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Abstract: The Sumudu transform of the Dixon elliptic function with non-zero modulus α 6= 0 for arbitrary
powers N is given by the product of quasi C fractions. Next, by assuming the denominators of quasi C
fractions as one and applying the Heliermanncorrespondence relating formal power series (Maclaurin
series of the Dixon elliptic function) and the regular C fraction, the Hankel determinants are calculated
for the non-zero Dixon elliptic functions and shown by taking α = 0 to give the Hankel determinants
of the Dixon elliptic function with zero modulus. The derived results were back-tracked to the Laplace
transform of Dixon elliptic functions.

Keywords: Dixon elliptic functions; Sumudu transform; Hankel determinants; continued fractions;
quasi C fractions
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1. Introduction

To determine the coefficients of the Maclaurin series of Jacobi elliptic functions, Hankel determinants,
and determinants of Bernoulli numbers, continued fractions and Heilermann correspondence were
employed in [1]. By using the Fourier series expansions of Jacobi elliptic functions and continued fractions,
orthogonal polynomials were calculated and related to each other through the multiplication formulas
of the Jacobi elliptic functions in [2]. The Laplace transform of Jacobi elliptic functions was expanded to
continued fractions, and it was shown that their coefficients were orthogonal polynomials and the derived
dual Hahn polynomials in [3]. The Fourier series and continued fractions expansions of ratios of Jacobi
elliptic functions and their Hankel determinants were used in different ways for representing the sum
of square numbers derived in the determinant forms in [4]. The Laplace transform of bimodular Jacobi
elliptic functions were solved as continued fractions, and then, by using the modular transformation,
the results were shown for unimodular Jacobi elliptic functions in [5].

Dixon studied the cubic curve x3 + y3− 3αxy = 1 ; α 6= −1 for the orthogonal polynomials, where the
curve has a double period, which gives rise to the two set of functions sm (x, α) and cm (x, α), now known
as the Dixon elliptic functions in [6]. The examples, the relation to hypergeometric series, modular
transformation, and formulae for their ratio were given in [7]. When α = 0 in the above cubic curve,
their series expansions and transformations were studied in [8]. The Dixon elliptic functions were used
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in the study of the conformal mapping and geographical structure of world maps, and addition and
multiplication formulae for Dixon elliptic functions were derived in [9]. The Laplace transform was
applied for the Dixon elliptic functions of both cases α = 0 and α 6= 0 to expand as the set of continued
fractions (in [5]). The above cubic curve and its relation to the Fermat curve were studied for the urn
representation and combinatorics in [10]. Number theory-related results (in [4]) followed by the factorial
of numbers using the Dixon elliptic functions were given in [11]. The Dixon elliptic functions’ relation to
trefoil curves and to Weierstrass functions and their derivatives was shown in [12].

The fractional heat equations were solved using the Sumudu transform in [13]. The Sumudu transform
embedded with the decomposition method in [14] and the homotopy perturbation method were used
to solve the Klein–Gordon equations in [15]. The fractional order Maxwell’s equations and ordinary
differential equations were solved by the Sumudu transform in [16,17]. The fractional gas dynamics
differential equations were solved using the Sumudu transform in [18]. The Sumudu transform calculation,
the new definition for trigonometric functions, and their expansion to infinite series were proven with
illustrations comprising tables and properties in [19]. The Maxwell’s coupled equations were solved by
the Sumudu transform for magnetic field solutions in TEMPwaves given in [20]. Without using any of the
decomposition, perturbation, or analysis techniques, the Sumudu transform of the functions calculated by
differentiating the function and the Symbolic C++ program were given in [21]. The Sumudu transform
was applied to the bimodular Jacobi elliptic function [5,8] for arbitrary powers and given as the associated
continued fraction and their Hankel determinants, and next, by using the modular transformations,
the Sumudu transform of tan (x) and sec (x) was derived in [22]. The Sumudu transform was applied to
the Dixon elliptic functions with non-zero modulus and obtained the quasi-associated continued fractions
and Hankel determinants H(1)

m (.) in [23]. The Sumudu decomposition technique was applied to solve
systems of partial differential equations in [24] and systems of ordinary differential equations in [25].
The detailed theory and applications about the continued fractions, elliptic functions, and determinants
can be seen in [26–31]. Recently, the Sumudu transform was applied to the Dixon elliptic functions with
modulus α = 0 and expanded into the associated continued fractions followed by the Hankel determinants
H(1)

m (.) in [32]. The discrete inverse Sumudu transform was applied for the first time to solve the Whittaker,
Zettl, and algebrogeometric equations and their new exact solutions obtained, and tables comprising
elementary functions and their inverse Sumudu transforms were given in [33,34].

The Sumudu transform of the function f (x) defined in the set,

A =

{
f (x) |∃M, τ1, τ2 > 0, | f (x) | < Me

|x|
τj , if x ∈ (−1)j × [0, ∞)

}
,

is given by the integral equation.

S [ f (x)] (u) def
= F (u) :def

=
∫ ∞

0
e−x f (ux) dx ; u ∈ (−τ1, τ2) . (1)

Through this research communication, the Sumudu transform is applied for the Dixon elliptic
functions of arbitrary powers and expanded as the quasi C fractions. Using the numerator coefficients of
the quasi C fractions, Hankel determinants are calculated by the correspondence connecting formal power
series and the regular C fractions.
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2. Preliminaries

The derivative of the Dixon elliptic functions [23] (Equations (1) and (3), page 171 [6], and Equations (1.18)
and (1.19), page 9 [5]) takes the following definition,

d
dx

sm (x, α) = cm2 (x, α)− αsm (x, α) and
d

dx
cm (x, α) = −sm2 (x, α) + αcm (x, α) , (2)

and has [23] (Equation (1.21), page 10 [5]),

sm (0, α) = 0 and cm (0, α) = 1. (3)

These functions satisfy the aforesaid cubic curve, and hence (Equation (2), page 171 [6], and Equation (1.22),
page 10 [5]) [23]:

sm3 (x, α) + cm3 (x, α)− 3αsm (x, α) cm (x, α) = 1. (4)

The infinite continued fraction is represented by [23] Equation (2.1.4b, page 18 [26], and Equation (1.2.5
′
),

page 8 [27].

a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
. . .

def
=

a1

b1+

a2

b2+

a3

b3 + · · ·
def
=

∞

K
n=1

an

bn
.

Definition 1. Let a = {an} , b = {bn} and u be indeterminate, then the C-fraction (Equation (7.1.1),
page 221 [26]) [28] and Equation (54.2) (page 208 [29]) are defined by [23].

1 +
∞

K
n=1

anuβ(n)

1
.

When the sequence β (n) is constant, then the C-fraction is called the regular C fraction, while the quasi C
fraction has the following form.

a0

b0 (u) +

∞

K
n=1

anu
bn (u)

.

Sometimes, the coefficients an = an (u) are functions of u.

Definition 2. [4,5,23,26] Let c = {cv}∞
v=1 be a sequence in C. Then, the Hankel determinants H(n)

m (.) and χm (.)
are defined by,

H(n)
m

def
= H(n)

m (cv) :def
= det


cn cn+1 · · · cm+n−2 cn+m−1

cn+1 cn+2 · · · cm+n−1 cm+n
...

...
. . .

...
...

cm+n−1 cm+n · · · c2m+n−3 c2m+n−2

 .



Fractal Fract. 2019, 3, 22 4 of 24

χm
def
= χm (cv) :def

= det


c1 c2 · · · cm−1 cm+1

c2 c3 · · · cm cm+2
...

...
. . .

...
...

cm cm+1 · · · c2m−2 c2m

 .

Remark 1. [4,5,23,26] χm (.) are obtained from H(1)
m+1 (.) by deleting the last row and last, but one column.

When n = 1, H(1)
1 (.) = c1 and χ1 (.) = c2.

The formal power series and regular C fractions are related by the following [4,5,23] (Theorem 7.2,
pp. 223–226, [26]) lemma.

Lemma 1. When the regular C fraction converges to the formal power series:

1 +
∞

∑
v=1

cvzv = 1 +
∞

K
n=1

anu
1

; (an 6= 0) . (5)

then,

H(1)
m ([cv]) 6= 0 , H(2)

m ([cv]) 6= 0 and a1 = H(1)
1 ([cv]) ; (m ≥ 1) . (6)

a2m := −
H(1)

m−1 (.) H(2)
m (.)

H(1)
m (.) H(2)

m−1 (.)
and a2m+1 := −

H(1)
m+1 (.) H(2)

m−1 (.)

H(1)
m (.) H(2)

m (.)
; (m ≥ 1) . (7)

where H(1)
0 (.) = H(2)

0 (.) = 1. Conversely, if Equations (6) and (7) hold, then Equation (5) holds true. Furthermore,

H(2)
m ([cv]) := (−1)m H(1)

m ([cv])
m

∏
j=1

a2j = (−1)m H(1)
m+1 ([cv])

m

∏
j=1

1
a2j+1

; (m ≥ 1) . (8)

3. Quasi C Fractions’ Expansions of the Dixon Elliptic Functions (α 6= 0)

The Laplace transform of the Dixon elliptic functions for modulus non-zero is given as quasi C
fractions in [5]. Here, we apply the Sumudu transform Equation (1) for the Dixon elliptic functions given
by smN (x, α) ; N ≥ 1, smN (x, α) cm (x, α) ; N ≥ 0 and smN (x, α) cm2 (x, α) ; N ≥ 0 for the arbitrary
powers derived, which leads to the difference equation, then expanding to the quasi C fractions. Next by
assuming the denominator of the quasi C fractions as one, using Lemma 1, the Hankel determinants are
calculated for the non-zero modulus Dixon elliptic functions.

Theorem 1. For j ≥ 1, S
[
smN (x, α)

]
is given by the following quasi C fractions:

1.

S [sm (x, α)] :=
u

(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu).

(9)
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2.

S
[
sm2 (x, α)

]
:=

1
(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu)

× 2u2

(1− 4αu)(1 + 2αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)(3j)2

b2j(u) = (1− (6j + 1)αu)

a2j+1 = (3j + 1)2(3j + 2)

b2j+1(u) = (1− 2(3j + 2)αu)(1 + (3j + 2)αu).

(10)

3. For N = 3, 6, 9, 12, · · · .

S
[
smN (x, α)

]
:=

N
3

∏
i=1

(3i− 2)u
(1− (6i− 3)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 4)2(3j + 3i− 3)

b2j(u) = (1− 2(3j + 3i− 3)αu)(1 + (3j + 3i− 3)αu)

a2j+1 = (3j + 3i− 3)(3j + 3i− 2)2

b2j+1(u) = (1− (6j + 6i− 3)αu)

×
N
3

∏
i=1

(3i− 1)(3i)u2

(1− 2(3i)αu)(1 + (3i)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 3)(3j + 3i− 2)2

b2j(u) = (1− (6j + 6i− 3)αu)

a2j+1 = (3j + 3i− 1)2(3j + 3i)

b2j+1(u) = (1− 2(3j + 3i)αu)(1 + (3j + 3i)αu).

(11)

4. For N = 4, 7, 10, 13, · · · .

S
[
smN (x, α)

]
:=

u
(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

×
N−1

3

∏
i=1

(3i− 1)u
(1− (6i− 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 3)2(3j + 3i− 2)

b2j(u) = (1− 2(3j + 3i− 2)αu)(1 + (3j + 3i− 2)αu)

a2j+1 = (3j + 3i− 2)(3j + 3i− 1)2

b2j+1(u) = (1− (6j + 6i− 1)αu)

×
N−1

3

∏
i=1

(3i)(3i + 1)u2

(1− 2(3i + 1)αu)(1 + (3i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)(3j + 3i− 1)2

b2j(u) = (1− (6j + 6i− 1)αu)

a2j+1 = (3j + 3i)2(3j + 3i + 1)

b2j+1(u) = (1− 2(3j + 3i + 1)αu)(1 + (3j + 3i + 1)αu).

(12)
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5. For N = 5, 8, 11, 14, · · · .

S
[
smN (x, α)

]
:=

1
(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu)

× 2u2

(1− 4αu)(1 + 2αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)(3j)2

b2j(u) = (1− (6j + 1)αu)

a2j+1 = (3j + 1)2(3j + 2)

b2j+1(u) = (1− 2(3j + 2)αu)(1 + (3j + 2)αu)

×
N−2

3

∏
i=1

(3i)u
(1− (6i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)2(3j + 3i− 1)

b2j(u) = (1− 2(3j + 3i− 1)αu)(1 + (3j + 3i− 1)αu)

a2j+1 = (3j + 3i− 1)(3j + 3i)2

b2j+1(u) = (1− (6j + 6i + 1)αu)

×
N−2

3

∏
i=1

(3i + 1)(3i + 2)u2

(1− 2(3i + 2)αu)(1 + (3i + 2)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 1)(3j + 3i)2

b2j(u) = (1− (6j + 6i + 1)αu)

a2j+1 = (3j + 3i + 1)2(3j + 3i + 2)

b2j+1(u) = (1− 2(3j + 3i + 2)αu)(1 + (3j + 3i + 2)αu).

(13)

Proof. Defining the Sumudu transform of the Dixon elliptic functions by the integral equations,
let N = 0, 1, 2, · · · .

S
[
smN (x, α)

]
= AN :=

∫ ∞

0
e−xsmN (xu, α) dx. (14)

S
[
smN (x, α) cm (x, α)

]
= BN :=

∫ ∞

0
e−xsmN (xu, α) cm (xu, α) dx. (15)

S
[
smN (x, α) cm2 (x, α)

]
= CN :=

∫ ∞

0
e−xsmN (xu, α) cm2 (xu, α) dx. (16)

Evaluating by parts, using Equations (2)–(4), with A0 = 1, leads to the following:

A1 := uC0 − αuA1.

A2 := 2uC1 − 2αuA2.

A3 := 3uC2 − 3αuA3.

AN := NuCN−1 − NαuAN .

Solving with the recurrences of Equations (15) and (16) yields the following quasi C fractions:

AN
BN−2

:=
(N − 1)Nu2

(1− 2Nαu)(1 + Nαu) + N(N + 1)u2 BN+1
AN

; (N ≥ 2). (17)

BN
AN−1

:=
Nu

(1− (2N + 1)αu) + (N + 1)u AN+2
BN

; (N ≥ 2). (18)
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When N = 1, 2, and 3:

A1 :=
u

(1− 2αu)(1 + αu) + 2u2 B2
A1

. (19)

A2 := B0 ×
2u2

(1− 4αu)(1 + 2αu) + 6u2 B3
A2

. (20)

A3 := B1 ×
6u2

(1− 6αu)(1 + 3αu) + 12u2 B4
A3

. (21)

Now, Equation (9) is obtained from Equation (19) by iterating with Equations (17) and (18).
Next, Equation (10) is obtained from Equation (20) by iterating with Equations (17) and (18) where
B0 is derived from Equation (15). Following the same procedure, Equations (11)–(14) are derived upon
continuous iteration of Equations (17) and (18) and after the mathematical simplifications.

Theorem 2. For j ≥ 1, S
[
smN (x, α) cm (x, α)

]
, given by the following quasi C fractions:

1.

S [cm (x, α)] :=
1

(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu).

(22)

2.

S [sm (x, α) cm (x, α)] :=
u

(1− 3αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)2(3j)

b2j(u) = (1− 2(3j)αu)(1 + (3j)αu)

a2j+1 = (3j)(3j + 1)2

b2j+1(u) = (1− (6j + 3)αu).

(23)

3.

S
[
sm2 (x, α) cm (x, α)

]
:=

u
(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

× 2u
(1− 5αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j)2(3j + 1)

b2j(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

a2j+1 = (3j + 1)(3j + 2)2

b2j+1(u) = (1− (6j + 5)αu).

(24)
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4. For N = 3, 6, 9, 12, · · · .

S
[
smN (x, α) cm (x, α)

]
:=

1
(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu)

×
N
3

∏
i=1

(3i− 2)(3i− 1)u2

(1− 2(3i− 1)αu)(1 + (3i− 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 4)(3j + 3i− 3)2

b2j(u) = (1− (6j + 6i− 5)αu)

a2j+1 = (3j + 3i− 2)2(3j + 3i− 1)

b2j+1(u) = (1− 2(3j + 3i− 1)αu)(1 + (3j + 3i− 1)αu)

×
N
3

∏
i=1

(3i)u
(1− (6i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)2(3j + 3i− 1)

b2j(u) = (1− 2(3j + 3i− 1)αu)(1 + (3j + 3i− 1)αu)

a2j+1 = (3j + 3i− 1)(3j + 3i)2

b2j+1(u) = (1− (6j + 6i + 1)αu).

(25)

5. For N = 4, 7, 10, 13, · · · .

S
[
smN (x, α) cm (x, α)

]
:=

u
(1− 3αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)2(3j)

b2j(u) = (1− 2(3j)αu)(1 + (3j)αu)

a2j+1 = (3j)(3j + 1)2

b2j+1(u) = (1− (6j + 3)αu)

×
N−1

3

∏
i=1

(3i− 1)(3i)u2

(1− 2(3i)αu)(1 + (3i)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 3)(3j + 3i− 2)2

b2j(u) = (1− (6j + 6i− 3)αu)

a2j+1 = (3j + 3i− 1)2(3j + 3i)

b2j+1(u) = (1− 2(3j + 3i)αu)(1 + (3j + 3i)αu)

×
N−1

3

∏
i=1

(3i + 1)u
(1− (6i + 3)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 1)2(3j + 3i)

b2j(u) = (1− 2(3j + 3i)αu)(1 + (3j + 3i)αu)

a2j+1 = (3j + 3i)(3j + 3i + 1)2

b2j+1(u) = (1− (6j + 6i + 3)αu).

(26)

6. For N = 5, 8, 11, 14, · · · .

S
[
smN (x, α) cm (x, α)

]
:=

u
(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

× 2u
(1− 5αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j)2(3j + 1)

b2j(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

a2j+1 = (3j + 1)(3j + 2)2

b2j+1(u) = (1− (6j + 5)αu)

×
N−2

3

∏
i=1

(3i)(3i + 1)u2

(1− 2(3i + 1)αu)(1 + (3i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)(3j + 3i− 1)2

b2j(u) = (1− (6j + 6i− 1)αu)

a2j+1 = (3j + 3i)2(3j + 3i + 1)

b2j+1(u) = (1− 2(3j + 3i + 1)αu)(1 + (3j + 3i + 1)αu)

×
N−2

3

∏
i=1

(3i + 2)u
(1− (6i + 5)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i)2(3j + 3i + 1)

b2j(u) = (1− 2(3j + 3i + 1)αu)(1 + (3j + 3i + 1)αu)

a2j+1 = (3j + 3i + 1)(3j + 3i + 2)2

b2j+1(u) = (1− (6j + 6i + 5)αu).

(27)
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Proof. Solving the recurrences of Equation (15):

B0 := 1− uA2 + αuB0.

B1 := u− 2uA3 + 3αuB1.

B2 := 2uA1 − 3uA4 + 5αuB2.

B3 := 3uA2 − 4uA5 + 7αuB3.

BN := NuAN−1 − (N + 1)uAN+2 + (2N + 1)αuBN .

For N = 0 , 1, and 2 in Equation (15), after solving with the recurrences of Equations (14) and (16):

B0 :=
1

(1− αu) + u A2
B0

. (28)

B1 :=
u

(1− 3αu) + 2u A3
B1

. (29)

B2 := A1 ×
2u

(1− 5αu) + 3u A4
B2

. (30)

Now, Equation (22) is derived from Equation (28) upon iterating with Equations (17) and (18).
Equation (23) is derived from Equation (29) upon iterating with Equations (17) and (18). Equation (24) is
derived from Equation (30) where A1 given by Equation (19), and both are iterated with Equations (17)
and (18). Continuing in the same way, Equations (25)–(27) are obtained by iterations, mathematical
calculations and simplification.

Theorem 3. For j ≥ 1. S
[
smN (x, α) cm2 (x, α)

]
is given by the following Quasi C fractions:

1.

S
[
cm2 (x, α)

]
:=

1
(1− 2αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j− 2)(3j− 1)2(1 + (3j + 1)αu)

b2j(u) = Y3j−1

a2j+1(u) = (3j)2(3j + 1)(1 + (3j− 2)αu)

b2j+1(u) = (1− (6j + 2)αu).

(31)

2.

S
[
sm (x, α) cm2 (x, α)

]
:=

1
(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu)

× u
(1− 4αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j− 1)(3j)2(1 + (3j + 2)αu)

b2j(u) = Y3j

a2j+1(u) = (3j + 1)2(3j + 2)(1 + (3j− 1)αu)

b2j+1(u) = (1− (6j + 4)αu).

(32)
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3.

S
[
sm2 (x, α) cm2 (x, α)

]
:=

u
(1− 3αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)2(3j)

b2j(u) = (1− 2(3j)αu)(1 + (3j)αu)

a2j+1 = (3j)(3j + 1)2

b2j+1(u) = (1− (6j + 3)αu)

× 2u
(1− 6αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j)(3j + 1)2(1 + (3j + 3)αu)

b2j(u) = Y3j+1

a2j+1(u) = (3j + 2)2(3j + 3)(1 + (3j)αu)

b2j+1(u) = (1− (6j + 6)αu).

(33)

4.

S
[
sm3 (x, α) cm2 (x, α)

]
:=

u
(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

× 2u
(1− 5αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j)2(3j + 1)

b2j(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

a2j+1 = (3j + 1)(3j + 2)2

b2j+1(u) = (1− (6j + 5)αu)

× 3u
(1− 8αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j + 1)(3j + 2)2(1 + (3j + 4)αu)

b2j(u) = Y3j+2

a2j+1(u) = (3j + 3)2(3j + 4)(1 + (3j + 1)αu)

b2j+1(u) = (1− (6j + 8)αu).

(34)

5. For N = 4, 7, 10, 13, · · · .

S
[
smN (x, α) cm2 (x, α)

]
:=

1
(1− αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)2(3j− 1)

b2j(u) = (1− 2(3j− 1)αu)(1 + (3j− 1)αu)

a2j+1 = (3j− 1)(3j)2

b2j+1(u) = (1− (6j + 1)αu)

×
N−1

3

∏
i=1

(3i− 2)(3i− 1)u2

(1− 2(3i− 1)αu)(1 + (3i− 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 4)(3j + 3i− 3)2

b2j(u) = (1− (6j + 6i− 5)αu)

a2j+1 = (3j + 3i− 2)2(3j + 3i− 1)

b2j+1(u) = (1− 2(3j + 3i− 1)αu)(1 + (3j + 3i− 1)αu)

×
N−1

3

∏
i=1

(3i)u
(1− (6i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)2(3j + 3i− 1)

b2j(u) = (1− 2(3j + 3i− 1)αu)(1 + (3j + 3i− 1)αu)

a2j+1 = (3j + 3i− 1)(3j + 3i)2

b2j+1(u) = (1− (6j + 6i + 1)αu)

× Nu
(1− (2(N + 1))αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j + N − 2)(3j + N − 1)2(1 + (3j + N + 1)αu)

b2j(u) = Y3j+N−1

a2j+1(u) = (3j + N)2(3j + N + 1)(1 + (3j + N − 2)αu)

b2j+1(u) = (1− (6j + 2(N + 1))αu).

(35)
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6. For N = 5, 8, 11, 14, · · · .

S
[
smN (x, α) cm2 (x, α)

]
:=

u
(1− 3αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 1)2(3j)

b2j(u) = (1− 2(3j)αu)(1 + (3j)αu)

a2j+1 = (3j)(3j + 1)2

b2j+1(u) = (1− (6j + 3)αu)

×
N−2

3

∏
i=1

(3i− 1)(3i)u2

(1− 2(3i)αu)(1 + (3i)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 3)(3j + 3i− 2)2

b2j(u) = (1− (6j + 6i− 3)αu)

a2j+1 = (3j + 3i− 1)2(3j + 3i)

b2j+1(u) = (1− 2(3j + 3i)αu)(1 + (3j + 3i)αu)

×
N−2

3

∏
i=1

(3i + 1)u
(1− (6i + 3)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 1)2(3j + 3i)

b2j(u) = (1− 2(3j + 3i)αu)(1 + (3j + 3i)αu)

a2j+1 = (3j + 3i)(3j + 3i + 1)2

b2j+1(u) = (1− (6j + 6i + 3)αu)

× Nu
(1− (2(N + 1))αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j + N − 2)(3j + N − 1)2(1 + (3j + N + 1)αu)

b2j(u) = Y3j+N−1

a2j+1(u) = (3j + N)2(3j + N + 1)(1 + (3j + N − 2)αu)

b2j+1(u) = (1− (6j + 2(N + 1))αu).

(36)

7. For N = 6, 9, 12, 15, · · · .

S
[
smN (x, α) cm2 (x, α)

]
:=

u
(1− 2αu)(1 + αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j− 2)(3j− 1)2

b2j(u) = (1− (6j− 1)αu)

a2j+1 = (3j)2(3j + 1)

b2j+1(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

× 2u
(1− 5αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j)2(3j + 1)

b2j(u) = (1− 2(3j + 1)αu)(1 + (3j + 1)αu)

a2j+1 = (3j + 1)(3j + 2)2

b2j+1(u) = (1− (6j + 5)αu)

×
N−3

3

∏
i=1

(3i)(3i + 1)u2

(1− 2(3i + 1)αu)(1 + (3i + 1)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i− 2)(3j + 3i− 1)2

b2j(u) = (1− (6j + 6i− 1)αu)

a2j+1 = (3j + 3i)2(3j + 3i + 1)

b2j+1(u) = (1− 2(3j + 3i + 1)αu)(1 + (3j + 3i + 1)αu)

×
N−3

3

∏
i=1

(3i + 2)u
(1− (6i + 5)αu)+

∞

K
n=2

anu3

bn(u)


a2j = (3j + 3i)2(3j + 3i + 1)

b2j(u) = (1− 2(3j + 3i + 1)αu)(1 + (3j + 3i + 1)αu)

a2j+1 = (3j + 3i + 1)(3j + 3i + 2)2

b2j+1(u) = (1− (6j + 6i + 5)αu)

× Nu
(1− (2(N + 1))αu)+

∞

K
n=2

an(u)u3

bn(u)


a2j(u) = (3j + N − 2)(3j + N − 1)2(1 + (3j + N + 1)αu)

b2j(u) = Y3j+N−1

a2j+1(u) = (3j + N)2(3j + N + 1)(1 + (3j + N − 2)αu)

b2j+1(u) = (1− (6j + 2(N + 1))αu).

(37)
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Proof. Evaluating by parts, Equation (16) gives:

C0 := 1− 2uB2 + 2αuC0.

C1 := uB0 − 3uB3 + 4αuC1.

C2 := 2uB1 − 4uB4 + 6αuC2.

C3 := 3uB2 − 5uB5 + 8αuC3.

CN := NuBN−1 − (N + 2)uBN+2 + (2N + 2)αuCN .

Solving with recurrences of Equations (14) and (15) yields the quasi C fractions:

CN
BN−1

:=
Nu

(1− (2N + 2)αu) + (N + 2)u BN+2
CN

; (N ≥ 1). (38)

BN
CN−2

:=
(N − 1)N(1 + (N + 2)αu)u2

YN + (N + 1)(N + 2)(1 + (N − 1)αu)u2 CN+1
BN

; (N ≥ 2). (39)

where,

YN = YN(u, α) := (1− (2N + 1)αu)(1 + (N − 1)αu)(1 + (N + 2)αu). (40)

For N = 0, 1 and 2 in Equation (16).

C0 :=
1

(1− 2αu) + 2u B2
C0

. (41)

C1 := B0 ×
u

(1− 4αu) + 3u B3
C1

. (42)

C2 := B1 ×
2u

(1− 6αu) + 4u B4
C2

. (43)

Hence, Equation (31) is obtained by iterating Equations (38) and (39) starting with Equation (41).
Equation (32) is obtained from Equation (42) with B0 given by Equation (28) iterating both respectively
with Equations (17), (18) and Equations (38), (39). Following the same way, Equation (33) is obtained
from Equation (43). Equations (34)–(37) are derived by continuous iteration of Equations (38) and (39),
giving the results.

4. Hankel Determinants of the Dixon Elliptic Functions (α 6= 0)

By assuming the denominator of the quasi C fractions as one, Lemma 1 is applied to the coefficients of
the quasi C fractions for deriving the Hankel determinants of non-zero modulus. In Lemma 1, H(1)

(.) ([cv])

represents the Hankel determinants of Dixon elliptic functions with α = 0, which are calculated from
the associated continued fractions. As quasi C fractions are derived in this work, the quasi associated
continued fractions are considered, which were discussed in detail by the authors in [23]. Therefore,
H(1)
(.) ([cv]) of Lemma 1 is taken from [23], which are Hankel determinants of the non-zero modulus Dixon

elliptic functions.
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Theorem 4. Hankel determinants of the Dixon elliptic function smN (x, α) are given by the following equations:

1.

H(2)
m
(
[sm(x, α)]3v+1

)
:=



−4(1− 5αu) ; m = 1. (44)

2400(1− 5αu)2E4 ; m = 2. (45)

(−1)m6(m−1)(1− 5αu)m
m−1

∏
j=0

E(m−j−1)
3j+4

m−2

∏
j=1

H(m−j−1)
3j+1

×
m

∏
j=1

(3j− 2)(3j− 1)2 ; m ≥ 3. (46)

2.

H(2)
m

([
sm2(x, α)

]
3v+2

)
:=


−36(1− 7αu) ; m = 1. (47)

(−1)m2m(1− 7αu)m
m−1

∏
j=1

E(m−j)
3j+2 H(m−j)

3j−1

m

∏
j=1

(3j− 1)(3j)2 ; m ≥ 2. (48)

3. For N = 3, 6, 9, 12, · · · .

H(2)
m

([
smN(x, α)

]
3v+N

)
:=


−(3i)(3i + 1)2E3i ; m = 1. (49)

(−1)mEm
3i

m−1

∏
j=1

E(m−j)
3j+3i H(m−j)

3j+3i−3

m

∏
j=1

(3j + 3i− 3)(3j + 3i− 2)2 ; m ≥ 2. (50)

where i = 1, 2, 3, · · · , N
3 .

4. For N = 4, 7, 10, 13, · · · .

H(2)
m

([
smN(x, α)

]
3v+N

)
:=


−(3i + 1)(3i + 2)2E3i+1 ; m = 1. (51)

(−1)mEm
3i+1

m−1

∏
j=1

E(m−j)
3j+3i+1H(m−j)

3j+3i−2

m

∏
j=1

(3j + 3i− 2)(3j + 3i− 1)2 ; m ≥ 2. (52)

where i = 1, 2, 3, · · · , N−1
3 .

5. For N = 5, 8, 11, 14, · · · .

H(2)
m

([
smN(x, α)

]
3v+N

)
:=


−(3i + 2)(3i + 3)2E3i ; m = 1. (53)

(−1)mEm
3i+2

m−1

∏
j=1

E(m−j)
3j+3i+2H(m−j)

3j+3i−1

m

∏
j=1

(3j + 3i− 1)(3j + 3i)2 ; m ≥ 2. (54)

where i = 1, 2, 3, · · · , N−2
3 .

Here, E(.) and H(.) are given by the following polynomials for N ≥ 3 from [23].

EN := (N − 2)(N − 1)N(1− (2N + 3)αu).

HN := N(N + 1)(N + 2)(1− (2N − 3)αu).
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Proof. Let
[
smN(x, α)

]
3v+N denote the coefficients in the Maclaurin series of smN(x, α).

smN(x, α) :=
∞

∑
v=0

[smN(x, α)]3v+N x3v+N

(3v + N)!
; N = 1, 2, 3, · · · .

Assuming the denominators of Theorem 1 as unity and applying Equation (8) of Lemma 1 to the
coefficients of Equations (9)–(13) (where H(1)

(.) (.) are the Hankel determinants of the quasi associated
continued fraction given in [23]), iterating and simplifying complete the proof.

Theorem 5. Hankel determinants of the Dixon elliptic function smN (x, α) cm (x, α) are given by the
following equations:

1.

H(2)
m ([cm(x, α)]3v) :=


−2P∗0 ; m = 1. (55)

960(P∗0 )
2P3 ; m = 2. (56)

(−1)m6m−1(P∗0 )
mPm−1

3

m−2

∏
j=1

S(m−j−1)
3j P(m−j−1)

3j+3

m

∏
j=1

(3j− 2)2(3j− 1) ; m ≥ 3. (57)

2.

H(2)
m
(
[sm(x, α)cm(x, α)]3v+1

)
:=


−12P∗1 ; m = 1. (58)

(−1)m(P∗1 )
m

m−1

∏
j=1

S(m−j)
3j−2 P(m−j)

3j+1

m

∏
j=1

(3j− 1)2(3j) ; m ≥ 2. (59)

3.

H(2)
m

([
sm2(x, α)cm(x, α)

]
3v+2

)
:=


−72P∗2 ; m = 1. (60)

(−1)m2m(P∗2 )
m

m−1

∏
j=1

S(m−j)
3j−1 P(m−j)

3j+2

m

∏
j=1

(3j)2(3j + 1) ; m ≥ 2. (61)

4. For N = 3, 6, 9, 12, · · · .

H(2)
m

([
smN(x, α)cm(x, α)

]
3v+N

)
:=



−(3i + 1)2(3i + 2)P3i ; m = 1. (62)

(−1)m(P3i)
m

m−1

∏
j=1

S(m−j)
3j+3i−3P(m−j)

3j+3i

×
m

∏
j=1

(3j + 3i− 2)2(3j + 3i− 1) ; m ≥ 2, (63)

where i = 1, 2, 3, · · · N
3 .

5. For N = 4, 7, 10, 13, · · · .

H(2)
m

([
smN(x, α)cm(x, α)

]
3v+N

)
:=



−(3i + 2)2(3i + 3)P3i+1 ; m = 1. (64)

(−1)m(P3i+1)
m

m−1

∏
j=1

S(m−j)
3j+3i−2P(m−j)

3j+3i+1

×
m

∏
j=1

(3j + 3i− 1)2(3j + 3i) ; m ≥ 2, (65)
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where i = 1, 2, 3, · · · N−1
3 .

6. For N = 5, 8, 11, 14, · · · .

H(2)
m

([
smN(x, α)cm(x, α)

]
3v+N

)
:=



−(3i + 3)2(3i + 4)P3i+2 ; m = 1. (66)

(−1)m(P3i+2)
m

m−1

∏
j=1

S(m−j)
3j+3i−1P(m−j)

3j+3i+2

×
m

∏
j=1

(3j + 3i)2(3j + 3i + 1) ; m ≥ 2, (67)

where i = 1, 2, 3, · · · N−2
3 .

Here, P∗(.) and S(.) are given by the following polynomials in [23].

P∗0 (u, α) :=(1− 4αu)(1 + 2αu).

P∗1 (u, α) :=(1− 6αu)(1 + 3αu).

P∗2 (u, α) :=(1− 8αu)(1 + 4αu).

PN(u, α) :=(N − 2)(N − 1)N(1− (2N + 4)αu)(1 + (N + 2)αu) ; (N ≥ 3).

SN(u, α) :=(N + 1)(N + 2)(N + 3)(1− (2N − 2)αu)(1 + (N − 1)αu) ; (N ≥ 1).

Proof. Let
[
smN(x, α)cm(x, α)

]
3v+N denote the coefficients of series for smN(x, α)cm(x, α).

smN(x, α)cm(x, α) :=
∞

∑
v=0

[smN(x, α)cm(x, α)]3v+N x3v+N

(3v + N)!
; N = 0, 1, 2, · · · .

Assuming the denominator of Theorem 2 as unity and applying the coefficients of Theorem 2 in
Equation (8) of Lemma 1 (where H(1)

(.) (.) are the Hankel determinants of the quasi associated continued
fraction given in [23]), iterating and simplifying complete the proof.

Theorem 6. Hankel determinants of the Dixon elliptic function smN (x, α) cm2 (x, α) are given by the
following equations:

1.

H(2)
m

([
cm2(x, α)

]
3v

)
:=



−4T∗0 (1 + 4αu) ; m = 1. (68)

400(T∗0 )
2X∗0 T3(1 + 4αu)(1 + 7αu) ; m = 2. (69)

(−1)m(T∗0 )
m(X∗0 )

m−1Tm−1
3

m−2

∏
j=1

X(m−j−1)
3j T(m−j−1)

3j+3

×
m

∏
j=1

(3j− 2)(3j− 1)2(1 + (3j + 1)αu) ; m ≥ 3. (70)
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2.

H(2)
m

([
sm(x, α)cm2(x, α)

]
3v+1

)
:=



−18T∗1 (1 + 5αu) ; m = 1. (71)

3240(T∗1 )
2X∗1 T4(1 + 5αu)(1 + 8αu) ; m = 2. (72)

(−1)m(T∗1 )
m(X∗1 )

m−1Tm−1
4

m−2

∏
j=1

X(m−j−1)
3j+1 T(m−j−1)

3j+4

×
m

∏
j=1

(3j− 1)(3j)2(1 + (3j + 2)αu) ; m ≥ 3. (73)

3.

H(2)
m

([
sm2(x, α)cm2(x, α)

]
3v+1

)
:=



−48T∗2 (1 + 6αu) ; m = 1. (74)

(−1)m(T∗2 )
m

m−1

∏
j=1

X(m−j)
3j−1 T(m−j)

3j+2

×
m

∏
j=1

(3j)(3j + 1)2(1 + (3j + 3)αu) ; m ≥ 2. (75)

4.

H(2)
m

([
sm3(x, α)cm2(x, α)

]
3v+3

)
:=



−100T3(1 + 7αu) ; m = 1. (76)

(−1)mTm
3

m−1

∏
j=1

X(m−j)
3j T(m−j)

3j+3

×
m

∏
j=1

(3j + 1)(3j + 2)2(1 + (3j + 4)αu) ; m ≥ 2. (77)

5. For N = 4, 7, 10, 13, · · · .

H(2)
m

([
smN(x, α)cm2(x, α)

]
3v+N

)
:=



−(3i + 2)(3i + 3)2(1 + (3i + 5)αu)T3i+1 ; m = 1. (78)

(−1)mTm
3i+1

m−1

∏
j=1

X(m−j)
3j+3i−2T(m−j)

3j+3i+1

×
m

∏
j=1

(3j + 3i− 1)(3j + 3i)2(1 + (3j + 3i + 2)αu) ; m ≥ 2, (79)

where i = 1, 2, 3, · · · N−1
3 .

6. For N = 5, 8, 11, 14, · · · .

H(2)
m

([
smN(x, α)cm2(x, α)

]
3v+N

)
:=



−(3i + 3)(3i + 4)2(1 + (3i + 6)αu)T3i+2 ; m = 1. (80)

(−1)mTm
3i+2

m−1

∏
j=1

X(m−j)
3j+3i−1T(m−j)

3j+3i+2

×
m

∏
j=1

(3j + 3i)(3j + 3i + 1)2(1 + (3j + 3i + 3)αu) ; m ≥ 2, (81)

where i = 1, 2, 3, · · · N−2
3 .
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7. For N = 6, 9, 12, 15, · · · .

H(2)
m

([
smN(x, α)cm2(x, α)

]
3v+N

)
:=



−(3i + 4)(3i + 5)2(1 + (3i + 7)αu)T3i+3 ; m = 1. (82)

(−1)mTm
3i+3

m−1

∏
j=1

X(m−j)
3j+3i T(m−j)

3j+3i+3

×
m

∏
j=1

(3j + 3i + 1)(3j + 3i + 2)2(1 + (3j + 3i + 4)αu) ; m ≥ 2,

(83)

where i = 1, 2, 3, · · · N−3
3 .

Here, T∗(.) , X∗(.) , T(.) and X(.) are given by the following polynomials in [23].

T∗0 (u, α) :=(1 + αu)(1 + 4αu)(1− 5αu).

X∗0 (u, α) :=24(1 + αu).

T∗1 (u, α) :=(1 + 2αu)(1− 7αu)(1 + 5αu).

X∗1 (u, α) :=60(1− αu)(1 + 2αu).

T∗2 (u, α) :=2(1 + 3αu)(1− 9αu)(1 + 6αu).

TN(u, α) :=(N − 2)(N − 1)N(1 + (N + 1)αu)(1 + (N + 4)αu)(1− (2N + 5)αu) ; (N ≥ 3).

XN(u, α) :=(N + 2)(N + 3)(N + 4)(1 + (N + 1)αu)(1 + (N − 2)αu)(1− (2N − 1)αu) ; (N ≥ 1).

Proof. Let
[
smN(x, α)cm2(x, α)

]
3v+N denote the coefficients in the series of smN(x, α)cm2(x, α).

smN(x, α)cm2(x, α) :=
∞

∑
v=0

[smN(x, α)cm2(x, α)]3v+N x3v+N

(3v + N)!
; N = 0, 1, 2, · · · .

Assuming the denominator of Theorem 3 as unity and iterating by applying the coefficients of
Equations (31)–(37) in Equation (8) of Lemma 1 (where H(1)

(.) (.) are the Hankel determinants of the quasi
associated continued fraction given in [23]) give the Hankel determinants.

5. Applications and Numerical Examples

The Hankel determinants of the Dixon elliptic functions with zero modulus are obtained by
substituting the modulus α = 0 in Theorems 4–6. When α = 0 in Equations (44)–(46), this gives the
H(2)

m (.) of sm (x, 0), which are given in Table 1 for the different values of m. When α = 0 in Equations (47)
and (48), this gives the H(2)

m (.) of sm2 (x, 0), which are given in Table 1 for the different values of m.
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Table 1. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm (x, 0) and sm2 (x, 0) for m from 1–10.

m H(2)
m (sm (x, 0)) H(2)

m
(
sm2 (x, 0)

)
1 −22 −22 32

2 28 32 52 210 36 52

3 −222 36 54 72 −224 314 54 72

4 238 314 58 74 112 244 324 58 74 112

5 −260 324 512 78 114 132 −266 336 514 78 114 132

6 290 336 518 712 116 134 172 298 352 520 712 116 134 172

7 −2126 352 526 716 118 136 174 192 −2134 370 528 718 118 136 174 192

8 2164 370 534 722 1112 138 176 194 232 2178 390 536 724 1112 138 176 194 232

9 −2210 390 546 728 1116 1312 178 196 234 −2224 3116 548 730 1116 1312 178 196 234

10 2260 3116 558 736 1120 1316 1710 198 236 292 2276 3144 562 738 1120 1316 1710 198 236 292

When α = 0 in Equations (49) and (50) and i = 1, this gives the H(2)
m (.) of sm3 (x, 0), which are

given in Table 2 for the different values of m. Similarly, when i = 2 in Equations (49) and (50), this gives
the H(2)

m (.) of sm6 (x, α), and when i = 3 in Equations (49) and (50), this gives the H(2)
m (.) of sm9 (x, α).

Substituting α = 0 in Equations (51) and (52) and when i = 2, this gives the H(2)
m (.) of sm4 (x, 0), which are

given in Table 2 for the different values of m. In the same way, when i = 2, i = 3 in Equations (51) and (52),
this gives the H(2)

m (.) of the respective sm7 (x, α) and sm10 (x, α).

Table 2. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm3 (x, 0) and sm4 (x, 0) for m from 110.

m H(2)
m
(
sm3 (x, 0)

)
H(2)

m (sm4 (x, 0))

1 −25 32 −3 25 52

2 212 36 52 72 218 34 54 72

3 −227 314 56 74 −233 311 58 74 112

4 246 324 510 76 112 132 254 320 512 78 114 132

5 −275 336 516 710 114 134 −283 331 518 712 116 134 172

6 2106 352 522 714 116 136 172 192 2118 346 526 716 118 136 174 192

7 −2143 370 530 720 1110 138 174 194 −2155 363 534 722 1112 138 176 194 232

8 2186 390 542 726 1114 1310 176 196 232 2200 382 546 728 1116 1312 178 196 234

9 −2235 3116 554 734 1118 1314 178 198 234 −2249 3107 558 736 1120 1316 1710 198 236 292

10 2286 3144 568 742 1122 1318 1710 1910 236 292 312 2310 3134 572 744 1124 1320 1712 1910 238 294 312

When α = 0 in Equations (53) and (54) and i = 1, this gives the H(2)
m (.) of sm5 (x, 0), which are given

in Table 3 for the different values of m. Next, when i = 2, i = 3 in Equations (53) and (54), this gives the
H(2)

m (.) of sm8 (x, α) and sm11 (x, α), respectively. When α = 0 in Equations (55)–(57), this gives the H(2)
m (.)

of cm (x, 0), which are given in Table 3 for the different values of m.
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Table 3. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm5 (x, 0) and cm (x, 0) for m from 1–10.

m H(2)
m
(
sm5 (x, 0)

)
H(2)

m (cm (x, 0))

1 −24 33 52 −2

2 214 310 54 72 5 27 32

3 −230 319 58 74 112 −218 36 53 72

4 248 330 514 78 114 132 11 234 314 57 74

5 −276 345 520 712 116 134 172 −255 324 511 77 113 132

6 2108 362 528 718 118 136 174 192 17 285 336 517 711 115 134

7 −2148 381 536 724 1112 138 176 194 232 −2119 352 524 715 117 136 173 192

8 2190 3106 548 730 1116 1312 178 196 234 23 2157 370 532 721 1111 138 175 194

9 −2238 3133 562 738 1120 1316 1710 198 236 292 −2202 390 544 727 1115 1311 177 196 233

10 2296 3162 576 746 1126 1320 1712 1910 238 294 312 29 2252 3116 556 735 1119 1315 179 198 235

When α = 0 in Equations (58) and (59), this gives the H(2)
m (.) of sm (x, 0) cm (x, 0), which are given

in Table 4 for the different values of m. When α = 0 in Equations (60) and (61), this gives the H(2)
m (.) of

sm2 (x, 0) cm (x, 0), which are given in Table 4 for the different values of m.

Table 4. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm (x, 0) cm (x, 0) and

sm2 (x, 0) cm (x, 0) for m from 1–10.

m H(2)
m (sm (x, 0) cm (x, 0)) H(2)

m
(
sm2 (x, 0) cm (x, 0)

)
1 −3 22 −23 32

2 29 34 52 7 210 36 52

3 −223 310 54 72 −224 314 55 73

4 241 319 58 74 112 13 243 324 59 75 112

5 −263 330 513 78 114 132 −268 336 515 79 114 133

6 294 344 519 712 116 134 172 19 299 352 521 713 116 135 172

7 −2130 361 527 717 118 136 174 192 −2135 370 529 719 119 137 174 193

8 2171 380 535 723 1112 138 176 194 232 2178 390 539 725 1113 139 176 195 232

9 −2217 3103 547 729 1116 1312 178 196 234 −2225 3116 551 732 1117 1313 178 197 234

10 2268 3130 560 737 1120 1316 1710 198 236 292 31 2276 3144 565 740 1121 1317 1710 199 236 292

When α = 0 in Equations (62) and (63) and i = 1, this gives the H(2)
m (.) of sm3 (x, 0) cm (x, 0),

which are given in Table 5 for the different values of m. When i = 2, i = 3 in Equations (62) and (63),
this gives H(2)

m (.) of sm6 (x, 0) cm (x, α) and sm9 (x, 0) cm (x, α), respectively. Next, when α = 0 in
Equations (64) and (65) and i = 1, this gives the H(2)

m (.) of sm4 (x, 0) cm (x, 0), which are given in Table 5
for the different values of m. Furthermore, when i = 2 and i = 3 in Equations (64) and (65) and i = 1,
this gives H(2)

m (.) of sm7 (x, α) cm (x, α) and sm10 (x, α) cm (x, α), respectively.
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Table 5. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm3 (x, 0) cm (x, 0) and

sm4 (x, 0) cm (x, 0) for m from 1–10.

m H(2)
m
(
sm3 (x, 0) cm (x, 0)

)
H(2)

m (sm4 (x, 0) cm (x, 0))

1 −3 25 5 −24 32 52

2 215 34 53 72 215 37 54 72

3 −11 230 311 57 74 −230 315 58 74 112

4 250 320 511 77 113 132 249 325 513 78 114 132

5 −17 279 331 517 711 115 134 −277 338 519 712 116 134 172

6 2112 346 524 715 117 136 173 192 2110 354 527 717 118 136 174 192

7 −23 2149 363 532 721 1111 138 175 194 −2148 372 535 723 1112 138 176 194 232

8 2193 382 544 727 1115 1311 177 196 233 2191 394 547 729 1116 1312 178 196 234

9 −29 2242 3107 556 735 1119 1315 179 198 235 −2239 3120 560 737 1120 1316 1710 198 236 292

10 2298 3134 570 743 1123 1319 1711 1910 237 293 312 2298 3148 574 745 1125 1320 1712 1910 238 294 312

When α = 0 in Equations (66) and (67) and i = 1, this gives the H(2)
m (.) of sm5 (x, 0) cm (x, 0),

which are given in Table 6 for the different values of m. In the same Equations (66) and (67), substituting
i = 2 and i = 3 give the H(2)

m (.) of sm8 (x, α) cm (x, α) and sm11 (x, α) cm (x, α), respectively. When α = 0
in Equations (68)–(70), this gives the H(2)

m (.) of cm2 (x, 0), which are given in Table 6 for the different
values of m.

Table 6. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm5 (x, 0) cm (x, 0) and cm2 (x, 0) for m from 1–10.

m H(2)
m
(
sm5 (x, 0) cm (x, 0)

)
H(2)

m
(
cm2 (x, 0)

)
1 −5 24 33 7 −22

2 215 310 53 73 28 32 52

3 −13 231 319 56 75 112 −222 36 54 72

4 253 330 511 79 114 133 238 314 58 74 112

5 −19 281 345 516 713 116 135 172 −260 324 512 78 114 132

6 2114 362 523 719 119 137 174 193 290 336 518 712 116 134 172

7 −2154 381 532 725 1113 139 176 195 232 −2126 352 526 716 118 136 174 192

8 2198 3106 543 732 1117 1313 178 197 234 2164 370 534 722 1112 138 176 194 232

9 −31 2246 3133 556 740 1121 1317 1710 199 236 292 −2210 390 546 728 1116 1312 178 196 234

10 2305 3162 569 748 1127 1321 1713 1911 238 294 313 2260 3116 558 736 1120 1316 1710 198 236 292

When α = 0 in Equations (71)–(73), this gives the H(2)
m (.) of sm (x, 0) cm2 (x, 0), which are given in

Table 7 for the different values of m. Next, when α = 0 in Equations (74) and (75), this gives the H(2)
m (.) of

sm2 (x, 0) cm2 (x, 0), which are given in Table 7 for the different values of m.
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Table 7. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm (x, 0) cm2 (x, 0) and

sm2 (x, 0) cm2 (x, 0) for m from 1–10.

m H(2)
m
(
sm (x, 0) cm2 (x, 0)

)
H(2)

m
(
sm2 (x, 0) cm2 (x, 0)

)
1 −2 32 −3 25

2 28 36 52 212 34 52 72

3 −221 314 54 72 −227 311 56 74

4 240 324 58 74 112 246 320 510 76 112 132

5 −261 336 514 78 114 132 −275 331 516 710 114 134

6 292 352 520 712 116 134 172 2106 346 522 714 116 136 172 192

7 −2127 370 528 718 118 136 174 192 −2143 363 530 720 1110 138 174 194

8 2170 390 536 724 1112 138 176 194 232 2186 382 542 726 1114 1310 176 196 232

9 −2215 3116 548 730 1116 1312 178 196 234 −2235 3107 554 734 1118 1314 178 198 234

10 2266 3144 562 738 1120 1316 1710 198 236 292 2286 3134 568 742 1122 1318 1710 1910 236 292 312

When α = 0 in Equations (76) and (77), this gives the H(2)
m (.) of sm3 (x, 0) cm2 (x, 0), which are given

in Table 8 for the different values of m. When α = 0 and i = 1 in Equations (78) and (79), this gives
the H(2)

m (.) of sm4 (x, 0) cm2 (x, 0), which are given in Table 8 for the different values of m. Furthermore,
note that for i = 2 and i = 3 in Equations (78) and (79), this gives the H(2)

m (.) of sm7 (x, α) cm2 (x, α) and
sm10 (x, α) cm2 (x, α), respectively.

Table 8. Hankel determinants H(2)
m (.) of the Dixon elliptic functions sm3 (x, 0) cm2 (x, 0) and

sm4 (x, 0) cm2 (x, 0) for m from 1–10.

m H(2)
m
(
sm3 (x, 0) cm2 (x, 0)

)
H(2)

m (sm4 (x, 0) cm2 (x, 0))

1 −3 23 52 −5 25 33

2 214 34 54 72 216 310 52 72

3 −227 311 58 74 112 −233 319 55 74 112

4 246 320 512 78 114 132 252 330 510 78 114 132

5 −273 331 518 712 116 134 172 −281 345 515 712 116 134 172

6 2106 346 526 716 118 136 174 192 2114 362 522 718 118 136 174 192

7 −2141 363 534 722 1112 138 176 194 232 −2155 381 529 724 1112 138 176 194 232

8 2184 382 546 728 1116 1312 178 196 234 2198 3106 540 730 1116 1312 178 196 234

9 −2231 3107 558 736 1120 1316 1710 198 236 292 −2247 3133 553 738 1120 1316 1710 198 236 292

10 2290 3134 572 744 1124 1320 1712 1910 238 294 312 2306 3162 566 746 1126 1320 1712 1910 238 294 312

When α = 0 and i = 1 in Equations (80) and (81), this gives the H(2)
m (.) of sm5 (x, 0) cm2 (x, 0),

which are given in Table 9 for the different values of m. In the same way, for i = 2 and
i = 3 in Equations (80) and (81), this gives the H(2)

m (.) of the respective sm8 (x, α) cm2 (x, α) and
sm11 (x, α) cm2 (x, α). When α = 0 and i = 1 in Equations (82) and (83), this gives the H(2)

m (.)
of sm6 (x, 0) cm2 (x, 0), which are given in Table 9 for the different values of m. For i = 2 and
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i = 3 in Equations (82) and (83), this gives the H(2)
m (.) of the respective sm9 (x, α) cm2 (x, α) and

sm12 (x, α) cm2 (x, α).

Table 9. Hankel determinants H(2)
m (.) of the Dixon elliptic function sm5 (x, 0) cm2 (x, 0) and

sm6 (x, 0) cm2 (x, 0) for m from 1–10.

m H(2)
m
(
sm5 (x, 0) cm2 (x, 0)

)
H(2)

m
(
sm6 (x, 0) cm2 (x, 0)

)
1 −5 23 32 72 −7 3 29 5

2 214 38 54 74 220 36 54 72 112

3 −229 316 57 76 112 132 −237 313 57 75 114 132

4 254 326 512 710 114 134 262 322 512 78 116 134 172

5 −281 340 517 714 116 136 172 192 −293 335 519 711 118 136 174 192

6 2114 356 524 720 1110 138 174 194 2126 350 526 716 1112 138 176 194 232

7 −2153 374 535 726 1114 1310 176 196 232 −2167 367 537 721 1116 1312 178 196 234

8 2198 398 546 734 1118 1314 178 198 234 2212 390 548 728 1120 1316 1710 198 236 292

9 −2245 3124 559 742 1122 1318 1710 1910 236 292 312 −2269 3115 561 735 1124 1320 1712 1910 238 294 312

10 2304 3152 572 750 1128 1322 1714 1912 238 294 314 2328 3142 576 744 1130 1324 1716 1912 2310 296 314

6. Results and Discussion

Multiplying Equation (9) with u gives the Laplace transform of sm(x, α) in [5] (Theorem 19,
page 61 [5]). Multiplication of u in Equations (22) and (23) gives the results given in [5] (Theorems
20 and 21, respectively, pp. 62–63 [5]). The remaining results in Theorems 1–3 appearing in this work
are new to the literature reviewed. Letting α = 0 in Equations (44)–(46) gives the results in [5] (H(2)

m (.) in
Theorem 16, pp. 57–58 [5]). When α = 0 in Equations (55)–(57) and Equations (58) and (59), this gives
the results in [5] (H(2)

m (.) of Theorems 17 and 18, pp. 58–59 [5]), respectively. The remaining results of
Theorems 4–6 are new to the literature reviewed.

7. Conclusions

In this research work, the Sumudu integral transform was applied to the non-zero modulus Dixon
elliptic functions to derive general three-term recurrences. Then, from the three-term recurrences, the quasi
C fractions were expanded. Next, by assuming the functions in the denominator of quasi C fractions as
one, the Hankel determinants H(2)

m (.) of the non-zero modulus Dixon elliptic functions were obtained
by using Lemma 1 in which Hankel determinants H(1)

m (.) were used from authors’ previous work [23].
In this approach, the non-zero modulus Dixon elliptic functions need not have their Maclaurin’s series
expanded for the H(2)

m (.) calculations. In Section 5, the H(2)
m (.) of certain Dixon functions with α = 0 were

given, which proves that the assumptions made in the denominator were true. Section 6 also ensured the
assumptions were correct and gave the previous results.

Author Contributions: Both authors contributed equally and both authors read and approved the final manuscript.

Acknowledgments: The authors are very grateful for the comments of the reviewers, which helped to improve the
present manuscript. Further, the second author is very grateful to Universiti Putra Malaysia for the partial support
under the research grant having Vote Number 9543000.

Conflicts of Interest: The authors declare no conflict of interest.



Fractal Fract. 2019, 3, 22 23 of 24

References

1. Al-Salam, W.; Carlitz, L. Some determinants of Bernoulli, Euler, and related numbers. Port. Math. 1959, 18, 91–99.
2. Carlitz, L. Some Orthogonal Polynomials Related to Elliptic Functions. Duke Math. J. 1960, 27, 443–459. [CrossRef]
3. Ismail, M.; Masson, D. Some continued fractions related to elliptic functions. Contemp. Math. 1999, 236, 149–166.
4. Milne, S.C. Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and

Schur functions. Ramanujan J. 2002, 6, 7–149. [CrossRef]
5. Conrad, E.V.F. Some Continued Fraction Expansions of Laplace Transforms of Elliptic Functions. Ph.D. Thesis,

The Ohio State University, Columbus, OH, USA, 2002.
6. Dixon, A.C. On the doubly periodic functions arising out of the curve x3 + y3 − 3αxy = 1. Q. J. Pure Appl. Math.

1890, 24, 167–233.
7. Dixon, A.C. The Elementary Properties of the Elliptic Functions with Examples; Macmillan and Co.: London, UK, 1894.
8. Dumont, D. Une approche combinatoire des fonctions elliptiques de Jacobi. Adv. Math. 1981, 1, 1–39.
9. Adams, O.S. Elliptic Functions Applied to Conformal World Maps; U. S. Coast and Geodetic Survey Special

Publications, No. 112; Government Printing Office: Washington, DC, USA, 1925.
10. Conrad, E.V.F.; Flajolet, P. The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion.

Semin. Lothar. Comb. 2006, 54, 1–44.
11. Bacher, R.; Flajolet, P. Pseudo-factorials, elliptic functions, and continued fractions. Ramanujan J. 2010, 21, 71–97.

[CrossRef]
12. Langer, J.C.; Singer, D.A. The Trefoil. Milan J. Math. 2013, 99, 1–23. [CrossRef]
13. Atangana, A.; Kılıçman, A. The Use of Sumudu Transform for Solving Certain Nonlinear Fractional Heat-Like

Equations. Abstr. Appl. Math. 2013, 2013, 737481. [CrossRef]
14. Ramadan, M.A.; Al-Luhaibi, M.S. Application of Sumudu Decomposition Method for Solving Linear and

Nonlinear Klein-Gordon Equations. Int. J. Soft Comput. Eng. 2014, 3, 138–141.
15. Mahdy, A.M.S.; Mohamed, A.S.; Mtawa, A.A.H. Implementation of the Homotopy Perturbation Sumudu

Transform Method for Solving Klein-Gordon Equation. Appl. Math. 2015, 6, 617–628. [CrossRef]
16. Kılıçman, A.; Gupta, V.G.; Sharma, B. On the Solution of Fractional Maxwell Equations by Sumudu Transform.

J. Math. Res. 2010, 2, 147–151.
17. Eltayeb, H.; Kılıçman, A. A Note on the Sumudu Transforms and Differential Equations. Appl. Math. Sci. 2010, 4,

1089–1098.
18. Singh, J.; Kumar, D.; Kılıçman, A. Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using

Sumudu Transform. Abstr. Appl. Anal. 2013, 2013, 934060. [CrossRef]
19. Belgacem, F.B.M.; Silambarasan, R. A distinctive Sumudu treatment of trigonometric functions. J. Comput.

Appl. Math. 2017, 312, 74–81. [CrossRef]
20. Belgacem, F.B.M.; Shemas, E.H.A.; Silambarasan, R. Sumudu computation of the transient magnetic field in a lossy

medium. Appl. Math. Inf. Sci. 2017, 11, 209–217. [CrossRef]
21. Belgacem, F.B.M.; Silambarasan, R. Further distinctive investigations of the Sumudu transform. AIP Conf. Proc.

2017, 1798, 020025.
22. Belgacem, F.B.M.; Silambarasan, R. Sumudu transform of Dumont bimodular Jacobi elliptic functions for arbitrary

powers. AIP Conf. Proc. 2017, 1798, 020026.
23. Kılıçman, A.; Silambarasan, R.; Altun, O. Quasi associated continued fractions and Hankel determinants of Dixon

elliptic functions via Sumudu transform. J. Nonlinear Sci. Appl. 2017, 10, 4000–4014.
24. Eltayeb, H.; Kılıçman, A. Application of Sumudu Decomposition Method to Solve Nonlinear System of Partial

Differential Equations. Abstr. Appl. Anal. 2012, 2012, 412948. [CrossRef]
25. Kılıçman, A.; Eltayeb, H.; Agarwal, R.P. On Sumudu Transform and System of Differential Equations.

Abstr. Appl. Anal. 2010, 2010, 598702.
26. Jones, W.B.; Thron, W.J. Continued Fractions: Analytic Theory and Applications; Encyclopedia of Mathematics and Its

Applications. 4; Addison-Wesley: Boston, MA, USA, 1980.
27. Lorentzen, L.; Waadeland, H. Continued Fractions with Application; North-Holland: Amsterdam, The Netherlands, 1992.

http://dx.doi.org/10.1215/S0012-7094-60-02742-3
http://dx.doi.org/10.1023/A:1014865816981
http://dx.doi.org/10.1007/s11139-009-9186-9
http://dx.doi.org/10.1007/s00032-013-0211-5
http://dx.doi.org/10.1155/2013/737481
http://dx.doi.org/10.4236/am.2015.63056
http://dx.doi.org/10.1155/2013/934060
http://dx.doi.org/10.1016/j.cam.2015.12.036
http://dx.doi.org/10.18576/amis/110126
http://dx.doi.org/10.1155/2012/412948


Fractal Fract. 2019, 3, 22 24 of 24

28. Wall, H.S. Note on the expansion of a power series into a continued fraction. Bull. Am. Math. Soc. 1945, 51, 97–105.
[CrossRef]

29. Wall, H.S. Analytic Theory of Continued Fractions; Chelsea Publications: London, UK, 1948.
30. Lawden, D. Elliptic Functions and Applications; Springer: New York, NY, USA, 1989.
31. Muir, T. A Treatise on the Theory of Determinants; Dover Publications: New York, NY, USA, 1960.
32. Belgacem, F.B.M.; Silambarasan, R. On Dixon elliptic functions and their Sumudu transforms: Connections to

associated continued fractions expansions and Hankel determinants. Nonlinear Stud. 2017, 24, 757–773.
33. Silambarasan, R.; Nisar, K.S.; Belgacem, F.B.M. Discrete inverse Sumudu transform application to Whittaker and

Zettl equations. AIP Conf. Proc. 2018, 2046, 020091.
34. Kılıçman, A.; Silambarasan, R. Computing new solutions of algebro-geometric equation using the discrete inverse

Sumudu transform. Adv. Differ. Equ. 2018, 2018, 323.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9904-1945-08280-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Quasi C Fractions' Expansions of the Dixon Elliptic Functions (=0)
	Hankel Determinants of the Dixon Elliptic Functions (=0)
	Applications and Numerical Examples
	Results and Discussion
	Conclusions
	References

