Mutation-based Binary Aquila optimizer for gene selection in cancer classification
Abstract
Microarray data classification is one of the hottest issues in the field of bioinformatics due to its efficiency in
diagnosing patients’ ailments. But the difficulty is that microarrays possess a huge number of genes where the
majority of which are redundant or irrelevant resulting in the deterioration of classification accuracy. For this
issue, mutated binary Aquila Optimizer (MBAO) with a time-varying mirrored S-shaped (TVMS) transfer function
is proposed as a new wrapper gene (or feature) selection method to find the optimal subset of informative genes.
The suggested hybrid method utilizes Minimum Redundancy Maximum Relevance (mRMR) as a filtering
approach to choose top-ranked genes in the first stage and then uses MBAO-TVMS as an efficient wrapper
approach to identify the most discriminative genes in the second stage. TVMS is adopted to transform the
continuous version of Aquila Optimizer (AO) to binary one and a mutation mechanism is incorporated into
binary AO to aid the algorithm to escape local optima and improve its global search capabilities. The suggested
method was tested on eleven well-known benchmark microarray datasets and compared to other current state-ofthe-art methods. Based on the obtained results, mRMR-MBAO confirms its superiority over the mRMR-BAO algorithm and the other comparative GS approaches on the majority of the medical datasets strategies in terms of
classification accuracy and the number of selected genes. R codes of MBAO are available at https://github.
com/el-pashaei/MBAO.
Volume
101Collections
The following license files are associated with this item: