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Abstract: In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the neutral
functional-differential equations (NFDEs) with proportional delays. By using Hermite polynomials and collocation points, NFDEs and
the given conditions are transformed into matrix equation which corresponds to a system of linear algebraic equations with unknown
Hermite coefficients. Hence, by solving this system, the unknown Hermite coefficients are computed. In addition, some numerical
examples are given and comparisons with other methods are made in order to demonstrate the validity and applicability ofthe proposed
method.

Keywords: Hermite collocation method (HCM), collocation points, Hermite polynomials, neutral functional-differential equations
(NFDEs).

1 Introduction

Many problems in mechanical engineering, physics, biology, chemistry, control theory, fluid mechanics, signal
processing, viscoelasticity, electromagnetism, electrochemistry, thermal engineering and many other physical processes
are modeled by ordinary, partial or fractional differential equations. Since in many cases to find an exact solution of these
equations is difficult, approximate or numerical solution methods are used [1,2,3,4,5,6,7,8,9].

The Neutral functional-differential equations (NFDEs) with proportional delays are one of the important classes of delay
differential equations and these equations arise in modeling of various phenomena in science and engineering [10,11,12,
13,14]. NFDEs have been investigated by many authors and various analytical and numerical methods have been
developed, some of which are Legendre-Gauss collocation method [15], homotopy perturbation method (HPM) [16],
variational iteration method (VIM) [17], segmented Tau approximation[18], Adams predictor-corrector method [19,20],
reproducing kernel Hilbert space method(RKHSM) [21], one-legθ -methods [22,23], continuous Runge-Kutta method
(RKTM)[24] and waveform relaxation methods [25].

In this paper, we develop Hermite collocation method to solve the following NFDEs with proportional delays.

y(n)(t) = λ (t)y(t)+
n

∑
k=0

βk(t)y
(k)(qkt)+ g(t), t ≥ 0 (1)

with the initial conditions
y(i)(0) = ci, i = 0,1,2, ...,n−1 (2)
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whereλ (t) andβk(t) are given analytical functions, andqn,ci are appropriate constants with 0< qn < 1.

2 Hermite collocation method (HCM)

The main idea of the collocation method is to seek the unknownsolutiony(t) in the form of a linear combination of some
basis functions with unknown coefficients. Here, basis functions can be preferred as orthogonal polynomials according
to their particular properties, which make them especiallyideal for a problem under consideration. In recent years, the
various collocation methods have been studied by many authors to obtain solutions of problems arising in different fields
of science and engineering [26,27,28,29,30,31,32,33,34,35,36,37,38].

3 Hermite polynomials

The explicit form of well-known Hermite polynomials ofn-th degree is defined as:

Hn(t) = n! ·
⌊n/2⌋

∑
k=0

(−1)k

k! · (n−2k)!
(2t)n−2k, n ∈ N. (3)

The first few Hermite polynomials are

H0(t) = 1,H1(t) = 2t,H2(t) = t2−1,H3(t) = t3−3t,H4(t) = t4−6t2+3.

In practice, the Hermite polynomials can be computed using the following recurrence relations forn ∈ N+.

Hn+1(t) = 2tHn(t)−2nHn−1(t) (4)

H ′
n(t) = 2nHn−1(t) (5)

whereH0(t) = 1 andH1(t) = 2t. If we present the Hermite polynomial as a vector in the form

H(t) = [H0(t), H1(t), · · · ,HN(t)] ,

then the derivative of theH(t), using (5), can be denoted in the matrix form by

H ′(t)T = MH(t)T (6)

where
H(t) =

[

H0(t) H1(t) · · · HN−1(t) HN(t)
]

H ′(t) =
[

H ′
0(t) H ′

1(t) · · · H ′
N−1(t) H ′

N(t)
]

M =





















0 0 · · · 0 0 0
2 ·1 0 · · · 0 0 0
0 2·2 · · · 0 0 0
...

...
.. .

...
...

...
0 0 · · · 2 · (N −1) 0 0
0 0 · · · 0 2·N 0





















(N+1)×(N+1)

.

Accordingly, thek -th derivative with respect tot of H(t) can be obtained by

H ′(t)T = MH(t)T ,⇒ H ′(t) = H(t)MT ,
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H ′′(t) = H ′(t)MT = H(t)
(

MT )2
,

H ′′′(t) = H ′(t)
(

MT )2
= H(t)

(

MT )3

...

H(k)(t) = H(k−1)(t)
(

MT )k−1
= H(t)

(

MT )k
(7)

where M is the Hermite operational matrix of derivative.

4 Method for solution

In this section, we use the collocation method based on Hermite polynomial to solve numerically the NFDEs. We suppose
that the solution of (1) can be expanded in Hermite polynomials:

y(t)∼=
∞

∑
j=0

a jH j(t). (8)

A finite expansion in the first(N+1)-terms Hermite polynomials is

yN(t)∼=
N

∑
j=0

a jH j(t) = H(t)A (9)

where the Hermite vectorH(t) and the Hermite coefficient vectorA are given by

H(t) = [H0(t) H1(t) · · · HN(t)]

AT = [a0 a1 · · · aN ]
(10)

respectively. From (7), thekth derivative ofy(t) can be expressed in the matrix form by

y(k)N (t) = H(k)(t)A. (11)

By the help of relations (7) and (11), we get

y(k)N (t) = H(t)
(

MT )k
A. (12)

By substituting (9) and (12)into (1), we get

H(t)
(

MT )n
A = λ (t)H(t)A+

n

∑
k=0

βk(t)H(qkt)
(

MT )k
A+ g(t). (13)

To find the unknown Hermite coefficient, the collocation points ti = i/N,i = 0,1,2, ...,N are put into (13) and the systems
of the matrix equations are obtained as

H(ti)
(

MT )n
A = λ (t)H(ti)A+

n

∑
k=0

βk(ti)H(qkti)
(

MT )k
A+ g(ti). (14)

This system can be rescripted as follows

{

H1
(

MT )n
−λ H1−

n

∑
k=0

βkHqk

(

MT )k

}

A = G (15)
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where

G =











g(t0)
g(t1)

...
g(tN)











,λ =













λ (t0) 0 · · · 0

0 λ (t1)
. . . 0

...
...

. . .
...

0 0 · · · λ (tN)













,βk =













βk(t0) 0 · · · 0

0 βk(t1)
. . . 0

...
...

. . .
...

0 0 · · · βk(tN)













,

H1 =











H0(t0) H1(t0) · · · HN(t0)
H0(t1) H1(t1) · · · HN(t1)

...
...

. . .
...

H0(tN) H1(tN) · · · HN(tN)











,Hqk =











H0(qkt0) H1(qkt0) · · · HN(qkt0)
H0(qkt1) H1(qkt1) · · · HN(qkt1)

...
...

. . .
...

H0(qktN) H1(qktN) · · · HN(qktN)











.

Now, the fundemantal matrix equation (15) corresponding to (1) can be written as follows

WA = G or [W ;G] (16)

where

W =

{

H1
(

MT )n
−λ H1−

n

∑
k=0

βkHqk

(

MT )k

}

.

Thus, (1)is transformed into matrix equation which corresponds to asystem of (N+1) linear algebraic equations with
unknown Hermite coefficients which can be written in augmented matrix form

[W ;G] =











w00 w01 · · · w0N ; g(t0)
w10 w11 · · · w1N ; g(t0)

...
...

. . .
... ;

...
wN0 wN1 · · · wNN ; g(t0)











. (17)

Using (9) and (11) at t = 0, initial conditions given in (2) can be written in the form of a matrix representation as

H(0)
(

Mt)i
A = [ci] , i = 0,1,2, . . . ,n−1. (18)

Thus, the matrix form of (2) is:
UiA = [ci] or [Ui;ci] , i = 0,1,2, . . . ,N −1 (19)

where
Ui = H(0)

(

Mt)i
= [ui0 ui1 ... uiN ] , i = 0,1,2, . . . ,n−1.

Finally, by replacing the last rows of the augmented matrix (17) by the row matrix (19), we reduce (1) under conditions
(2) to the following linear system of algebraic equations

W̃A = G̃ (20)

where

W̃ =































w01 w02 · · · w0N ; g(t0)
w10 w11 · · · w1N ; g(t0)

...
...

. . .
... ;

...
w(N−i)0 w(N−i)1 · · · w(N−i)N ; g(tN−i)

u00 u01 · · · u0N ; c0

u10 u11 · · · u1N ; c1
...

...
. . .

... ;
...

u(n−1)0 u(n−1)1 · · · u(n−1)N ; cn−1































. (21)

c© 2016 BISKA Bilisim Technology



CMMA 1, No. 3, 22-30 (2016) /ntmsci.com/cmma 26

If rankW̃ = rank
[

W̃ : G̃
]

= N + 1, the linear system (20) has a unique solution and the matrixA, which is represented

Hermite coefficients, is determined byA=
(

W̃
)−1

G̃. On the other hand, if det(W̃ ) = 0 andrankW̃ = rank
[

W̃ : G̃
]

<N+1
, then we may obtain the particular solutions. Otherwise, ifrankW̃ 6= rank

[

W̃ : G̃
]

, then there is no solution.

5 Numerical examples

In this section, some numerical examples are given to illustrate the applicability, accuracy, and effectiveness of the
proposed method. The obtained results denote that this method can be considered as an alternative to the other methods
in the literature in terms of the purpose of solving linear NFDEs in general.

Example 1. Firstly, let us consider the following NFDE with proportional delay [15,17,21,22,23,24,37]:

{

y′′(t) = 3
4y(t)+ y( t

2)+ y′( t
2)+

1
2y′′( t

2)− t2− t +1

y(0) = y′(0) = 0.
(22)

By applying the present method to obtain the approximate solution yN(t) for N = 3, we seek the approximate solution in
the form

y3(t) =
3

∑
j=0

a jH j(t) (23)

whereλ (t) = 3/4,β0(t) = β1(t) = 1, β2(t) = 1/2,q0 = q1 = q2 = 1/2,g(t) = −t2− t +1. Using the collocation points
for N=3, which are calculated as{t0 = 0, t1 = 1/3, t2 = 2/3, t3 = 1}, and using (15) the matrix equation of the (22) is

{

H1
(

MT )2
−λ H1−β0H1/2 −β1H1/2 MT −β2H1/2

(

MT )2
}

A = G (24)

where

λ =









3/4 0 0 0
0 3/4 0 0
0 0 3/4 0
0 0 0 3/4









,β0 = β1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,β2 =









1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2









,MT =









0 2 0 0
0 0 4 0
0 0 0 6
0 0 0 0









,

H1 =









1 0 −2 0
1 2/3 −14/9 −100/27
1 4/3 −2/9 −152/27
1 2 2 −4









,H1/2 =









1 0 −2 0
1 1/3 −17/9 −53/27
1 2/3 −14/9 −100/27
1 1 −1 −5









.

The augmented matrix for (22) is

[W ;G] =









−7/4 −2 15/2 12 ; 1
−7/4 −17/6 103/18 758/27 ; 5/9
−7/4 −11/3 55/18 1114/27 ;−1/9
−7/4 −9/2 −1/2 50 ; −1









.

From (19), the matrix forms for initial conditions are

[U0;c0] = [1 0 −2 0] , [U1;c1] = [0 2 0 −12] .
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From system (21), the new augmented matrix can be obtained as follows

[

W̃ ;G̃
]

=









−7/4 −2 15/2 12 ; 1
−7/4 −17/6 103/18 758/27 ; 5/9

1 0 −2 0 ; 0
0 2 0 −12 ; 0.









.

Solving this system, the unknown Hermite coefficients vector is found as

A =

[

1
2

0
1
4

0

]T

.

Hence, the solution of (22) for N=3 is obtainedy3(t) = t2 which is the exact solution.

Example 2. Now, let us consider the NFDE with proportional delay [16,17,21]

{

y′(t) =−y(t)+0.1y(0.8t)+0.5y′(0.8t)+ (0.32t−0.5)e−0.8t + e−t

y(0) = 0
(25)

whereλ (t) =−1,β0(t) = 0.1,β1(t) = 0.5, q0 = q1 = 0.8,g(t) = (0.32t−0.5)e−0.8t +e−t . From (15), the matrix equation
of the (25) is

{

H1MT −λ H1−β0H0.8−β1H0.8MT}A = G. (26)

By applying the HCM for different values of N=3 and N=5, we obtain the approximate solutions. Fig.1 shows exact
solution and the approximate solutions for N=3 and N=5 are compared. Also, in Table1, the absolute error functions
En(t) = |y(t)− yN(t)| at the selected points of the given interval are compared with other methods.

Fig. 1: First figure shows that comparison of exact and the approximate solutions for N=3 and N=5. Second figure shows
that the absolute error functionsEn(t) for N=5 and N=9.

Example 3. Let us consider the NFDE with proportional delay [15,21]

{

y′′′(t) = y(t)+ y′
(

t
2

)

+ y′′
(

t
3

)

+ 1
2y′′′

(

t
4

)

y(0) = y′(0) = y′′(0) = 0.
(27)
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Table 1: Comparison of the absolute errors corresponding to different methods for (25).

ti
HCM
for

N=5

RKHSM
[21]

One-leg
θ method
[22,23]

RKTM
[24]

VIM
[17]

0.2 1.28e-6 1.17e-4 1.45e-2 1.49e-3 2.14e-3
0.4 3.44e-6 7.59e-4 3.60e-2 2.16e-3 2.84e-3
0.6 2.41e-5 4.73e-4 5.03e-2 2.31e-3 2.67e-3
0.8 1.17e-5 2.75e-4 5.47e-2 2.17e-3 2.04e-3
1.0 1.14e-5 1.43e-4 5.03e-2 1.86e-3 1.22e-3.

Using (15), the matrix equation of the (27) is

{

H1
(

MT )3
−λ H1−β1H1/2 MT −β2H1/3

(

MT )2
−β3H1/4

(

MT )3
}

A = G (28)

whereλ (t) = 1, β0(t) = 0, β1(t) = 1, β2(t) = 1, β3(t) = 1/2,q1 = 1/2,q2 = 1/3,q3 = 1/4,g(t) = 0. By applying the
HCM for N=4, the new augmented matrix in (21) can be obtained as follows

[

W̃ ;G̃
]

=













−1 −2 −6 36 84 ; 0
−1 −5/2 −29/4 69/2 8711/48 ; 3959/768
1 0 −2 0 12 ; 0
0 2 0 −12 0 ; 0
0 0 8 0 −96 ; 0













.

Solving this system, the unknown Hermite coefficients vector is

A =

[

3
4

0
3
4

0
1
16

]T

.

Therefore, the solution of (27) for N=4 is obtainedy4(t) = t4 which is the exact solution.

Example 4. Finaly, let us consider the NFDE with variable coefficients[21,22]:

{

y′′(t) = y′(0.5t)−0.5ty′′(0.5t)+2
y(0) = 1,y′(0) = 0

(29)

From (15), the matrix equation of the (29) is:

{

H1
(

MT )2
−β1H0.5−β2H0.5

(

MT )2
}

A = G (30)

whereβ1(t) = 1, β2(t) = 0.5t, q1 = q2 = 0.5, g(t) = 2. By applying the HCM for N=3, the new augmented matrix in (21)
can be obtained as follows:

[

W̃ ;G̃
]

=









0 −2 8 12 ; 2
0 −2 8 86/3 ; 2
1 0 −2 0 ; 1
0 2 0 −12 ; 0









.

Solving this system, the unknown Hermite coefficients vector is

A =

[

3
2

0
1
4

0

]T

.

Hence, the solution of (29) for N=3 is obtainedy3(t) = t2+1 which is the exact solution.
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6 Conclusion

The fundamental aim of this paper is to improve the Hermite collocation method (HCM) to numerically solve the NFDEs
with proportional delays. The comparison of the results shows that this approach can solve the NFDEs effectively and this
method is consistent with the existing results in the literature. The validity and accuracy of this method is based on the
assumption that it converges by increasing the number of collocation points. We conclude that the HCM can be considered
as an accurate and reliable method for NFDEs with proportional delays.
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