The Effect of Basalt Fiber on Mechanical, Microstructural, and High-Temperature Properties of Fly Ash-Based and Basalt Powder Waste-Filled Sustainable Geopolymer Mortar
View/ Open
Date
2021Author
Ziada, MahmoudErdem, Savaş
Tammam, Yosra M. A.
Kara, Serenay
Gonzalez Lezcano, Roberto Alonso
Metadata
Show full item recordAbstract
As the human population grows and technology advances, the demand for concrete
and cement grows. However, it is critical to propose alternative ecologically suitable options to
cement, the primary binder in concrete. Numerous researchers have recently concentrated their
efforts on geopolymer mortars to accomplish this objective. The effects of basalt fiber (BF) on a
geopolymer based on fly ash (FA) and basalt powder waste (BP) filled were studied in this research.
The compressive and flexural strength, Charpy impact, and capillary water absorption tests were
performed on produced samples after 28 days. Then, produced samples were exposed to the hightemperature test. Weight change, flexural strength, compressive strength, UPV, and microstructural
tests of the specimens were performed after and before the effect of the high temperature. In addition,
the results tests conducted on the specimens were compared after and before the high-temperature
test. The findings indicated that BF had beneficial benefits, mainly when 1.2 percent BF was used.
When the findings of samples containing 1.2 percent BF exposed to various temperatures were
analyzed, it was revealed that it could increase compressive strength by up to 18 percent and flexural
strength by up to 44 percent. In this study, the addition of BF to fly ash-based geopolymer samples
improved the high-temperature resistance and mechanical properties.
Volume
13Issue
12Collections
The following license files are associated with this item: