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Abstract
Purpose  Variable response to neoadjuvant chemoradiotherapy (nCRT) is observed among individuals with locally advanced 
rectal cancer (LARC), having a significant impact on patient management. In this work, we aimed to investigate the potential 
value of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics in predicting therapeutic response to 
nCRT in patients with LARC.
Materials and methods  Seventy-six patients with LARC were included in this retrospective study. Radiomic features were 
extracted from pre-treatment sagittal T2-weighted MRI images, with 3D segmentation. Dimension reduction was performed 
with a reliability analysis, pair-wise correlation analysis, analysis of variance, recursive feature elimination, Kruskal–Wallis, 
and Relief methods. Models were created using four different algorithms. In addition to radiomic models, clinical only and 
different combined models were developed and compared. The reference standard was tumor regression grade (TRG) based 
on the Modified Ryan Scheme (TRG 0 vs TRG 1–3). Models were compared based on net reclassification index (NRI). 
Clinical utility was assessed with decision curve analysis (DCA).
Results  Number of features with excellent reliability is 106. The best result was achieved with radiomic only model using 
eight features. The area under the curve (AUC), accuracy, sensitivity, and specificity for validation were 0.753 (standard 
deviation [SD], 0.082), 81.1%, 83.8%, and 75.0%; for testing, 0.705 (SD, 0.145), 73.9%, 81.2%, and 57.1%, respectively. 
Based on the clinical only model as reference, NRI for radiomic only model was the best. DCA also showed better clinical 
utility for radiomic only model.
Conclusions  ML-based T2-weighted MRI radiomics might have a potential in predicting response to nCRT in patients with 
LARC.
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Abbreviations
AJCC	� American joint committee on cancer
ANN	� Artificial neural network
AUC​	� Area under the curve
DCA	� Decision curve analysis
ICC	� Intra-class correlation coefficient
LARC​	� Locally advanced rectal cancers
ML	� Machine learning
MRI	� Magnetic resonance imaging
nCRT​	� Neoadjuvant chemoradiotherapy
pCR	� Pathological complete response
RF	� Random forest
SD	� Standard deviation
T2W-MRI	� T2-weighted MRI
TME	� Total mesorectal excision
TNM	� Tumor, node, metastasis
TRG​	� Tumor regression grade

Introduction

Colorectal cancers are one of the most common cancers 
worldwide and the third leading cause of cancer death [1, 
2]. Over the past 30 years, the use of preoperative neoadju-
vant chemoradiotherapy (nCRT) and advances in surgical 
techniques have led to marked improvements in the local 
recurrence rates and quality of life of patients with locally 
advanced rectal cancers (LARC). By current standards of 
care, highly distal and/or LARC (i.e., ≥ T3 and/or N +) typi-
cally receive nCRT for down-staging to increase the chance 
of complete surgical resection during total mesorectal exci-
sion (TME). After nCRT and TME treatment, approxi-
mately 15–27% of patients achieve a pathological complete 
response (pCR) characterized by the absence of a viable 
tumor (i.e., ypT0N0) in pathological samples [3].

Due to the high risk of post-surgical morbidity and life-
style changes [4, 5], some authors suggested less invasive 
management strategies such as “watch-and-wait” policy for 
patients with pCR, shifting the treatment paradigm towards 
organ preservation [6]. To follow this strategy safely, a pre-
cise selection of patients with pCR is of paramount impor-
tance. Individuals show significant variations in terms of 
response status to preoperative nCRT. Some patients do 
not respond at all, being classified as non-responders. Early 
recognition or prediction of non-responders before nCRT is 
important because such patients can be referred for alterna-
tive treatments due to the possible side effects of nCRT [3, 
7].

Magnetic resonance imaging (MRI) is a widely used and 
optimal imaging technique for primary clinical staging of 
rectal tumors. Nonetheless, the use of MRI in the assessment 
of nCRT response is controversial due to well-known dif-
ficulties in distinguishing fibrotic tissue alone from fibrotic 

tissue with residual tumor, resulting in moderate agree-
ment with pathological tumor regression grade (TRG) [8]. 
Various MRI biomarkers have been investigated, including 
T2-weighted MRI (T2W-MRI) signal intensity, apparent 
diffusion coefficient values, diffusion-weighted magnetic 
resonance tumor volumetry, perfusion MRI parameters, 
and parameters derived from intravoxel incoherent motion 
diffusion-weighted imaging [9–18]. However, these imag-
ing methods have some limitations in predicting response 
to treatment such as the requirement of both pre-and post-
treatment imaging.

Radiomics is a new method that extracts many features 
from medical images and has the potential to reveal disease-
related features that cannot be detected with the naked eye. 
Due to the limitations of current imaging methods and the 
fact that radiological images contain more information than 
that is accessible by the naked eye, the interest in radiomics 
is increasing [19]. Radiomics has been widely used for the 
non-invasive quantitative evaluation of a wide range of neo-
plasms in the evaluation of aggressiveness, treatment resist-
ance, and histopathological, genomic, or proteomic charac-
teristics of the lesions [20]. To date, several works have been 
published on radiomics of rectal cancer. Nonetheless, only a 
few MRI-based radiomics research have been performed to 
investigate the response of rectal cancer to nCRT according 
to the modified Ryan score, which has good interobserver 
reproducibility and provides prognostic significance [21].

This study was performed to predict the therapeutic 
response to nCRT of LARC patients through machine learn-
ing (ML)-based clinical, radiomic, and radiomic-clinical 
combined models, and to provide an early assessment of 
the tumor response in patients with LARC before treat-
ment with nCRT, especially in the context of non-surgical 
management.

Materials and methods

Ethics

This single-center retrospective study was approved by the 
ethics committee of our hospital (Decision No: 2237) and 
conducted by the principles of the Declaration of Helsinki. 
The requirement for informed consent was waived.

Patients

We identified patients who underwent preoperative pelvic 
MRI at our institution for rectal cancer staging between 2017 
and 2021. The inclusion criteria were biopsy-proven rectal 
adenocarcinoma, locally advanced disease (i.e., staged on 
MRI as cT2–4 and/or node-positive), and no history of anti-
cancer treatment before undergoing MRI and nCRT. The 



73Japanese Journal of Radiology (2023) 41:71–82	

1 3

exclusion criteria were recurrent metastatic rectal cancer, 
palliative surgery or TME not performed after nCRT, and 
poor image quality.

MRI technique

All pelvic MRI examinations were performed using two 1.5 
Tesla scanners (Signa HDXT; GE Healthcare, Waukesha, 
Wisconsin, USA) with an 8-channel array coil. Patients 
received no bowel preparation or intravenous anti-spas-
modic agents. In this work, only a fast spin-echo sagittal 
T2W-MRI sequence was used with the following acquisition 
parameters: repetition time, 3500 ms; echo time, 116 ms; 
field of view, 360 × 360 mm; matrix, 256 × 320; and slice 
thickness, 3 mm. We excluded unenhanced T1-weighted, 
contrast-enhanced T1-weighted, and diffusion-weighted 
images from this study.

Neoadjuvant chemoradiotherapy treatment

The bladder, femoral head, and small bowel were contoured 
as critical organs. Treatment began with 45 Gy delivered 
in 25 fractions (1.8 Gy/day) with 6/18 MV photons to the 
entire pelvis, followed by 5.4 Gy in 3 fractions (1.8 Gy/day) 
delivered to the tumor bed and pre-sacral region. Arc or 
3D conformal radiotherapy was performed using a DHX or 
UNIQUE linear accelerator (Varian, Palo Alto, CA, USA).

Chemotherapy was applied concurrently with radiother-
apy (825 mg/m2 oral capecitabine twice a day) for the 5 days 
of radiotherapy.

TME was performed 6–10 weeks after completion of 
nCRT.

Histopathological evaluation

The reference standard for the modeling was the histopatho-
logical tumor response evaluation based on the modified 
Ryan score which has good interobserver reproducibility 
[21]. Pathological reports of surgically resected specimens 
were assessed in accordance with the American Joint Com-
mittee on Cancer (AJCC) tumor, node, metastasis (TNM) 
staging system, 8th edition. All histopathological analy-
ses were performed by a gastrointestinal pathologist with 
10 years of experience. Findings were reported in a stand-
ardized fashion, including tumor grade, percentage of fibro-
sis, presence of residual tumor, tumor stage, and lymph node 
metastasis status.

pCR was defined as stage ypT0N0 in which y and p indi-
cate post-neoadjuvant treatment and the pathological stage, 
respectively. Tumor response was graded as follows: TRG 0, 
no living cancer cells remaining; TRG 1, only small clumps 
of cancer cells remaining; TRG 2, residual cancer remain-
ing but with significant fibrosis; and TRG 3, minimal or 

no tumor-killing or presence of extensive cancer residue. 
Considering the therapeutic implications, binary classifica-
tion models were created to distinguish TRG 0 (pathologic 
complete response) from TRG 1–3 (non-responders). For 
patients who underwent “watch-and-wait” without surgery, 
a clinical complete response sustained over more than 1 year 
of follow-up (i.e., no sign of recurrence on follow-up MRI or 
endoscopy performed at intervals of 3 and 6 months during 
the first subsequent years, respectively) were classified as 
clinical complete response.

Clinical features

Clinical features were MR T staging, MR N staging, maxi-
mum size of the tumor in the sagittal plane, distance from 
anorectal verge in the sagittal plane, patient age, gender, 
serum CA 19–9, and serum carcinoembryonic antigen values ​​
before nCRT. Anatomical MRI staging criteria were made 
by a radiology specialist with 15 years of experience on rec-
tal MRI, which is routinely used in clinical practice.

Image pre‑processing

To minimize differences, all data sets were normalized based 
on the mean ± standard deviation (SD) voxel intensity val-
ues [22]. Voxels in all image slices were rescaled to 1 x 1x1 
mm3 with cubic b-spline interpolation [23]. Gray level val-
ues were discretized using the fixed bin-count method, with 
a bin-count of 32.

Radiomic features

The rectal tumors were manually and independently seg-
mented by two readers using 3D Slicer Software (version 
4.8.2). 3D segmentation was performed on sagittal T2W-
MRI, excluding the areas of obvious necrosis, air-containing 
cavities, tumor deposits, desmoplastic reaction, and extramu-
ral vascular invasion (Fig. 1). 3D segmentation took about 
10 to 12 min per case. Radiomic feature extraction (shape 
and texture) was done using the software PyRadiomics [24]. 
Texture features were extracted from original, LoG-filtered 
(where 2, 4, and 6 mm represent fine, medium, and coarse 
patterns, respectively), and wavelet-transformed images. The 
main texture feature classes were first-order, gray level co-
occurrence matrix, gray level size zone matrix, gray level 
run-length matrix, and gray level dependence matrix. The 
total number of features extracted per lesion was 1046.

Statistical analysis and modeling

Data were split into training and test sets with a ratio of 
0.3. The split was created automatically and in a stratified 
manner. Synthetic minority oversampling technique was 
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used to deal with class imbalance [25]. Oversampling was 
only applied to the training data set. The feature matrix was 
standardized with z-score normalization before further pro-
cessing steps. Categorical clinical features were coded with 
one-hot encoding. Dimension reduction was firstly done 
with reliability analysis and pair-wise correlation analysis. 
To address the inter-reader variations in radiomic feature 
extraction, the reliability analysis was performed using the 
intra-class correlation coefficient (ICC) on training data 
[26]. Only features with excellent reproducibility (ICC ≥ 0.9) 
were used in model development. Due to the similarity of 
each feature pair, the pair-wise correlation analysis was done 
with Pearson correlation analysis with a value of 0.9. Feature 
selection experiments were done using analysis of variance, 
recursive feature elimination, Kruskal–Wallis, and Relief 
methods. Machine learning-based modeling was done using 
four algorithms: logistic regression, support vector machine, 
random forest (RF), and artificial neural network (ANN). 
Several experiments were done based on the selected fea-
tures by the above-mentioned feature selection methods. 
Clinical only, radiomic only, and different clinical-radiomic 
combined models were created. Two distinct strategies were 
implemented in combined model development: pooling and 
merging (Fig. 2). Models were developed with tenfold cross-
validation and tested on an unseen hold-out set. The pri-
mary metric for the comparison was the area under the curve 
(AUC). 95% confidence interval of the AUC was calculated 
by bootstrapping with 1000 samples. Delong test was used 
to compare validation and test AUC performances, adopting 
unpaired method. Accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value were also pre-
sented. Classification performance of the models was also 
evaluated and compared with category-free continuous net 
reclassification index in validation and test sets. The clini-
cal utility of the models was assessed with decision curve 

analysis (DCA) [27]. In DCA, net benefit of the models was 
presented within different threshold probability values. Sta-
tistical significance threshold was set at 0.05 in all relevant 
statistical tests. FeAture Explorer Pro (FAEPro, V 0.4.3) 
[28], Python (V 3.7) [29], R (V 4.1; packages: ‘dcurves’, 
‘pROC’, ‘PredictABEL’) [30] were used in statistical analy-
sis and or ML-based modeling.

Results

Patient characteristics

We identified 127 patients who underwent preoperative 
pelvic MRI for rectal cancer in our database. Of these, 51 
patients were excluded due to recurrent metastatic rectal 
cancer (n = 12), non-adenocarcinoma rectal cancer (n = 18), 
palliative surgery, or TME not performed after nCRT (n = 6), 
and poor image quality (n = 15). The final study population 
consisted of 76 patients. The numbers of patients in train 
and test splits were 53 and 23, respectively. Detailed patient 
demographics are presented in Table 1.

Reliability analysis

Following reliability analysis, 106 features showed excellent 
reproducibility. Sixteen of these reliable features were from 
original, 28 from LoG-filtered, and 62 from wavelet images. 
Two of these were shape features, 69 were first-order fea-
tures, and 35 were second or high-order features.

Feature selection and modeling

The best model was achieved with radiomic only features 
using RF algorithm. The optimal model was obtained 

Fig. 1   Segmentation technique. a sagittal T2W-MRI images of 
a patient with rectum cancer. b using all image slices in which the 
tumor appears, the segmentation is done manually along the whole 

lesion margin. The contour of the segmentation is systematically 
shrunk to avoid the possible inclusion of perirectal tissues and intra-
luminal areas. c 3D volumetric view of the segmentation
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using eight features selected with the Relief method. The 
AUC, accuracy, sensitivity, and specificity for validation 
were 0.753 (SD, 0.082), 81.1%, 83.8%, and 75.0%; for 
testing, 0.705 (SD, 0.145), 73.9%, 81.2%, and 57.1%, 
respectively. There is no statistically significant difference 
between validation and test performance AUCs in Delong 
tests (p > 0.05), indicating generalizability of the model.

Selected features for all models are presented in 
Table 2.

Detailed performance evaluation of all models is pre-
sented in Table 3. Net reclassification index of the mod-
els is shown in Table 4. Receiver operating characteris-
tic curves for all models are presented in Fig. 3. Feature 
importance plots and distribution of features used in all 
models are presented in Figs. 4 and 5, respectively.

Clinical utility

Except for clinical only and merging strategy with ANN 
model, all other models yielded net benefits in a wide 
range of different threshold probabilities, proving clini-
cal utility. Better clinical utility was observed for radi-
omic only and merging strategy with RF models. Decision 
curves are presented in Fig. 6.

Discussion

Overview

In this work, we developed ML-based clinical, radiomic, 
and combined models for predicting therapeutic response 
to nCRT in patients with LARC. We found that ML-based 
radiomics provided better predictive performance than clini-
cal and various combined models. There were several major 
differences between our work and these previous studies, 
including our use of pre-treatment MRI images, a high 
number of radiomic features, and pathological assessment 
of post-operative specimens according to the modified Ryan 
score. In addition, our analysis focused on the basal sagittal 
plane using a 3D volumetric technique, which is the most 
representative plane for rectal tumors. In contrast, many pre-
vious studies used axial plane images. Also, the clinical and 
laboratory data were used in building the predictive models.

Practical implications

Accurate early prediction of response to nCRT will help 
classify patients for optimal therapy management and 

Fig. 2   Modeling strategies: clinical only, radiomic only, and com-
bined models. Two different combined modeling strategies are devel-
oped: pooling and merging. In pooling strategy, all clinical and radi-
omic features are fed to the feature selection algorithms. In merging 
strategy, previously selected clinical only and radiomic only features 
are fed to the previously selected best two algorithms (one for clinical 

only and one for radiomic only). Feature selection methods include 
analysis of variance, recursive feature elimination, Kruskal–Wallis, 
and Relief methods. Machine learning algorithms include logistic 
regression, support vector machine, random forest, and artificial neu-
ral network. *, **, and *** indicate matching components
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improve therapeutic outcomes and administration of indi-
vidual therapies in rectal cancer. Consistency between 
MRI-based TRG and pathological TRG is low and MRI-
based TRG cannot be used as a substitute for pathological 
TRG. Preoperative evaluation of response to rectal can-
cer treatment with MRI is an increasingly important area, 
both to predict outcomes and to determine the complete 
response. After chemoradiotherapy, some tissue changes 
occur due to radiation. These include swelling, inflam-
mation, necrosis, and fibrosis. These changes may create 
inconsistency in predicting an exact MRI-based TRG and 
pathological TRG. The main advantage of early accurate 
estimation of TRG with MRI is that it provides a potential 
opportunity to individually evaluate other preoperative 
treatments without the need for evaluation of the resec-
tion material.

Previous works

To our knowledge, few studies used non-traditional ML-
based radiomics and pathologically modified Ryan score 
to predict pCR after nCRT in LARC patients. Nie et al. 
extracted a total of 103 features from primary T1-weighted/
T2-weighted MRI, diffusion-weighted imaging, and dynamic 
contrast-enhanced MRI images of 48 patients [31]. In this 
study, segmentation was performed by a single radiologist 
in all images and there was no reliability analysis. Antunes 
et al., in their multi-center retrospective study, aimed to pre-
dict the pCR on the T2 axial sequence in the pre-treatment 
period using more than one MR scanner and based on the 
pathological AJCC-modified Ryan score [32]. A single rep-
resentative axial slice containing the largest cross-sectional 
tumor area was utilized for each patient. Although the model 
in their study showed lower performance metrics due to 
validation on an external dataset, there was probably higher 
generalizability.

Some other studies used another histopathological clas-
sification system for defining the reference standard. For 
instance, Wang et al. [33] primarily aimed their study to 
investigate and validate preoperative MRI-based machine 
learning classifiers for the early identification of poor 
responders (TRG 3–5 Mandard system) after nCRT in 
patients with LARC. The selected features and five ML clas-
sifiers were used to build twenty predictive models for the 
screening of poor responders using multiparametric MRI. In 
another work, Petkovska et al. primarily aimed to investigate 
the value of T2W-MRI radiomics combined with anatomi-
cal MRI staging criteria from pre-treatment rectal MRI in 
predicting pCR to nCRT, using the TNM system [34]. The 
radiomics score produced an area under the curve (AUC) 
of 0.75.

In all other radiomic studies, traditional modeling or 
no modeling algorithms was used [35–42]. For instance, 

Table 1   Baseline characteristics of patients

CEA carcinoembryonic antigen, CA carbohydrate antigen, MR-T MR 
T stage, MR-N MR N stage, DFAV distance from anorectal verge, 
nCRT​ neoadjuvant chemoradiotherapy, TRG​ tumor regression grade, 
N/a not available
Categorical and continuous variable are presented as number of 
patients and mean (standard deviation), respectively
*As maximum diameter
**Available as the number of pathological lymph nodes, not as ypN

Characteristics All patients TRG 0 TRG 123

Number of patients 76 23 53
Age (years) 58.2 (11.0) 56.7 (9.3) 58.89 (11.6)
Gender
 Female 25 10 15
 Male 51 13 38

CEA (ng/mL) 26.17 (71.1) 26 (95.0) 26.24 (59.1)
CA19.9 (U/mL) 27.72 (57.1) 12.52 (14.6) 34.31 (66.8)
Tumor localization
 Upper rectum 10 – 10
 Middle rectum 35 12 23
 Lower rectum 31 11 20

Size* (cm) 5.62 (1.6) 5.17 (1.5) 5.815 (1.6)
DFAV (cm) 6.163 (2.8) 5.143 (1.7) 6.606 (3.1)
MR-T
 T2 4 0 4
 T3 65 22 43
 T4 7 1 6

MR-N
 N0 14 7 7
 N1 40 9 31
 N2 21 7 14
 N3 1 0 1

Treatment after nCRT​
 Radical surgical excision 67 14 53
 “Watch-and-wait” 9 9 –

Surgical method
 Abdominoperineal resection 11 – 11
 Low anterior resection 48 12 36
 Ultra-low anterior resection 5 2 3
 Intersphincteric resection 3 – 3

ypT Stage
 0 14 14 –
 1 3 – 3
 2 10 – 10
 3 37 – 37
 4 3 – 3

ypN Stage
 0 33 14 19
 1 20 – 20
 2 4 – 4
 N/a** 10 – 10

Tumor grade
 Well-moderately differenti-

ated
38 14 24

 Poorly differentiated 29 – 29
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Cusumano et al. evaluated a combination of shape, frac-
tal, and log-based features in their cohort of 198 patients, 
which included an independent external validation data-
set from another center that included fractal, morphologi-
cal, and statistical features, resulting in moderate predic-
tive performance [35] Fractal parameters related to tumor 

subpopulations were better able to predict a pCR than sta-
tistical and morphological features. Rather than complex 
ML algorithms others developed models with traditional 
logistic regression. Meng et al. also used logistic regression 
in their work [36]. They suggested that texture parameters 
from T2W-MRI concerning the Mandard system hold more 

Table 2   Selected features

mrT MR T stage, mrN MR N stage, CA carbohydrate antigen, DFAV distance from anal verge

Models Feature selection method Radiomic features

Clinical only Relief mrT_T3
size
mrN_N0
age
mrN_N1
CA_19_9
DFAV

Radiomic only Relief wavelet-LLL_firstorder_Energy
wavelet-LLH_glszm_GrayLevelNonUniformity
log-sigma-6–0-mm-3D_firstorder_Minimum
wavelet-LLH_glrlm_RunLengthNonUniformity
wavelet-LLL_glcm_ClusterShade
wavelet-HLH_glrlm_RunLengthNonUniformity
log-sigma-6–0-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
log-sigma-6–0-mm 3D_gldm_LargeDependenceHighGrayLevelEmphasis

Combined “Pooling strategy” Recursive feature elimination mrT_T3
age
log-sigma-4–0-mm-3D_firstorder_Minimum
log-sigma-4–0-mm-3D_firstorder_Variance
log-sigma-6–0-mm-3D_firstorder_Minimum
log-sigma-6–0-mm-3D_firstorder_Variance
log-sigma-6–0-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis
wavelet-LLH_firstorder_InterquartileRange
wavelet-LLH_glrlm_RunLengthNonUniformity
wavelet-HHL_glrlm_RunLengthNonUniformity
wavelet-LLL_glcm_ClusterShade

Combined “Merged strategy” Relief mrT_T3
size
mrN_N0
age
mrN_N1
CA_19_9
DFAV
wavelet-LLL_firstorder_Energy
wavelet-LLH_glszm_GrayLevelNonUniformity
log-sigma-6–0-mm-3D_firstorder_Minimum
wavelet-LLH_glrlm_RunLengthNonUniformity
wavelet-LLL_glcm_ClusterShade
wavelet-HLH_glrlm_RunLengthNonUniformity
log-sigma-6–0-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
log-sigma-6–0-mm 3D_gldm_LargeDependenceHighGrayLevelEmphasis
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information than current imaging modalities and produce 
meaningful data to predict response before nCRT.

Limitations

This study had some limitations. First, it was a retrospec-
tive study including a relatively small sample. Second, we 

used manual 3D segmentation. Whole-tumor segmentation 
is a time-consuming task, which took about 10 to 12 min 
per case in our study. Moreover, manual delineation is 
reader-dependent, which limits its utility in practice and 
represents one of the major obstacles to the design of large 
quantitative imaging studies. Third, only the response of 
the tumor to nCRT was evaluated. We did not evaluate 

Table 3   Cross-validation and test performance metrics of the models

AUC​ area under the curve, CI confidence interval, SD standard deviation, PPV positive predictive value, NPV negative predictive value, ANN 
artificial neural network, RF random forest

Data Models AUC​ AUC (95% CI) SD-AUC​ Accuracy Sensitivity Specificity PPV NPV

Cross-validation Clinical only-ANN 0.713 0.549–0.853 0.079 62.26% 51.35% 87.50% 90.48% 43.75%
Radiomic only-RF 0.753 0.584–0.901 0.082 81.13% 83.78% 75.00% 88.57% 66.67%
Combined Pooled-RF 0.735 0.571–0.879 0.077 73.58% 70.27% 81.25% 89.66% 54.17%

Merged-ANN 0.750 0.589–0.893 0.079 73.58% 75.68% 68.75% 84.85% 55.00%
Merged-RF 0.767 0.625–0.089 0.066 66.04% 51.35% 100.00% 100.00% 47.06%

Hold-out Clinical only-ANN 0.536 0.274–0.789 0.068 52.17% 50.00% 57.14% 72.73% 33.33%
Radiomic only-RF 0.705 0.408–0.956 0.145 73.91% 81.25% 57.14% 81.25% 57.14%
Combined Pooled-RF 0.701 0.448–0.944 0.130 69.57% 75.00% 57.14% 80.00% 50.00%

Merged-ANN 0.402 0.170–0.667 0.127 34.78% 18.75% 71.43% 60.00% 27.78%
Merged-RF 0.683 0.377–0.950 0.150 69.57% 68.75% 71.43% 84.62% 50.00%

Table 4   Net reclassification index (NRI) with reference to clinical only and radiological only models

NRI net reclassification index, ML machine learning, CI confidence interval, ANN artificial neural network, RF random forest
*NRI is based on ‘continuous’ method
**Threshold of p-value for statistical significance is 0.05

Data ML models Reference for NRI calculation

Clinical only-ANN Radiomic only-RF

NRI* (95% CI) p-value** NRI* (95% CI) p-value**

Validation Clinical only-ANN – – − 0.9595
(− 1.4713, − 0.4476)

0.00024

Radiomic only-RF 0.9595
(0.4476, 1.4713)

0.00024 – –

Combined Pooled-RF 0.9054
(0.3888, 1.422)

0.00059 − 0.3412
(− 0.9179, 0.2354)

0.24613

Merged-ANN 0.223
(− 0.3505, 0.7964)

0.44600 − 0.6014
(− 1.1636, − 0.0391)

0.03605

Merged-RF 0.7264
(0.1811, 1.2716)

0.00903 − 0.2703
(− 0.8478, 0.3073)

0.35902

Testing Clinical only-ANN – – − 0.4821
(− 1.3091, 0.3448)

0.25316

Radiomic only-RF 0.4821
(− 0.3448, 1.3091)

0.25316 – –

Combined Pooled-RF 0.6429
(− 0.2043, 1.49)

0.13693 0.125
(− 0.7157, 0.9657)

0.77072

Merged-ANN − 0.6786
(− 1.499, 0.1419)

0.10499 − 0.4821
(− 1.3091, 0.3448)

0.25316

Merged-RF 0.7321
(− 0.0385, 1.5028)

0.06259 − 0.3929
(− 1.2662, 0.4805)

0.37794
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metastatic lymph nodes, extramural tumor infiltration, etc. 
Fourth, we did not perform external validation but had a 
hold-out test set. Fifth, radiomics was performed only on 
T2W-MRI images to minimize variability in acquisition 
parameters. We speculate that the performance of radi-
omics analyses may improve with the inclusion of other 
MR imaging sequences, such as T1-weighted dynamic 

contrast-enhanced images, and diffusion-weighted MRI. 
Although we firstly planned to perform the whole analysis 
with  T2W-MRI and diffusion-weighted images, the over-
all quality of the diffusion-weighted images was poor in 
majority of the patients so that we decided not to analyze 
this modality.

Fig. 3   Predictive performance of the machine learning models in 
distinguishing tumor regression grade (TRG) 0 from TRG 1–2–3. a 
clinical only model. b radiomic only model. c combined model with 

pooling strategy. d, e combined models with merging strategy (d 
ANN model; e RF model). AUC​ area under the curve
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Fig. 4   Feature importance plots. a clinical only model. b radiomic only model. c combined model with pooling strategy. d combined models 
with merging strategies (please note the same feature set is fed to two algorithms). Horizontal axis represents feature weights

Fig. 5   Box plots of the selected radiomic features for the best model, that is, the radiomic only model. a training set. b test set. Vertical axis rep-
resents numeric feature values without units
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Conclusion

The results of this study suggest that ML-based radiomics 
on basal sagittal T2W-MRI has the potential to predict the 
response to nCRT in LARC patients, being better than clini-
cal only and combined models. Independent external valida-
tion of the results is warranted.
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