 

function [merge_ind]  = 

check_to_merge_nodes(difference_set,realized_constants) 

  

ind_occurance = ismember(difference_set,realized_constants); 

if sum(ind_occurance) 

    merge_ind = 1; 

else 

    merge_ind = 0; 

end 

end 

function [differences] = difference_stats(differences,field_names) 

all_elements = []; 

for z = 1:length(field_names) 

    var_name = char(field_names(z)); 

    temp = differences.(var_name)(1:end,1)'; 

    all_elements = [all_elements,temp]; 

end 

  

for i = 1:length(field_names) 

    var_name1 = char(field_names(i)); 

    set_1 = differences.(var_name1)(1:end,1)'; 

    for k = 1:length(set_1) 

        count = sum(ismember(set_1(k),all_elements)); 

        differences.(var_name1)(k,6) = count; 

    end 

end 

end 

function [cheapest_difference] = find_cheapest_difference(difference_set) 

% 

difference_set=[725,7;1387,7;1899,7;1907,8;2103,8;14879,3;6969,9;9033,6;5143

,3] 

min_cost = min(difference_set(:,2)); 

ind = difference_set(:,2) == min_cost; 

temp = difference_set(ind,1); 

temp = order_cheapest_first (temp); 

cheapest_difference = temp(1,1); 

end 

function [differences,field_names] = find_edge_differences (nodes_set,bound) 

[~,n] = size(nodes_set); 

for i= 1:n   

    for j= 1:n 

        if (i~=j && j>i) 

            c = [];  

            node_X = cell2mat(nodes_set(i)); 

            node_Y = cell2mat(nodes_set(j)); 

            for x = 1:length(node_X) 

                for y=1:length(node_Y) 

                    temp = c_equation(node_X(x),0,node_Y(y),0,bound); 

                    c = [c;temp]; 

                    c = unique(c,'rows'); 

                end 

            end 

            %% just register results in a structure 

            var_name = assign_struct_name(i,j); 

            differences.(var_name) = c ;  

            differences.(var_name)(1,7:length(node_X)+6) = node_X; 

            differences.(var_name)(2,7:length(node_Y)+6) = node_Y; 

        end 

    end 
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end 

field_names = fieldnames(differences); 

end 

function [most_freq_diff] = find_freq_diff_among_all 

(differences,field_names,cheap_differences) 

most_freq_diff = []; 

old_freq = 0; 

for t = 1:length(cheap_differences) 

    new_freq = 

find_freq_difference(differences,field_names,cheap_differences(t)); 

    if new_freq > old_freq 

        old_freq = new_freq; 

        most_freq_diff = cheap_differences(t); 

    elseif new_freq == old_freq 

        old_freq = new_freq; 

        most_freq_diff = union(most_freq_diff,cheap_differences(t)); 

    end 

end 

most_freq_diff = min(most_freq_diff); 

end 

function [frequency] = 

find_freq_difference(differences,field_names,difference) 

frequency = 0 ; 

for t = 1:length(field_names) 

    var_name = char(field_names(t)); 

    difference_list= transpose(differences.(var_name)(1:end,1)); 

    if ismember(difference,difference_list) 

        frequency = frequency +1 ; 

    end 

end 

end 

function [my_brain_hurts,cost] = find_min_cost_element(set) 

set = sortrows(set,6); 

my_brain_hurts = set(1,1); 

cost = set(1,6); 

end 

function [optimal_differences,old_cost] = 

find_optimal_difference(difference_set) 

% difference_set = randi([1 100],18); 

optimal_differences = []; 

old_cost = 100; 

for i = 1:length(difference_set) 

    if (difference_set(i) > 1)  %%%%%%%%%%%% 

        [new_cost,~] = find_csd_representation(difference_set(i)); 

        if (new_cost < old_cost) 

            old_cost = new_cost; 

            optimal_differences = difference_set(i); 

        elseif (new_cost == old_cost) 

            old_cost = new_cost; 

            optimal_differences = 

union(optimal_differences,difference_set(i)); 

        end 

    end 

end 

end 

function [nodes_set] = form_nodes_set(required_set,realized_set) 

nodes_set = cell(1,length(required_set)+1); 

nodes_set{1} = realized_set(:,1)'; 

for i = 2:length(required_set)+1 

    nodes_set{i} = required_set(i-1); 

end 

end 

function [freq_diff_full_list,max_occurance] = 

frequent_difference(differences,field_names,realizable_list) 

max_occurance = 0; difference_full_list = zeros(1,2);temp = zeros(1,2); 

difference_full_list(1,:)=[];  

freq_diff_full_list = []; 
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for t = 1:length(field_names) 

    var_name = char(field_names(t)); 

    temp = differences.(var_name)(1:end,1); 

    occurance_list = differences.(var_name)(1:end,6); 

    combination = [temp,occurance_list]; 

    difference_full_list = [difference_full_list;combination]; 

end 

difference_full_list = unique(difference_full_list,'rows'); 

[~,ia,~] = intersect(difference_full_list(:,1),realizable_list(:,1)); 

if isempty(ia) 

    freq_diff_full_list = []; 

    return; 

else 

    difference_full_list = difference_full_list(ia,:); 

    max_occurance = max(difference_full_list(:,2)); 

    ind = (difference_full_list(:,2) == max_occurance); 

    if ~isempty(ind) 

        freq_diff_full_list = difference_full_list(ind,:); 

    end 

end 

end 

function [required_set,realized_set,realizable_full_list] = 

Hcub_optimal(required_set,realized_set,bound) 

realizable_full_list = []; 

[o,~]=size(realized_set); 

i = 1;  

while i <= o 

    j = 1; 

    while j <= o 

        [realizable_list] = 

c_equation(realized_set(i,1),realized_set(i,6),realized_set(j,1),realized_se

t(j,6),bound); 

        realizable_full_list = [realizable_full_list;realizable_list]; 

        [m,~]=size(realizable_list); 

        for t = 1:m 

            if ismember(realizable_list(t,1),required_set) 

                realized_set = [realized_set;realizable_list(t,:)]; 

                [o,~]=size(realized_set); 

                required_set(realizable_list(t,1)==required_set) = []; 

                i = 1; j = 0; 

                break; 

            end 

        end 

        j = j+1; 

    end 

    i = i+1; 

end 

realizable_full_list = unique(realizable_full_list,'rows'); 

end 

function [old_differences,old_cost] = 

lowest_cost_differences(differences,field_names) 

old_cost = 100; old_differences = []; 

for t = 1:length(field_names) 

    var_name = char(field_names(t)); 

    difference_set = transpose(differences.(var_name)(1:end,1)); 

    [new_differences,new_cost] = find_optimal_difference(difference_set); 

    if new_cost<old_cost 

        old_cost = new_cost; 

        old_differences = new_differences; 

    elseif new_cost == old_cost 

        old_cost = new_cost; 

        old_differences = union(old_differences,new_differences); 

    end 

end 

end 

function [old_differences,old_cost] = lowest_cost_differences_ver2(set) 

[old_differences,old_cost] = find_optimal_difference(set); 
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end 

function [nodes_set,differences,field_names] = 

merge_nodes(realized_set,nodes_set,differences,field_names,bound) 

realized_constants = realized_set(1:end,1);  

i = 1; 

while i <= length(field_names) 

    var_name = char(field_names(i)); 

    difference_list = transpose(differences.(var_name)(1:end,1)); 

    merge_ind = check_to_merge_nodes(difference_list,realized_constants); 

    if merge_ind 

        node_X = differences.(var_name)(1,7:end); 

        node_Y = differences.(var_name)(2,7:end); 

        node_X = nonzeros(node_X)'; 

        node_Y = nonzeros(node_Y)'; 

        index_x = []; 

        index_y = []; 

        for k = 1:length(nodes_set) 

            if isequal(nodes_set{k}, node_X) 

                index_x = k; 

            elseif isequal(nodes_set{k}, node_Y) 

                index_y = k; 

            end 

        end 

        nodes_set{index_x} = [node_X,node_Y]; 

        nodes_set(index_y) = []; 

        %% 

        [~,n] = size(nodes_set); 

        if n == 1 

            fprintf('the last two nodes were merged \n'); 

            break ;  

        else 

        [differences,field_names] =find_edge_differences (nodes_set,bound) ; 

        i = 0;  

        end 

    end 

    i = i+1; 

end 

end 

function [required_set] = order_cheapest_first (required_set) 

  

% required_set = [7,15,16,33,58,59,61,32,24,27,589]; 

for i = 1:length(required_set) 

    [new_cost,~] = find_csd_representation(required_set(i)); 

    set_with_costs(i,:) = [required_set(i),new_cost]; 

end 

set_with_costs = sortrows(set_with_costs,2); 

% set_with_costs = sortrows(set_with_costs,2,'descend'); 

required_set = set_with_costs(:,1)'; 

end 

function [constant_set] = random_matrix_generator(say_constants,bit_width) 

% bitwidth = randi(16); 

% say_constants = randi(100); 

constant_set = randi([-(2^bit_width) 2^bit_width],1,say_constants); 

end 
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B. 2D DCT VERILOG CODE 

module dct(input wire clk, 

    input signed[31:0]x[0:7], 

    output reg signed[31:0]z[0:7]); 

    wire signed[31:0] sum[0:3],diff[0:3]; 

    wire signed[31:0] temp[0:7]; 

    butterfly bf1(clk,x,sum,diff); 

    dct_1d    dct1(clk,sum,diff,z); 

endmodule 

module dct_1d(input wire clk, 

    input signed[31:0]sum[0:3],diff[0:3], 

    output reg signed[31:0]z[0:7]); 

    wire signed[31:0]temp0[0:6],temp2[0:6],temp4[0:6],temp6[0:6]; 

    wire signed[31:0]temp1[0:6],temp3[0:6],temp5[0:6],temp7[0:6]; 

    //z0 

    shiftadd_5791 sh01(clk,sum[0],temp0[0]); 

    shiftadd_5791 sh02(clk,sum[1],temp0[1]); 

    shiftadd_5791 sh03(clk,sum[2],temp0[2]); 

    shiftadd_5791 sh04(clk,sum[3],temp0[3]); 

    add           add01(clk,temp0[0],temp0[1],temp0[4]); 

    add           add02(clk,temp0[2],temp0[3],temp0[5]); 

    add           add03(clk,temp0[4],temp0[5],temp0[6]); 

    shift_left_28 shL01(clk,temp0[6],z[0]); 

    //z2 

    shiftadd_7567 sh21(clk,sum[0],temp2[0]); 

    shiftadd_3134 sh22(clk,sum[1],temp2[1]); 

    shiftadd_3134 sh23(clk,sum[2],temp2[2]); 

    shiftadd_7567 sh24(clk,sum[3],temp2[3]); 

    add           add21(clk,temp2[0],temp2[1],temp2[4]); 

    add           add22(clk,temp2[2],temp2[3],temp2[5]);  // 

    sub           add23(clk,temp2[4],temp2[5],temp2[6]); 

    shift_left_28 shL21(clk,temp2[6],z[2]); 

    //z4 

    shiftadd_5791 sh41(clk,sum[0],temp4[0]); 

    shiftadd_5791 sh42(clk,sum[1],temp4[1]); 

    shiftadd_5791 sh43(clk,sum[2],temp4[2]); 

    shiftadd_5791 sh44(clk,sum[3],temp4[3]); 

    sub           add41(clk,temp4[0],temp4[1],temp4[4]); 

    sub           add42(clk,temp4[2],temp4[3],temp4[5]); // 

    sub           add43(clk,temp4[4],temp4[5],temp4[6]); 



47 

 

    shift_left_28 shL41(clk,temp4[6],z[4]); 

    //z6 

    shiftadd_3134 sh61(clk,sum[0],temp6[0]); 

    shiftadd_7567 sh62(clk,sum[1],temp6[1]); 

    shiftadd_7567 sh63(clk,sum[2],temp6[2]); 

    shiftadd_3134 sh64(clk,sum[3],temp6[3]); 

    sub           add61(clk,temp6[0],temp6[1],temp6[4]); 

    sub           add62(clk,temp6[2],temp6[3],temp6[5]); 

    add           add63(clk,temp6[4],temp6[5],temp6[6]); 

    shift_left_28 shL61(clk,temp6[6],z[6]); 

    //z1 

    shiftadd_8033 sh11(clk,diff[0],temp1[0]); 

    shiftadd_6810 sh12(clk,diff[1],temp1[1]); 

    shiftadd_4549 sh13(clk,diff[2],temp1[2]); 

    shiftadd_1597 sh14(clk,diff[3],temp1[3]); 

    add           add11(clk,temp1[0],temp1[1],temp1[4]); 

    add           add12(clk,temp1[2],temp1[3],temp1[5]); 

    add           add13(clk,temp1[4],temp1[5],temp1[6]); 

    shift_left_28 shL11(clk,temp1[6],z[1]); 

    //z3 

    shiftadd_6810 sh31(clk,diff[0],temp3[0]); 

    shiftadd_1597 sh32(clk,diff[1],temp3[1]); 

    shiftadd_8033 sh33(clk,diff[2],temp3[2]); 

    shiftadd_4549 sh34(clk,diff[3],temp3[3]); 

    sub           add31(clk,temp3[0],temp3[1],temp3[4]); 

    add           add32(clk,temp3[2],temp3[3],temp3[5]); // 

    sub           add33(clk,temp3[4],temp3[5],temp3[6]); 

    shift_left_28 shL31(clk,temp3[6],z[3]); 

    //z5 

    shiftadd_4549 sh51(clk,diff[0],temp5[0]); 

    shiftadd_8033 sh52(clk,diff[1],temp5[1]); 

    shiftadd_1597 sh53(clk,diff[2],temp5[2]); 

    shiftadd_6810 sh54(clk,diff[3],temp5[3]); 

    sub           add51(clk,temp5[0],temp5[1],temp5[4]); 

    add           add52(clk,temp5[2],temp5[3],temp5[5]); // 

    add           add53(clk,temp5[4],temp5[5],temp5[6]); 

    shift_left_28 shL51(clk,temp5[6],z[5]); 

    //z7 

    shiftadd_1597 sh71(clk,diff[0],temp7[0]); 

    shiftadd_4549 sh72(clk,diff[1],temp7[1]); 
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    shiftadd_6810 sh73(clk,diff[2],temp7[2]); 

    shiftadd_8033 sh74(clk,diff[3],temp7[3]); 

    sub           add71(clk,temp7[0],temp7[1],temp7[4]); 

    sub           add72(clk,temp7[2],temp7[3],temp7[5]); // 

    add           add73(clk,temp7[4],temp7[5],temp7[6]); 

    shift_left_28 shL71(clk,temp7[6],z[7]); 

endmodule 

module butterfly(input wire clk, 

    input signed[31:0] x[0:7], 

    output reg signed[31:0] sum[0:3],diff[0:3]); 

always @(posedge clk) 

begin 

  sum[0]=x[0]+x[7]; 

  sum[1]=x[1]+x[6]; 

  sum[2]=x[2]+x[5]; 

  sum[3]=x[3]+x[4]; 

  diff[0]=x[0]-x[7]; 

  diff[1]=x[1]-x[6]; 

  diff[2]=x[2]-x[5]; 

  diff[3]=x[3]-x[4]; 

end 

endmodule 

module add(input wire clk, 

    input signed[31:0]x1,x2, 

    output reg signed[31:0]y1); 

always @(posedge clk) 

y1 = x1+x2; 

endmodule 

module sub( 

    input wire clk, 

    input signed[31:0]x1,x2, 

    output reg signed[31:0]y1); 

always @(posedge clk) 

y1 = x1-x2; 

endmodule 

module shiftadd_1597(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 
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    y1=((((x1<<<4)-x1)<<<1)+((x1+(x1<<<5))<<<5)+((x1<<<9)-x1)) ; 

endmodule 

module shiftadd_3134(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

    y1=((((x1+(x1<<<5))<<<5)+((x1<<<9)-x1))<<<1) ; 

endmodule 

module shiftadd_4549(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

    y1=((((x1<<<3)+x1)<<<9)-((((x1<<<4)-x1)<<<2)-x1)) ; 

endmodule 

module shiftadd_5791(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

   y1=(((x1+(x1<<<5))<<<7)+((x1+(x1<<<5))<<<5)+((x1<<<9)-x1)); 

endmodule 

module shiftadd_6810(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

    y1=((((((x1<<<4)-x1)<<<1)+(((x1+(x1<<<5))<<<5)+((x1<<<9)-x1)))+(((x1<<<7)-((x1<<<4)-

x1))<<<4))<<<1) ; 

endmodule 

module shiftadd_7567(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

    y1=((((((x1<<<4)-x1)<<<2)-x1)<<<7)+((x1<<<4)-x1)) ; 

endmodule 

module shiftadd_8033(input wire clk, 

    input signed [31:0] x1, 

    output reg signed [31:0] y1); 

always @(posedge clk) 

    y1=((((((x1<<<4)-x1)<<<2)-((x1+(x1<<<5))))<<<9)-

(((x1+(x1<<<5))<<<7)+((x1+(x1<<<5))<<<5)+((x1<<<9)-x1))); 

endmodule 
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module shift_left_28(input wire clk, 

    input signed[31:0]Q1, 

    output reg signed[31:0]Q2); 

always @(posedge clk) 

    Q2 = Q1>>>13 ; 

endmodule 

module dct_tb2; 

reg signed[31:0]x[0:7]; 

wire signed[31:0]z[0:7]; 

reg signed[31:0]QQ1[0:7][0:7]; 

reg clk; 

localparam period = 10; 

dct tb1(clk,x,z); 

initial #90 $finish; 

initial begin clk = 0;forever #1 clk = ~clk; end 

initial fork 

begin 

x <= {156,160,156,160,156,155,156,159};   

#period QQ1[0] <= z; 

x <= {159,154,159,154,153,155,153,159}; 

#period QQ1[1] <= z; 

x <= {158,157,158,157,155,155,157,156}; 

#period QQ1[2] <= z; 

x <= {155,158,155,158,159,157,156,158}; 

#period QQ1[3] <= z; 

x <= {158,157,158,157,159,156,153,156}; 

#period QQ1[4] <= z; 

x <= {156,159,156,159,155,159,155,159}; 

#period QQ1[5] <= z; 

x <= {159,158,159,158,156,152,154,157}; 

#period QQ1[6] <= z; 

x <= {158,158,158,158,155,158,155,161}; 

#period QQ1[7] <= z; 

end 

join 

endmodule 

module dct_tb4; 

reg signed[31:0]x[0:7]; 

wire signed[31:0]z[0:7]; 

reg signed[31:0]QQ1[0:7][0:7]; 
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reg clk; 

localparam period = 10; 

dct tb1(clk,x,z); 

initial #90 $finish; 

initial begin clk = 0;forever #1 clk = ~clk; end 

initial fork 

begin 

x <= {889,880,885,887,886,889,885,891};  

#period QQ1[0] <= z; 

x <= {1,3,4,-3,6,-1,9,0}; 

#period QQ1[1] <= z; 

x <= {0,7,2,-3,-4,0,2,4}; 

#period QQ1[2] <= z; 

x <= {-7,-5,-3,-1,0,-3,-8,-5}; 

#period QQ1[3] <= z; 

x <= {2,2,-1,2,4,0,4,2}; 

#period QQ1[4] <= z; 

x <= {-3,0,3,-5,-5,-3,0,-3}; 

#period QQ1[5] <= z; 

x <= {-6,10,-1,-4,2,1,-1,5}; 

#period QQ1[6] <= z; 

x <= {-6,1,0,-3,1,-10,2,-6}; 

#period QQ1[7] <= z; 

end 

join 

endmodule 


