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Beyond employing the degree days for assessing climatic situations and the expected energy 

needs, a subtle concern is the underpinning of the role of the environmental sustainability amidst 

socio-economic activities on the degree days. As such, the current study is design to examine the 

role of fossil fuel energy consumption, ecological footprint, and urban population on the degree 

days viz-a-vis the cooling and heating days in the United States over the period 1960-2015. The 

Autoregressive Distributed Lag bound testing model employed reveals the importance of the 

ecological footprint, fossil fuel energy consumption, and urban population on the cooling and 

heating degree days of the United States. Result posits that each of fossil fuel and the urban 

population plays a positive and negative role as regard the cooling degree days and the heating 

degree days respectively, especially in the long run. Importantly, the empirical results support the 

argument that the increase in the consumption of the fossil fuel sources of energies are 

responsible to cause more cooling degree days, thus resulting to longer and hotter periods in the 

United States but vice versa for the heating degree days. Similarly, the investigation outcome 

drams from the argument that the increase in the urban population is a potential cause of high 

environmental temperature, thus responsible for lengthy heat periods (cooling degree days) and 

resulting in more energy needs and technologies for cooling. Expectedly, the reverse is the case 

for the heating degree days, especially in the long-run. As a policy standpoint, policymakers are 

to further adopt improved and effective guideline for housing and building constructions that are 

weather specifics. In formulating policy vehicle for each of the seasonal dynamics, the economic 

benefits of each of the climatic measurements should be considered especially for both the short- 

and long-run environmental sustainability. 
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1. Introduction 



The twin problems of global warming and climate change have been a subject of discussion, 

deliberation and of concern among individuals, academic scholars, researchers, governments, 

private institutions and policymakers in recent time. The reason for this deliberation is not 

farfetched and can be traced to the potential threat global warming and climate change possess 

for the environment and ecosystem at large (Wang and Chen, 2014). According to the 

Intergovernmental Panel on Climate Change (IPCC) the rise in annual temperature between the 

periods 1960s-2100s has been projected to be within the interval of 1 - 7 K within several carbon 

dioxide emissions synopsis (Solomon et al., 2007). It was further argued that, solar radiation, 

wind and humidity would possibly change overtime, in addition to variations in temperature, 

which is as a result of an increase in metric ton per capita of CO2 emissions generated (Karl, 

Melillo and Peterson, 2009).  

Energy consumption would exercise large effect on residential energy demand for cooling and 

heating due to variation in outdoor conditions (Christenson, Manz & Gyalistras, 2006).  Le 

Compte and Warren (1981), Quayle and Diaz (1980) and Sailor and Munoz (1997) in their 

various empirical analysis have reported that energy consumption is highly associated with 

degree days for both cooling and heating. For an average outdoor temperature lower than 18◦C, 

most buildings require heating to maintain a 21◦C indoor temperature, and vice versa. The 

selection of 18◦C as the base outdoor temperature is as a result of the additional heat generated 

by occupants and their activities, leading to an average indoor temperature of 21◦C at 18◦C 

outdoors. On the other hand, the level of energy demand/consumed for heating and cooling is 

anticipated to decrease and/or increase, due to decrease and/or increase in global warming 

(Wilbanks, 2009). Although, the effect of climate change on cooling and heating energy demand 

of different states and/or locations are anticipated to differ because of their contrasting climate. 



Thus, a detailed empirical analysis is required to understand factors that determine the cooling 

and heating energy demand and the impact of climate change on the residential energy usage. 

This study seeks to fill this gap in energy literature. 

Going by the latest reports from the Residential Energy Consumption Survey (RECS) in 2015 air 

conditioning and space heating on average, accounted for about 54 percent of the United States 

residential end-use energy consumption and expenditures (Energy International Agency (EIA), 

2018). It is no news that variation in outdoor air-temperature is associated and are known to 

exercise significant effect on climate-related building energy consumption (see Fung, Lam, Hung 

et al 2006; Valor, Meneu and Caselles 2001) and thus have a significant impact on the 

population, the level of non-renewable and renewable energy demanded/consumed and on the 

metric ton per capita of carbon emissions generated. Thus, it is of interest to examine the role 

these macroeconomic variables play as a determinant, spatial patterns and the magnitude of 

cooling and heating demand, on environmental degradation most especially in the case of United 

States.  

This is due to the fact that, recently, the United States Climate Change Science Program 

investigated about 20 United States building energy sector responsiveness to global warming and 

concluded that, the aggregate forecasted average over the surveyed public studies is roughly 5 to 

20 percent energy increase for cooling per 1 C  of air-temperature increase and about 9 percent 

energy decrease for heating of air-temperature decrease. After all, the world average surface 

temperature in the year 2100 is anticipated to increase by 2.6 to 48 C  as argued by Collins et al 

(2013) under the Representative Concentration Pathways (RCP) 8.5 unabated high emissions 

framework, climate change is forecasted to change the existing balance among household 

cooling and heating needs all over the United States, likely triggering states with lower weathers 



to cosy and change some states from predominantly heating to predominantly cooling demand 

(see  Auffhammer & Mansur 2014; Wang & Chen 2014; Collins et al 2013; Wilbanks et al 

2008). Heating degree days have declined in the contiguous United States, particularly in recent 

years, as the climate has warmed. This change suggests that heating needs have decreased 

overall. While in general, the cooling degree days have increased over the past 100 years. The 

increase is most noticeable over the past few decades, suggesting that air conditioning energy 

demand has also been increasing recently. Heating degree days have generally decreased and 

cooling degree days have generally increased throughout the North and West. The Southeast, 

with the exception of the state of Florida, which have seen the opposite: more heating degree 

days and fewer cooling degree days. Figure 1 show the cooling and heating degree days between 

the periods 1895-2015. 

<Insert Figure 1> 

Figure 1: Cooling and heating degree days in the contiguous 48 States between 1895 -2015. 

Although, the cooling and heating degree days approach has been argued to be related with 

specific shortcomings (see Day 2016; Day & Karayiannis 1998). These variables precisely take 

into consideration the severity and duration of weather conditions (Day, 2006; Mourshed, 2014), 

therefore, the variables are becoming a functional tool for appraising and assessing residential 

cooling and heating demand in addition to outdoor thermal consolation. In this study, we mainly 

focus and investigate factors (macroeconomic variables) that determine and/or contribute to the 

heating and cooling demand in the case of the United States, and not interested in evaluating the 

related energy costs and requirements unlike in previous studies (see Day 2016; Mourshed, 2014; 

Day & Karayiannis 1998). 



This study contributes empirically and methodologically to the existing literature on cooling and 

heating degree days in twofold; First, this study is first or among the few studies that evaluate the 

macroeconomic factors that determine and contribute to the cooling and heating degree days in 

the case of the United States. Second, in order to carry out comprehensive impacts of the 

explanatory variables on the dependent variables, this study employs Autoregressive Distributed 

Lag (ARDL) model that produces short-run and long-run dynamic and robust coefficients with 

the speed of adjustment over the time horizon. ARDL is employed to confirm whether the 

explanatory variables exhibit short-run or long-run impact on the dependent variables (cooling 

and heating demand). Since, the knowledge of the specific periods at which these explanatory 

variables contribute (if statistically significant) will assist the policymakers to make valuable 

residential cooling/heating demand forecast along with sound environmental policies that would 

help to mitigate climate change impacts for the immediate and future generation.  

The remaining part of this study is schedule as follow: Part 2 discuss the United States and its 

weather forecast. Part 3 entails data, data source and empirical approaches utilized, while part 4 

report the results and discuss empirical findings. Part 5 concludes the study with policy 

recommendations.  

2. United States and its Future Weather Conditions in brief 

According to Rasmussen, Meinshausen and Kopp (2016) future climate change forecast, the 

United States has been forecasted to expose to rising warmer summers for the next 100 years.  In 

between the year 1981-2010, most especially between the months June to August, the United 

States average summer temperature rose to about 75°F. If this situation persists, the climate 

change for the years 2030 to 2049, the country summer average temperatures may probably 



increase by an additional 2 to 5°F under RCP 8.5 which translate to an average of 77 to 80°F 

respectively.  

With a progressive world greenhouse gas emissions reduction trajectory (RCP 2.6), the increase 

would probably be restricted between 2 to 3°F, with a country summer average of 77 to 78°F. 

The nation averages, although, reveal much more radical regional and local variations in weather 

condition. The South, clarified as the West South Central, East South Central, and Southern 

Atlantic Census regions, for an instance, may probably experience a swing from its notable mean 

summer weather condition of 75 to 85°F to a mean in the 80 to 90°F range under the RCP 8.5. 

On the other hand, according to Rasmussen et al (2016) the West South-Central region such as 

Louisiana, Texas, Oklahoma and Arkansas are forecasted to experience substantial warming, 

with probably summer weather conditions increasing from a notable mean of 82°F to 85-87°F by 

the year 2040 under RCP 8.5.  

Furthermore, the US is predicted to also experience an increase in the amount of extreme heat 

days those with maximum temperatures over 95°F. In decades ago, the average American citizen 

and/or population has been exposed to about 15 days (two weeks) every year of hotter or 95°F 

(Rasmussen et al 2016). The average America population by the year 2040, has been argued to 

experience 25 to 40 days annually under RCP 8.5 program. While West South-Central region 

and Texas should be ready to face 2 to 3 months of days topping 95°F, which is historic in nature 

for those regions. In addition, an increasing number of counties in the Arizona, southern Texas 

and California should be ready to face about 4 months or more of hotter days reaching 95°F on 

average every year.  



In addition, there are common high predicted variations in average winter weather conditions and 

the decrease in the number of exceptionally cooling degree days across all over the United 

States. Similarly, the Northern States have experienced greatest swing, with average winter 

weather condition probably increasing from and between 2.9 to 6.5°F in the Northeast by mid-

century under RCP 8.5 program. It is paramount to state here that, out of the 25 States that are 

presently experiencing sub-freezing average winter weather conditions, only six states such as 

Alaska, North Dakota, Vermont, Minnesota, Wisconsin and Maine by the end of the century are 

still possibly to do so under RCP 8.5. 

3. Materials and Methods 

3.1 Materials 

The cooling and heating degree days (the CDD and HDD respectively) are not new climate 

rhetoric, rather the reported significant dynamics in the measurements across the globe has 

remained the 21
st
 century challenge of the climatologist, environmentalist, and other 

stakeholders. The United States (38 00 N, 97 00 W with a mostly temperate climate and total 

area of 9, 833, 517 square kilometers) (Central Intelligence Agency, CIA, 2019) is commonly a 

18
o
C heating degree-days but the average value of the temperature varies by geographical 

location across the States.  In a normal situation, the outdoor temperatures are expectedly 

different from the indoors, thus affecting daily lives in dynamic ways. These effects are largely 

responsible for the human demand for heating and air conditioning because of the dynamic 

nature of the human comfort levels. For instance, the Energy Information Administration (EIA, 

2015) implied that about 48% of the total energy consumed are expanded on heating and cooling 

the household spaces of the American consumers. However, a baseline temperature for indoor 

comfort of 65
o
F (18.33

o
C) is employed for the comparative measurement of daily average 



outdoor temperature known as the ‘degree day’. For instance, if different days’ temperature is 

measured as 85
o
F (29.44

o
C) and 30

o
F(-1.111

o
C), then the ‘degree days’ are respectively 20

o
F (-

6.667
o
C) higher (85oF-65oF = 20

o
F) and 35

o
F (1.667

o
C) lower (30

o
F-65oF = -35

o
F). The 

implication is that the first day requires energy source (cooling device) to attain a 20
o
F (-

6.667
o
C) cooling degree days while the other day requires energy source (heating device) to 

attain 35
o
F (-1.111

o
C) heating degree days. 

3.1.1 Data Description 

In respect to the measurement of the heating and cooling degree days, studies have noted the 

significant effect of the climate change due to fossil energy consumption, and other human 

activities on the ecosystem on the global cooling and heating days, thus posing concerns on the 

global environmental sustainability. In underpinning this environmental sustainability challenge, 

the current study employs the cooling and heating degree days for the United States (from the 

aggregate of 48 States, available in https://www.epa.gov/climate-indicators/climate-change-

indicators-heating-and-cooling-degree-days) as separate dependent variable. The independent 

variables utilized in the study include the ecological footprint, the fossil fuel energy 

consumption, and the urban population. These series which were retrieved from different sources 

is span over the period of 1960 to 2015. In Table 1, the variables employed, the unit of 

measurement and sources are further presented in details. The common statistics and the line plot 

of the series are respectively presented as Table 2 and Figure 2. 

<Insert Table 1> 

<Insert Table 2> 

<Figure 2> 

https://www.epa.gov/climate-indicators/climate-change-indicators-heating-and-cooling-degree-days
https://www.epa.gov/climate-indicators/climate-change-indicators-heating-and-cooling-degree-days


3.2 Method 

3.2.1 Model Specifications 

Given that environmental conditions (which include environmental quality/degradation) are 

being widely investigated in the literature, empirical studies have continued to show that climate 

change has continued to be expressed as function of income growth, fossil fuel energy 

consumption, renewable energy consumption, and even population among others (Alola, 2019a; 

Alola, 2019b; Alola, Bekun & Sarkodie, 2019; Alola, et al, 2019; Bekun, Alola, & Sarkodie, 

Emir & Bekun, 2019; 2019; Saint Akadiri, Alola & Akadiri, 2019; Saint Akadiri, et al., 2019).  

In advancing the study of environmental sustainability, the measurement of the CDD and the 

HDD are being considered in recent studies. For instance, Mastrucci et al., (2019) opined that the 

energy demand for space cooling is potentially captured by the technological intensity driver, the 

structural intensity driver and the activity driver. According to Mastrucci et al., (2019), the above 

categorized drivers are potentially disaggregated into population, building features to measure 

the energy intensity. Subsequent studies such as Otsuka and Goto (2018) and Spinoni et al 

(2018) reserved that population plays a significant role in determining the degree days and that 

such impact is mostly dependent on the region under consideration. Also, in addition to the 

importance of socio-economic factors as identified by Labriet et al (2015), the study identified 

considered that fossil fuel energy consumption is primarily the source of the CO2 emissions.  

Hence, considering that De Rosa et al (2015) employed a time series modeling of the degree 

days as the function of trend and seasonality, the current study considers that the CDD and HDD 

are both expressed below as a function of ecological footprint, fossil fuel energy consumption, 

and the urban population of the United States. Thus, 



 , , , ,,UPOPi t i t i t i tCDD f fossil efp                     (1) 

and  

 , , , ,,UPOPi t i t i t i tHDD f fossil efp              (2) 

where the FOSSIL, EFP, UPOP are the fossil fuel energy consumption, ecological footprint, and 

urban population respectively for the United States (i) over the period t i.e t = 1960, 1961,…, 

2015. However, the models (1) and (2) are both transformed to natural logarithmic such that the 

effect of potential heteroscedasticity is eliminated in the estimations.   

3.2.2 The ARDL-Bound Test 

Prior to adapting the ARDL bound approach for the estimation of the models (1) and (2) above, 

the stationarity test is employed as the preliminary test. In this case, the augmented Dickey & 

Fuller (1979)-the ADF and Kwiatkowski, Phillips, Schmidt & Shin (1992)-the KPSS were both 

employed to investigate the stationarity of the series. The result of the estimation is presented in 

Table 1. The results present the order of integration of the variables (mixed order of integration), 

thus alluring to the suitability of the ARDL bound test approach. The ARDL test approach is also 

suitable because it presents the dynamic relationship as well as the long-run and short-run 

relationship. This is because a dynamic unrestricted error correction model from the ARDL 

bounds testing technique is obtained from a simple linear transformation without losing the 

information of the long-run dynamics. 

Therefore, the empirical representation of the ARDL bound test approach to cointegration after 

transforming the above models (1) and (2) to the natural logarithmic forms are presented as 

equation (3) and (4) below, i.e 

1 1 1 1 1ln lnfossil lnefpt CDD t fossil t efp t UPOP tCDD CDD upop              



1 0 0

lnfossil lnefp lnupop
p q r

i t i j t j k t k t

i j k

     

  

                      (3) 

and 

1 1 1 1 1lnH lnfossil lnefpt CDD t fossil t efp t UPOP tDD HDD upop              

1 0 0

lnfossil lnefp lnupop
p q r

i t i j t j k t k t

i j k

     

  

                                              (4) 

where ln represents the natural logarithmic transformation of the respective variables, t  is the 

stochastic terms. Accordingly, Pesaran, Shin & Smith (2001) states that ARDL bound test 

cointegration estimate presents the F-statistics which is essentially compared with the estimated 

lower and upper critical bounds values.  As such, the null hypothesis is specified as an 

assumption of no cointegration among the series against its alternative (i.e the presence of 

cointegration relationship among the series). Hence, the hypotheses are presented in Eq. (5) as 

follows: 

0

1

0

0

CDD fossil efp UPOP

CDD fossil efp UPOP

H

H

   

   

    

    
                                     (5) 

If the estimated F-statistics is greater than the upper critical bounds value, then, cointegration 

relationship is present among the series and vice versa. Thus, there is statistical evidence of 

cointegration if the estimated F-statistics is greater than the upper critical bounds value, and vice 

versa. 

Furthermore, we employ the suitability of the vector error correction model (VECM) for Granger 

causality testing approach especially since the variables are integrated at first order and there is 

statistical evidence of long-run cointegration relationship among the series. Hence, the employed 

VECM Granger causality method is specified as follows in Equation (6): 



   

11 11 12 13 14

12 21 22 23 24

1 31 32 33 343 1

41 42 43 444 1

ln ln

lnfossil lnfossil
1 1

lnefp lnefp

lnUPOP ln
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p
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i i i i it t

i i i it t
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                      (6) 

where, 1tECT   is the lagged residual value estimate from the long-run relationship,  1 L  is the 

difference operator and 1t , 2t , 3t , and 4t are the random terms (the terms expectedly reveals 

the constant variance). Also, the significance of the estimated coefficients  ,  ,  , and  (of the 

1tECT  ) indicates the long-run causal nexus among the series, while the short-run causal nexus is 

indicated by the significance of F-statistics by using the Wald test. Moreover, the joint statistical 

significance of the lagged differences of the independent variables with lagged error term 

produces the short-run and long-run causality estimates. In this case, 14 0i id    simply means 

that urban population (upop) predict the cooling degree days (CDD), while 41 0i id   means that 

the cooling degree days (CDD) predicts the urban population. Hence, aforementioned estimates 

are presented in Table 3.  

<Insert Table 3> 

3.2.3 The Diagnostic and Robustness Test 

Having implemented a preliminary cointegration test by Johansen cointegration (Johansen, 1988) 

as indicated in Table 4 of the Appendix, the result of the ARDL further confirms evidence of 

cointegration. However, the ARDL estimates were subjected to further diagnostics to observe the 

validity of the results. In this case, both the Breusch-Godfrey serial correlation LM (Lagrange 

Multiplier) and the Breusch-Pagan-Godfrey heteroscedasticity tests were employed (see Table 3) 



in addition to the CUSUM and the CUSUM square plots for the two models (see Figure 3 and 4). 

Importantly, the standard Granger causality test is employed as a robustness test. The test further 

illustrates the Granger causality among the investigated series as implied in Table 5. In addition 

to the robustness estimates, ecological footprint (efp) is further employed as a function of both 

the degree days (CDD and HDD) and the economic growth (measured by the GDP) by using the 

dynamic ARDL approach. The result of the estimate along with it diagnostic tests (including the 

Wald test) and the stability test (including the CUSUM and CUSUM of squares) are presented in 

Table 6 and Figure 5 of the Appendix respectively. 

 

<Insert Table 4> 

<Insert Table 5> 

<Insert Table 6> 

<Figure 3> 

<Figure 4> 

<Figure 5> 

4 Results and Discussion 

Given the common statistics presented in Table 2, there is less likelihood of a heteroskedastic 

concern in the observed datasets because of a relatively small difference between the maximum 

and minimum values. Also, except for the ecological footprint, the heating degree days and the 

non-renewable energy consumption, every other variable is normally distributed (according to 

the Jarque-Bera statistics). In the same vein, the ecological footprint, climate change, the heating 

degree days, and the renewable energy consumption are the only negatively skewed variables. 

the stationarity test result carried out prior to the main investigation reveals that the dataset 



employed can be generally assumed as mixed order of integration. The reason for this is justified 

in the results of the ADF and KPSS employed for each of the variables where the variables are 

observed to be stationary at most at first difference (see Table 2). Hence, this pave way for the 

suitability of the ARDL approach. 

The cooling degree days 

Furthermore, the ARDL approach employed reveals the roles fossil fuel energy consumption 

fossil, ecological footprint (efp) and urban population (upop) on the cooling degree days (CDD) 

of the United States (see Table 3). For CDD model, the result posits that the fossil fuel energy 

consumption increases the cooling degree days in the long-run in the United States. Although the 

impact of fossil on the CDD is observed to be positive and insignificant in the long-run, the 

short-run impact is negative and significant. As expected, the long-run impact translate that the 

consumption of the fossil fuel of energy which is largely responsible for pollutant emissions will 

significantly increases the length (in days) the United States experiences an atmospheric 

(outside) temperature that is above a certain level. Hence, a relatively long period of the hot 

weather (summer) is ensued such that increase the demand for more cooling technologies in the 

United States. This result outcome is supported by the report of the United States Global Change 

Research Program (USGCRP) that observed the increase in the cooling days as a result of high 

temperatures as against the decline in the cooling degree days until the 20
th

 century (USGCRP, 

2019). This is likely to be connected with the European case where the cooling degree days are 

reportedly on the high increase with the highest recorded in Southern Europe region. (European 

Environmental Agency, EEA, 2019). According to the EEA, while observing that the CDD has 

increased by 33% over the period 1950-2017 in the European region, the increase is projected to 

continue throughout the (21
st
) present century. 



Moreover, the impact of the urban population (upop) and the ecological footprint (efp) on the 

cooling days in the United States. However, the upop and efp are observed to respectively exert 

positive and negative impacts on the CDD. The result implies that a percentage increase in the 

upop and efp will expectedly cause the CCD to increase by 0.49 per cents and decrease by 0.12 

per cents respectively. Importantly, it implies that as the urban population increases, more heat is 

expectedly generated thereby increasing the length of high temperature days (cooling degree 

days), thus causing higher demand for cooling needs and technologies. This result significantly 

louds the study of Otsuka and Goto (2018) and Spinoni et al (2018) that maintains that the 

impact of population on the CDD is positive. Similarly, this opinion was further strengthened by 

Shi et al (2018) by suggesting that population remains an important factor in both the heating and 

cooling dynamics. Shi et al (2018) considered the case of China for the investigation, therefore 

emphasizing that population distribution of the country is extremely uneven resulting from the 

climate condition, economic development, geographical location, and among others. Moreover, 

the concept of utilizing the urban population against the population of the rural dwellings in the 

context of climate change is strongly opined by Bird et al (2019).  

Regarding the diagnostic investigation (see Table 3), the long-run evidence is corroborated by 

the statistical significance of the I0 and I1 bound which indicates that the F-statistics 16.766 > 

5.61 of I1 at 1% significant level. Similarly, the short-run evidence (Wald test) present a 

significant F-statistic of 15.839 and chi-square of 63.357. In addition to the diagnostic evidence, 

the investigation has no drawback from neither serial correlation nor heteroscedasticity. 

Indicatively, the chi-squares (P-values) of the Breusch-Godfrey serial correlation LM (Lagrange 

Multiplier) test and the Breusch-Pagan-Godfrey heteroscedasticity test are respectively 0.238 and 

0.713. Notwithstanding, a Normal distribution evidence from the Jarque-Bera statistic (3.722) in 



Table 3 and both CUSUM and CUSUM of squares of Figure 3 (a & b respectively) are all 

desirable.  

 

The heating degree days 

In this case, the model is observed to adjust in a situation of short-run disequilibrium at a rate 

similar to the cooling degree days’ model. Unlike the CDD model earlier described the fossil fuel 

energy consumption exerts a negative and insignificant impact on the heating degree days in the 

long run (See Table 3). This expectedly suggests that the consumption fossil energy sources 

which is the main causative agent of climate change is responsible to cause less heating degree 

days, thus resulting to shorter cold or winter periods in the United States. In support of the fossil-

HDD negative relationship observed in the current study, the United States Global Change 

Research Program (USGCRP) equally implies that the number of the HDD has continued to 

decline since about 1980 (USGCRP, 2019). This report is also corroborated by the record from 

the European counterpart which opined that the HDD has decreased by 6% between the periods 

1950-2017 with the largest decrease recorded in the Northern European region and Italy.  

Additionally, the impacts of ecological footprint and the urban population on the HDD are both 

observed to be negative in the long-run and short-run. Importantly, it implies that as the urban 

population increases, more heat is expectedly generated thereby reducing the length of low 

temperature days (heating degree days), thus causing lower demand for heating needs and 

technologies. The previous studies of Otsuka and Goto (2018) and Spinoni et al (2018) among 

other related investigations have also that there is a negative relationship between population and 

the heating degree days.  



Similarly, the diagnostic results for the model are obviously desirable (See Table 3). Indicatively, 

the long-run evidence is corroborated by the statistical significance of the I0 and I1 bound which 

indicates that the F-statistics 11.48 > 5.61 of I1 at 1% significant level. This is in addition to the 

short-run evidence (Wald test) which presents a significant F-statistic of 3.73 and chi-square of 

14.92. Also, tests suggest that the investigation is free form the concern of serial correlation and 

heteroscedasticity. This is because the chi-squares (P-values) of the Breusch-Godfrey serial 

correlation LM (Lagrange Multiplier) test and the Breusch-Pagan-Godfrey heteroscedasticity test 

are respectively presented as 0.77 and 0.25 in Table 3. Again, a Normal distribution evidence 

from the Jarque-Bera statistic (0.348) in Table 3 and both CUSUM and CUSUM of squares of 

Figure 4 (a & b respectively) adds to the desirability of the model specification.  

4.1 Robustness Evidence 

Prior to employing the ARDL bound test approach, the Johansen cointegration (Johansen, 1988) 

test reveals at most one (1) cointegrating equation for both models (the CDD and HDD models) 

as indicated in Table 4 of the appendix. Similarly, the standard Granger causality as indicated in 

Table 5 of the appendix provides the directional relationship between the explanatory variables 

employed and the two dependent variables. In this case, the significant one-directional Granger 

causality relationship observed are: from ecological footprint to CDD, from ecological footprint 

to HDD, from fossil to CDD, and from upop to CDD and HDD. Whereas, the Granger causality 

from fossil to HDD is observed to be with feedback. In the context of the current study, the 

Granger causality relationships are desirable. Additionally, the dynamic ARDL estimate presents 

that the CDD and HDD exerts same (negative) direction of impacts on the ecological footprint 

(efp) in both long-run and short run (See Table 6). This result technically corroborates the earlier 

models (A and B) that expressed the relationship the variables. The GDP employed in this case 



controls for other unobserved socio-economic factors. Lastly, the diagnostic Wald test (see Table 

6) and the stability test (see Figure 5) further validates the earlier estimation. 

 

5 Conclusions 

In this study, the dynamic ARDL and the bound testing empirical techniques has been applied to 

investigate certain socio-economic and environmental activities that have potential effect on the 

cooling and heating days in the United States. For this reason, the two main primary source of 

pollutant emissions [(fossil fuel energy consumption (fossil)] and the ecological footprint (efp) 

are both employed as the economic and environmental variables while the urban population 

(upop) is utilized as a social indicator. Hence, the investigation revealed that the CDD and HDD 

are mostly affected by the aforementioned indicators over the period 1960 to 2015. While the 

impact of fossil on the CDD is (expectedly) positive (increasing the period of cooling degree 

days i.e. hotter or period), the fossil impact on the HDD is negative (reducing the length of 

heating degree days i.e less winter period) in both long-run and short-run. Similarly, the urban 

population (upop) and the ecological footprint (efp) indicators are observed to play significant 

role on the CDD and the HDD in the United States (Serrano, 2019; Tal, 2019). In this case, the 

upop is observed to exert positive impact on the CDD in both short-run and long run and a 

negative impact on the HDD in both the short-run and long run. Specifically, the United States 

urban population dynamics is observed to significantly determines the energy needs during each 

of the main climatic seasons (winter and summer period) (Moustris et al., 2015; Mastrucci et al., 

2015). In line with the significant impacts the fossil fuel energy consumption, the ecological 

footprint, and the urban population on the heating and cooling degree days in the United States, 

feasible policy implications are proposed. 



Considering the significant impact of the fossil fuel energy consumption on both the CDD and 

the HDD in the United States, and especially the adverse effects. a more robust energy efficient 

housing policy should be encouraged. This is simply because global building energy demand is a 

larger ratio of the global total energy consumption (United Nations Habitat, 2019). In this case, 

improved policy that provide guideline for housing and building constructions and especially for 

weather specifics and suitability is expected to be an efficient policy mechanism.  Considering 

the importance of energy to the economy and the current stand of the United States government 

on climate change policy, this study posit that the government should have a policy re-think and 

continue to advance it energy portfolio diversification via environmental friendly mechanisms. In 

formulating policy vehicle for each of the seasonal dynamics (the CDD and HDD), the economic 

importance (benefits) of each of the climatic circumstances should be considered in designing 

the appropriate policy mechanism.  

Lastly, future study could household decompositions of the socio-economic determinants of the 

cooling and heating degree days for the United States as well as other advance economy like 

China. 
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days.  

Figure 1: The trend of the heating and cooling degree days between 1895 and 2015 
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Figure 1: A visual observation of the trend of the cooling and heating degree days,  

the ecological footprint (efp), and the carbon dioxide (CO2) emissions in the United 

States over the period 1960-2015. 
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Table 1: Variable description and measurement unit____________________________________ 

Indicator Name  Abbreviation  Measurement Scale  Source______ 

 

Cooling Degree Days  CDD   Degree days   USEPA 

   

Heating Degree Days  HDD   Degree days   USEPA 

 

Fossil Energy Consumption FOSSIL  % of total energy  WDI 

 

Urban Population  UPOP   Birth woman total term WDI 

 

Ecological Footprint  EFP   Global hectares (GHA) EFP 

 

Gross Domestic Product GDP   Constant 2010 US Dollars WDI 

______________________________________________________________________________ 

Source: Authors’ computation. 

Note: US EPA
2
, US EIA

3
 and WDI

4
 represents the United States Environmental Protection 

Agency, United States Energy Information Administration, and World Development Indicator 

respectively. 

                                                           
2  https://www.epa.gov/climate-indicators/climate-change-indicators-heating-and-cooling-degree-days 
3 https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T10.01#/?f=M&start=200001 

https://www.epa.gov/climate-indicators/climate-change-indicators-heating-and-cooling-degree-days
https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T10.01#/?f=M&start=200001


 

 

 

 

 

 

 

                                                                                                                                                                                           
4 https://data.worldbank.org/indicator. The more detail information on the description of the variables are available at 
the above links. 

https://data.worldbank.org/indicator


Table 2: Descriptive statistics and Unit root test with ADF and KPSS______________________________________________________________ 

Variable Mean  Median Maximum Minimum Skewness Kurtosis Jarque-Bera 
lefp  1.497  1.536  1.764  0.950  -1.056  3.500  10.786* 

lCO2  2.948  2.963  3.114  2.752  -0.456  2.640  2.229 

lcdd  7.115  7.107  7.300  6.924  0.256  2.730  0.781 

lhdd  8.418  8.427  8.523  8.237  -0.803  3.342  6.292**    

lfossil  4.491  4.469  4.564  4.412  0.302  1.579  5.564**  

lupop  19.041  19.021  19.384  18.655  0.003  1.799  3.367   

 

Unit root tests   Level       Δ 

 

ADF  with intercept  intercept and trend  with intercept  intercept and trend  Conclusion___ 

lefp  -3.682*   -1.798    -5.922*    -6.795*   Mixed  

lCO2  -1.517   -2.718    -4.855*    -5.474*   I (1) 

lcdd  -0.265   -6.980*    -7.390*    -7.403*   I (1) 

lhdd  -3.961*   -6.425*    -9.244*    -9.145*   Mixed 

lfossil  0.159   -3.012    -5.400*    -5.360*   I (1) 

lupop  -0.475   -3.943**   -2.485    -6.676*   Mixed 

 

KPSS  

lefp  0.857*   0.182**    0.539**    0.070   Mixed  

lCO2  0.174   0.161**    0.403    0.079   Mixed 

lcooling 0.933*   0.085    0.120    0.059   I (1) 

lheating 0.867*   0.046    0.042    0.041   I (1) 

lfossil  8.744*   0.247*    0.157    0.164   Mixed 

lupop  0.921*   0.355*    0.244    0.117   I (1) 

 

Note: Level and Δ respectively indicates estimates at the level and the first difference with lag selection by SIC (lag=4) for the ADF (Augmented Dickey-Fuller) 

and KPSS (using the Bartlett Kernel of Andrews automatic Bandwidth) unit root tests. *, ** and *** are the 1%, 5% and 10% statistical significance levels. 

Number of observation is 56. 



Table 3: Dynamic ARDL-Bound Test_______________________________________________________________________________________ 
      

Cooling (A) Model ARDL (1, 0, 1, 0) 

(A)  lefp  lfossil  lupop  ECT(-1)_   Bound test (long-run evidence) 

  

Long-run (β) -0.116*** 0.164   0.486*  -1.168*          

              I0 Bound      I1 Bound 

Short-run (β) -0.136  -3.427*** 0.501*       1% 5.61  4.35 

R-squared = 0.57 = F-statistic = 13.462*    (F-statistics = 16.766*)  2.5% 3.69  4.89 

         K = 3    5% 3.23  4.35 

Residual diagnostics          Wald test (short-run estimate) 

 

Breusch-Godfrey SR LM test  Breusch-Pagan-Godfrey H test    F-statistic = 15.839* χ
2
 = 63.357*  

χ
2
 (p-value) = 0.238   χ

2
 (p-value) = 0.713     

 

Normal (Jarque-Bera) = 3.722(0.1556) Skewness= -0.633 Kurtosis = 2.858 

      

Heating (B) Model ARDL (1, 0, 1, 1) 

(B)  lefp  lfossil  lupop  ECT(-1)_   Bound test (long-run evidence) 

 

Long-run (β) -0.034  -0.276   -0.257** -0.966*      I0 Bound      I1 Bound 

 

Short-run (β) -0.033  3.814**  -5.444*       1% 4.29  5.61 

R-squared = 0.54 F-statistic = 9.256*    (F-statistics = 11.478*)  2.5% 3.69  4.89 

         K = 4    5% 3.23  4.35 

Residual diagnostics          Wald test (short-run estimate) 

 

Breusch-Godfrey SR LM test  Breusch-Pagan-Godfrey H test    F-statistic = 3.729* χ
2
 = 14.916*  

χ
2
 (p-value) = 0.772   χ

2
 (p-value) = 0.245     

 

Normal (Jarque-Bera) = 0.348(0.840) Skewness= -0.140 Kurtosis = 2.718 

______________________________________________________________________________________________________________________ 
Note: Autoregressive Distributed Lad (ARDL) model employed are: A is (1, 0, 1, 0) and B is (1, 0, 1, 1), the p-value is the probability value and ECT is the Error 

Correction Term also known as the adjustment parameter. The I0 and I1 are lower and upper bound of the bound test respectively, β is the estimate coefficient, χ
2 

is the Chi-square, SR LM is Serial correlation Lagrange Multiplier and H is heteroscedasticity. A and B are the models for the cooling and heating degree days 

respectively. 
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Figure 3: The CUSUM (a) and CUSUM of Squares (b) of stability 

test respectively for the cooling model A (CDD). 

-20

-10

0

10

20

10 15 20 25 30 35 40 45 50 55

CUSUM 5% Significance  

(a) 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

15 20 25 30 35 40 45 50 55

CUSUM of Squares 5% Significance  

(b) 

Figure 4: The CUSUM (a) and CUSUM of Squares (b) of stability 

test respectively for the heating model B (HDD).



Appendix 

Table 4: Johansen Cointegration test_______________________________________________________ 

 Cooling Model, A      Heating Model, B 

N  Trace test Max. Eigenvalue test   Trace test Max. Eigenvalue test 

None  97.507*  45.960*    61.634*  24.276** 

  (0.000)  (0.000)    (0.000)  (0.019) 

 

At most 1 51.547*  32.524*    34.072*  16.258** 

  (0.000)  (0.000)    (0.000)  (0.077) 

 

_____________________________________________________________________________________  
Note: The estimate adopts the SIC (maximum lag = 4). * and ** indicate statistical significance level of 1% and 5% 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5: Standard Granger causality results ___________________________________________ 

Null hypothesis   w-stat   Direction of causality______ 

lcdd→lefp   0.323    without feedback 

lefp→lcdd   6.475*    

 

lhdd→lefp   0.771   without feedback 

lefp→lhdd   6.529*     

 

lhdd→lcdd   1.217   without feedback 

lcdd→ lhdd   2.920**    

     

lfossil→lcdd   13.290*   without feedback 

lcdd→ lfossil   1.442    

 

lupop→lcdd    17.110*   without feedback 

lcdd→lupop    0.370 

 

lfossil→lhdd    12.840*   with feedback 

lhdd→lfossil    3.471** 

 

lnupop→lnhdd    13.004*   with feedback 

lnhdd→lnupop    0.770 

Note: *, ** and *** are the 1%, 5% and 10% statistical significance levels. ln is the natural logarithmic values of the 

respective variables. Also, l indicated logarithm.  

 

 

 

 

 

 



Table 6: Dynamic ARDL estimate with lefp (Robustness Output) ______________________________ 

   lcdd   lhdd   lgdp  ECT (-1) ____ 

 

Long-run (β)  -1.433***  -0.639   0.224*   

 

Short-run (β)  -0.204*   -0.091   0.979*  -0.243** 

 

R-squared = 0.98 F-statistic = 315.603* 

 

Wald Test (short-run estimate) 

 

F-statistic = 8.637* χ
2
 = 34.546* 

 

 

Note : The lefp, lcooling, lheating, and lgdp are the logarithmic values of the ecological footprint, cooling days, 

heating days, and Gross Domestic Product respectively. ARDL is the Autoregressive Distributed Lag while the ECT 

is the Error Correction Term. Also, β is the estimate coefficient, χ
2 
is the Chi-square, 

 

-20

-10

0

10

20

15 20 25 30 35 40 45 50 55

CUSUM 5% Significance  

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

15 20 25 30 35 40 45 50 55

CUSUM of Squares 5% Significance  

Figure 5: The CUSUM (top) and CUSUM of Squares (beneath) of stability  

test respectively for the robustness model 


