Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDumlupınar, Berrak
dc.contributor.authorŞeker Karatoprak, Gökçe
dc.contributor.authorÖçsoy, İsmail
dc.date.accessioned2023-11-30T07:58:42Z
dc.date.available2023-11-30T07:58:42Z
dc.date.issued2019en_US
dc.identifier.issn1319-0164
dc.identifier.issn2213-7475
dc.identifier.urihttps://hdl.handle.net/11363/6585
dc.description.abstractThe use of microbial cell culture a valuable tool for the biosynthesis of nanoparticles is considered a green technology as it is eco-friendly, inexpensive and simple. Here, the synthesis of nanosilver particle (AgNP) from the yeast, Saccharomyces cerevisiae, gram (+), Bacillus subtilis and gram (-), Escherichia coli was shown. In this field we are the first to study their the antimicrobial effects of the microorganisms mentioned above against pathogens and anticancer activity on MCF-7 cell line. Silver nanoparticles in the size range of 126-323 nm were synthesized extracellularly by the microorganisms, which have different cell structures. Optical absorption, scanning electron microscopy, and zetasizer analysis confirmed the silver nanoparticles formation. Antimicrobial activity of AgNPs was evaluated the minimum inhibition concentration and disc diffusion methods. AgNPs inhibited nearly 90% the growth of Gram-positive Listeria monocytogenes, Streptococcus pneumoniae and Gram-negative Haemophilus influenzae, Klebsiella pneumoniae, Neisseria meningitidis bacterial pathogens. Anticancer potentials of AgNPs were investigated by MTT method. The synthesized AgNPs exhibited excellent high toxicity on MCF-7 cells and had a dose-dependent effect on cell viability. Especially AgNP 2 eliminated 67% of the MCF-7 cells at the concentration of 3.125 mu g/mL. We found that extracellular synthesis of nanoparticles from microbial culture may be 'green' alternative to physical and chemical methods from the point of view of synthesis in large amounts and easy process.en_US
dc.language.isoengen_US
dc.publisherELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDSen_US
dc.relation.isversionof10.1016/j.jsps.2018.07.013en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAntimicrobial activityen_US
dc.subjectCytotoxicityen_US
dc.subjectExtracellular synthesisen_US
dc.subjectSilver nanoparticleen_US
dc.titleExtracellular directed ag NPs formation and investigation of their antimicrobial and cytotoxic propertiesen_US
dc.typearticleen_US
dc.relation.ispartofSaudi Pharmaceutical Journalen_US
dc.departmentSağlık Bilimleri Fakültesien_US
dc.authoridhttps://orcid.org/0000-0002-0898-3043en_US
dc.authoridhttps://orcid.org/0000-0001-5829-6914en_US
dc.authoridhttps://orcid.org/0000-0002-5991-3934en_US
dc.identifier.volume27en_US
dc.identifier.issue1en_US
dc.identifier.startpage9en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorDumlupınar, Berrak


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster