Adiguzel, Hakan2024-09-112024-09-1120181687-1847https://doi.org/10.1186/s13662-018-1905-3https://hdl.handle.net/11363/7954In this paper, we consider the oscillation behavior of solutions of the following fractional difference equation: (c(t) (a(t) (r(t) ax(t)))) + q(t) G(t) = 0, where t. Nt0+ 1-a, G(t) = t-1+ a s= t0 (t -s -1)-ax(s), and a denotes a Riemann-Liouville fractional difference operator of order 0 < a = 1. By using the generalized Riccati transformation technique, we obtain some oscillation criteria. Finally we give an example.eninfo:eu-repo/semantics/closedAccessOscillationOscillation criteriaFractional difference operatorRiemann-LiouvilleFractional difference equationsRiccati techniqueHardy inequalitiesOscillatory behavior of solutions of certain fractional difference equationsArticle10.1186/s13662-018-1905-32-s2.0-85057893863WOS:000452260000002Q1