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Abstract: In this study, we investigate numerical solution of differential-algebraic equations (DAEs) using the Laguerre polynomials
approximation. Two different problems are solved using theLaguerre polynomials approximation and the solutions are compared with
the exact solutions. Firstly, we calculate the power seriesof a given equation system and then transform it into Laguerre polynomials
approximation form, which gives an arbitrary order for solving the DAE numerically. Moreover, a Maple algorithm is developed for
numerical solution of differential-algebraic equations (DAEs) with Laguerre polynomials approximation. In Maple Programming, we
sketch graphs of obtained solutions, and are made tables to compare the solutions.
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1 Introduction

Some numerical methods have been developed, Runge-Kutta, one-leg, implicit Runge-Kutta, Rosenbrock, one step and
extrapolation, Padé approximation, Chebyshev approximation, Adomian decomposition, least squares approximation, etc.
[1-18]. The purpose of this paper is to consider the numerical solution of differential-algebraic equations (DAEs) by using
Laguerre polynomials approximation. Differential-algebraic equations (DAEs) can be used to describe the evolution of
many interesting and important systems. Differential-algebraic equations (DAEs) are a set of differential equationswith
additional algebraic constraints in the form:

F(x,y(x),y′(x)) = 0 (1)

with singularFy′ , whereF andy are of the same dimension. In the following we denote partialderivatives by subscripts,
so thatFy′ = ∂F/∂y′. The equation (1) is also called a fullyimplicit DAE system. We are here especially interested in
semi-explicit systems, differential equations with algebraic constraints of theform

y′(x) = f (x,y(x),z(x))

0= g(x,y(x),z(x))
(2)

wherey represents the differential variables andz represents the algebraic variables [1-18]. The numerical methods
devised for DAEs take into account the structure of the underlying DAE. We will calculate power series of the given
differential-algebraic equations (DAEs) system then transform it into Laguerre polynomials approximation form, which
give an arbitrary order for solving differential-algebraic equation numerically.
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2 The method

A differential-algebraic equation has the form
F(x,y,y′) = 0 (3)

with initial values
y(x0) = y0,y

′(x0) = y1

whereF ∈ R andy ∈ R
n are both vector functions for which we assumed sufficient differentiability and the initial values

to be consistent, i.e.
F(x0,y0,y

′
0) = 0. (4)

The solutions of the equation (3) can be assumed that

y = y0+ y1x+ ex2 (5)

wheree is a vector function which is the same size asy0 andy1. Substitute the equation (5) into the equation (3) and
convert the elementary functions in the equation (3) into series inx = 0 and neglect higher order term, we have the linear
equation ofe in the form

Ae = B (6)

whereA andB are constant matrices. Solving the equation (6); the coefficients ofx2 in the equation (5) can be determined.
Repeating above procedure for higher order terms, we can getthe arbitrary order power series of the solutions for the
equation (3) [13,14,18,27]. The Power series given by above method can be transformed into Laguerre polynomials
approximation and we have numerical solution of differential-algebraic equation in the equation (3).

2.1 Power series of solution for DAEs

We define another type of power series in the form

f (x) = f0+ f1x+ f2x2+ · · ·+( fn + p1e1+ · · ·+ pmem)x
n (7)

where p1, p2, . . . , pm are constants.e1,e2, . . . ,em are bases of vectore,m is the size of vectore. y is a vector with m
elements in the equation (5). Every element can be represented by the power series in theequation (7)

yi = yi,0+ yi,1x+ yi,2x2+ · · ·+ eix
n, (8)

whereyi is theith element ofy. Substituting the equation (8) into the equation (3), we can get the following:

fi = ( fi,n + pi,1e1+ · · ·+ pi,mem)x
n− j +O(xn− j+1), (9)

where fi is the ith element off (y,y′,x) in the equation (3) and j is 0 if f (y,y′,x) havey′, 1 if does not have. From the
equation (9) and the equation (6), we can determine the linear equation in the equation (6) as follows:

Ai, j = Pi, j, (10)

Bi =− fi,n. (11)

Solving this linear equation, we haveei(i = 1, . . . ,m). Substitutingei into the equation (8), we haveyi(i = 1, . . . ,m)

which are polynomials of degreen. Repeating this procedure from the equation (10) and the equation (11) we can get
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the arbitrary order power series of the solution for DAEs in the equation (3). If we repeat the above procedure, we have
numerical solution of DAEs in the equation (3) [13,14,18,27].

Remark. When the initial value problem is

F(x0,y0,y
′
0) = 0,y(x0) = y0. (12)

The solution of equation (12) can be assumed that

y = y0+ ex (13)

and repeating above procedure, we can get the solutions of equation (12) [13,14,18,27].

3 Laguerre polynomials approximation

Laguerre polynomials are defined as solutions of Laguerre’sdifferential equation:

xy′′+(1− x)y′+ ny = 0. (14)

Solutions corresponding to the non-negative integern can be expressed usingRodrigues’ formula.

L0(x) = 1

Ln(x) =
ex

n!
dn

dxn [(e
−xxn)],n = 1,2, . . .

(15)

Thus,
L0(x) = 1

L1(x) =−x+1

L2(x) =
1
2
(x2−4x+2)

L3(x) =
1
6
(−x3+9x2−18x+6)

L4(x) =
1
24

(x4−16x3+72x2−96x+24)

L5(x) =
1

120
(−x5+25x4−200x3+600x2−600x+120)

...

(16)

The inverse relations are as follows:

1= L0(x)

x = L0(x)−L1(x)

x2 = 2[L0(x)−2L1(x)+L2(x)]

x3 = 6[L0(x)−3L1(x)+3L2(x)−L3(x)]

x4 = 24[L0(x)−4L1(x)+6L2(x)−4L3(x)+L4(x)]

x5 = 120[L0(x)−5L1(x)+10L2(x)−10L3(x)+5L4(x)−L5(x)]

...

(17)
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Fig. 1: Laguerre polynomials of degrees 0, 1, 2, 3, 4, 5.

3.1 The properties of Laguerre polynomials

Generating function The generating function of a Laguerre Polynomial is

e−xt/(1−t)

1− t
=

∞

∑
n=0

Ln(x)t
n. (18)

Orthogonality Laguerre PolynomialsLn(x),(n = 0,1,2,3, . . .), form acomplete orthogonal set on the interval 0< x < ∞

with respect to the weighting functione−x. It can be shown that

∫ ∞

0
e−xLm(x)Ln(x)dx =

{

0,m 6= n
1,m = n.

(19)

Recurrence relation A Laguerre Polynomial at one point can be expressed in terms of neighboring Laguerre Polynomials

at the same point [19,20,21,22,23,24,25].

L0(x) = 1

L1(x) =−x+1

(n+1)Ln+1(x) = (2n+1− x)Ln(x)− nLn−1(x), n = 2, . . .

(20)

4 Test problems

In this section, two differential-algebraic equations areconsidered and these problems are solved by Laguerre Polynomials
Approximation.
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Example 1. Consider the following linear DAE of three variable

y′1(x) =

(

α −
1

2− x

)

y1(x)+ (2− x)αy3(x)+

(

3− x
2− x

)

ex

y′2(x) =

(

1−α
x−2

)

y1(x)− y2(x)+ (α −1)y3(x)+2ex

0= (x+2)y1(x)+ (x2−4)y2(x)− (x2+ x−2)ex

(21)

whereα is a positive parameter (takeα = 10). For the initial condition

y1(−1) = y2(−1) = e−1,y3(−1) =−
e−1

3
(22)

the exact solution is given as

y1(x) = y2(x) = ex,y3(x) =
ex

x−2
for x 6= 2 (23)

[16]. If the method is applied to the equation (21) we have

y1(x) = 0.9999998888+0.9999988749x+0.4999948754x2+0.1666527932x3+0.04164190895x4

+0.008302834609x5+0.001362516449x6+0.0001824798815x7+0.00001824798815x8

+0.000001013777120x9, (24)

y2(x) = 0.9999998888+0.9999988749x+0.4999948754x2+0.1666527932x3+0.04164190895x4

+0.008302834609x5+0.001362516449x6+0.0001824798815x7+0.00001824798815x8

+0.000001013777120x9,

y3(x) =−0.4999374461−0.7493431788x−0.6218566090x2−0.3867549200x3−0.2010737971x4

−0.08893877518x5−0.03202602857x6−0.008604472938x7−0.001498942480x8−0.0001249963548x9.

Then, if we use above algorithm in section 3.2, we obtain

y∗1(x) = 0.9999998627+0.999998942x+0.499994717x2+0.166652808x3+0.041641893x4+0.0083028344x5

+0.00136251645x6+0.000182479882x7+0.00001824798818x8+0.000001013777120x9,

y∗2(x) = 0.9999998627+0.999998942x+0.499994717x2+0.166652808x3+0.041641893x4+0.0083028344x5

+0.00136251645x6+0.000182479882x7+0.00001824798818x8+0.000001013777120x9, (25)

y∗3(x) =−0.49993967−0.7493481x−0.6218529x2−0.3867592x3−0.2010725x4−0.08893879x5

−0.032026033x6−0.0086044727x7−0.00149894248x8−0.0001249963548x9.

wherey1(x),y2(x),y3(x) and are the power series solutions of differential-algebraic equation (DAE),y∗1(x),y
∗
2(x),y

∗
3(x)

are the Laguerre Polynomials Approximations ofy1(x),y2(x),y3(x). If we use the algorithm to get tables in section 3.2,
we obtain Table 1, Table 2, Table 3.
Let’s show the graphs ofy1(x), y2(x), y3(x) and their the Laguerre polynomials approximations.

Example 2. We consider the following differential-algebraic equation

y′1(x)+2y3(x)+ xy′4(x) = 3x+2sinx

y1(x)+ x2y′2(x)− xy4(x) = 3−3x+ x2ex

y′2(x)− exy′4(x)+ y4(x) = 3+ x

xy1(x)+3y2(x)− x2y4(x) =−3x2+3x+6+3ex

(26)
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x y1(x) y∗1(x) |y1(x)− y∗1(x)|

−1.0 0.3678794412 0.3678794411 1.000000000×10−10

−0.8 0.4493289641 0.4493289643 1.896863000×10−10

−0.6 0.5488116361 0.5488116363 1.290199700×10−10

−0.4 0.6703200460 0.6703200456 4.718168793×10−10

−0.2 0.8187307531 0.8187307416 1.156724894×10−8

0.0 1.0000000000 0.9999998888 1.112000000×10−7

0.2 1.2214027580 1.2214020540 7.032885759×10−7

0.4 1.4918246980 1.4918213440 0.000003354417429
0.6 1.8221188000 1.8221057850 0.000013013501880
0.8 2.2255409280 2.2254977810 0.000043148036910
1.0 2.7182818280 2.7181554340 0.000126393845300

Table 1: Numerical solution ofy1(x) in equation (21).

x y2(x) y∗2(x) |y2(x)− y∗2(x)|

−1.0 0.3678794412 0.3678794411 1.000000000×10−10

−0.8 0.4493289641 0.4493289643 1.896863000×10−10

−0.6 0.5488116361 0.5488116363 1.290199700×10−10

−0.4 0.6703200460 0.6703200456 4.718168793×10−10

−0.2 0.8187307531 0.8187307416 1.156724894×10−8

0.0 1.0000000000 0.9999998888 1.112000000×10−7

0.2 1.2214027580 1.2214020540 7.032885759×10−7

0.4 1.4918246980 1.4918213440 0.000003354417429
0.6 1.8221188000 1.8221057850 0.000013013501880
0.8 2.2255409280 2.2254977810 0.000043148036910
1.0 2.7182818280 2.7181554340 0.000126393845300

Table 2: Numerical solution ofy2(x) in equation (21).

x y3(x) y∗3(x) |y3(x)− y∗3(x)|

−1.0 −0.1226264804 −0.1226264800 4.000000000×10−10

−0.8 −0.1604746300 −0.1604746299 9.915000000×10−11

−0.6 −0.2110813985 −0.2110813932 5.260145000×10−9

−0.4 −0.2793000192 −0.2792997037 3.152673607×10−7

−0.2 −0.3721503423 −0.3721442363 0.0000061060307
0.0 −0.5000000000 −0.4999374461 0.0000625539000
0.2 −0.6785570878 −0.6781267279 0.0004303599921
0.4 −0.9323904362 −0.9301286035 0.0022618327210
0.6 −1.301513429 −1.2916873510 0.0098260777030
0.8 −1.854617440 −1.8173902010 0.0372272395200
1.0 −2.718281828 −2.5901591660 0.1281226613000

Table 3: Numerical solution ofy3(x) in equation (21).

with initial conditions
y1(−1) = 4,y2(−1) = e−1+2,

y3(−1) = sin(−1),y4(−1) = 2
(27)

The system (26) has exact solution
y1(x) = 3+ x2,y2(x) = ex +2,

y3(x) = sin(x),y4(x) = x+3
(28)
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Fig. 2: Graphs of y1(x) and its Laguerre
polynomials approximation.

Fig. 3: Graphs of y2(x) and its Laguerre
polynomials approximation.

Fig. 4: Graphs ofy3(x) and its Laguerre polynomials approximation.

[16]. If the method is applied to the equation (26) we have

y1(x) = 3+ x2,

y2(x) = 2.999999889+0.9999988749x+0.4999948754x2+0.1666527932x3+0.04164190895x4

+0.008302834609x5+0.001362516449x6+0.0001824798815x7+0.00001824798815x8

+0.000001013777120x9,

y3(x) =−2.167×10−7+0.9999978499x−0.0000095821x2−0.1666919013x3−0.00004343094x4

+0.008282413080x5−0.0000409950404x6−0.0002205599479x7−0.00000746946128x8

+0.000001488928312x9,

y4(x) = 3+ x.

(29)
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x y1(x) y∗1(x) |y1(x)− y∗1(x)|

−1.0 4.00 4.00 0
−0.8 3.64 3.64 0
−0.6 3.36 3.36 0
−0.4 3.16 3.16 0
−0.2 3.04 3.04 0

0.0 3.00 3.00 0
0.2 3.04 3.04 0
0.4 3.16 3.16 0
0.6 3.36 3.36 0
0.8 3.64 3.64 0
1.0 4.00 4.00 0

Table 4: Numerical solution ofy1(x) in equation (26).

x y2(x) y∗2(x) |y2(x)− y∗2(x)|

−1.0 2.367879441 2.367879159 2.819000000×10−7

−0.8 2.449328964 2.449328769 1.947611187×10−7

−0.6 2.548811636 2.548811508 1.282216435×10−7

−0.4 2.670320046 2.670319966 7.976767376×10−8

−0.2 2.818730753 2.818730697 5.725070189×10−8

0.0 3.000000000 2.999999863 1.370000000×10−7

0.2 3.221402758 3.221402035 7.219361628×10−7

0.4 3.491824698 3.491821320 0.000003378217564
0.6 3.822118800 3.822105744 0.000013054885110
0.8 4.225540928 4.225497709 0.000043220765500
1.0 4.718281828 4.718155315 0.000126512502700

Table 5: Numerical solution ofy2(x) in equation (26).

Then, if we use above algorithm in section 3.2, we obtain

y∗1(x) = 3+ x2,

y∗2(x) = 2.999999863+0.999998942x+0.499994717x2+0.166652808x3+0.041641893x4

+0.0083028344x5+0.00136251645x6+0.000182479882x7+0.00001824798818x8

+0.00000101377712x9,

y∗3(x) =−2.419×10−7+0.999998003x−0.000009566x2−0.166691887x3−0.000043426x4 (30)

+0.0082824132x5−0.00004099502x6−0.000220559949x7−0.0000074694613x8

+0.000001488928312x9,

y∗4(x) = 3+ x.

where y1(x),y2(x),y3(x),y4(x) and are the power series solutions of differential-algebraic equation (DAE),
y∗1(x),y

∗
2(x),y

∗
3(x),y

∗
4(x) are the Laguerre Polynomials Approximations ofy1(x),y2(x),y3(x),y4(x). If we use the

algorithm to get tables in section 3.2, we obtain Table 4, Table 5, Table 6, Table 7.

Let’s show the graphs ofy1(x), y2(x), y3(x), y4(x) and their the Laguerre Polynomials Approximations,
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x y3(x) y∗3(x) |y3(x)− y∗3(x)|

−1.0 −0.8414709848 −0.8414711567 1.719000000×10−7

−0.8 −0.7173560909 −0.7173562337 1.427799312×10−7

−0.6 −0.5646424734 −0.5646425873 1.137898990×10−7

−0.4 −0.3894183423 −0.3894184283 8.604245128×10−8

−0.2 −0.1986693308 −0.1986694097 7.891822208×10−8

0.0 0.0000000000 −2.4190×10−7 2.419000000×10−7

0.2 0.1986693308 0.1986680165 0.000001314410584
0.4 0.3894183423 0.3894123143 0.000006027910324
0.6 0.5646424734 0.5646198835 0.00002258979314
0.8 0.7173560909 0.7172839313 0.00007215961242
1.0 0.8414709848 0.8412677598 0.0002032250020

Table 6: Numerical solution ofy3(x) in equation (26).

x y4(x) y∗4(x) |y4(x)− y∗4(x)|

−1.0 2.0 2.0 0
−0.8 2.2 2.2 0
−0.6 2.4 2.4 0
−0.4 2.6 2.6 0
−0.2 2.8 2.8 0

0.0 3.0 3.0 0
0.2 3.2 3.2 0
0.4 3.4 3.4 0
0.6 3.6 3.6 0
0.8 3.8 3.8 0
1.0 4 4 0

Table 7: Numerical solution ofy4(x) in equation (26).

Fig. 5: Graphs of y1(x) and its Laguerre
Polynomials Approximation.

Fig. 6: Graphs of y2(x) and its Laguerre
Polynomials Approximation.

5 Conclusion

Laguerre Polynomials Approximation has proposed for solving differential-algebraic equations in this study. The
computations associated with the example discussed above were performed by using Maple 17 [26]. Results show the
advantages of the method.
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Fig. 7: Graphs of y3(x) and its Laguerre
Polynomials Approximation.

Fig. 8: Graphs of y4(x) and its Laguerre
Polynomials Approximation.
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