
Appl. Math. Inf. Sci.11, No. 3, 683-691 (2017) 683

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110307

Oscillatory behavior of solutions of differential
equations with fractional order

Mustafa Bayram1,∗, Aydin Secer2 and Hakan Adiguzel2

1 Department of Computer Engineering, Istanbul Gelisim University, Turkey
2 Department of Mathematical Engineering, Yildiz TechnicalUniversity, Turkey

Received: 2 Nov. 2016, Revised: 18 Jan. 2017, Accepted: 16 Mar. 2017
Published online: 1 May 2017
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1 Introduction

Fractional differential equations have been proved to be
valuable tools in the modelling of many physical and
engineering phenomena such as bioengineering,
electromagnetism, electronics, polymer physics, chaos
and fractals, electrical networks, traffic systems, signal
processing, heat transfer, system identification, industrial
robotics, viscous damping, fluid flows, genetic
algorithms, economics, etc, [1,2,3,4,5,6]. For the many
theories and applications of fractional differential
equations, we refer the monographs [7,8,9,10].

Recently, research for oscillation of various equations
like ordinary and partial differential equations, difference
equations, dynamic equations on time scales, and
fractional differential equations has been a hot topic in the
literature, and much effort has been done to establish
oscillation criteria for these equations [11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26] . In these studies,
some attention has been paid to oscillations of fractional
differential equations [27,28,29,30,31,32].

In [27], Chen considered the oscillation for a class of
fractional differential equation,

[

r (t)
(

Dα
−y
)η

(t)
]′
− q(t) f

(

∫ ∞

t
(v− t)−α y(v)dv

)

= 0

wheret > 0, Dα
− is the Liouville right-sided fractional

derivative of orderα with 0 < α < 1, η is a quotient of
odd positive integers, r ∈ C1 ([t0,∞) ,R+),

q ∈ C ([t0,∞) ,R+) with t0 > 0. and the function off
belong toC (R,R), f (x)/xη > K for all K ∈ R+, x 6= 0 .
By using a generalized Riccati transformation technique
and an inequality, the author established some oscillation
criteria for the equation.

In [28], Zheng researched oscillation of the equations

[

a(t)
(

Dα
−x(t)

)η
]′
+ p(t)

(

Dα
−x(t)

)η

− q(t) f

(

∫ ∞

t
(ξ − t)−α y(ξ )dξ

)

= 0

where t ∈ [t0,∞), α ∈ (0,1), Dα
− is the Liouville

right-sided fractional derivative of orderα. Based on a
generalized Riccati function and inequality technique, the
author established some oscillation criteria for the
equation.

In [29], Han et al. have established some oscillation
criteria for a class of fractional differential equation:

[

r (t)g
((

Dα
−y
)

(t)
)]′− p(t) f

(

∫ ∞

t
(s− t)−α y(s)ds

)

= 0

wheret > 0, Dα
− is the Liouville right-sided fractional

derivative of orderα with 0< α < 1, r andp are positive
continuous functions on[t0,∞) for t0 > 0, f , g : R → R

are continuous function withx f (x) > 0, xg(x) > 0 for
x 6= 0, there exists some positive constantk1, k2 such that
f (x)/x > k1, x/g(x) > k2 for all x 6= 0, and
g−1 ∈ C (R,R) with ug−1(u) > 0 for u 6= 0, there exist
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positive constantγ1 such thatg−1(uv) > γ1g−1(u)g−1 (v)
for uv 6= 0. By generalized Riccati transformation
technique, oscillation criteria for the equation are
obtained.

In [30], Qi and Cheng studied the oscillation of the
differential equation with fractional-order derivatives:

[

a(t)
[

r (t)Dα
−x(t)

]′]′
+ p(t)

[

r (t)Dα
−x(t)

]′

− q(t)
∫ ∞

t
(ξ − t)−α x(ξ )dξ = 0

where t ∈ [t0,∞), α ∈ (0,1), Dα
− is the Liouville

right-sided fractional derivative of orderα, and
r ∈ C2 ([t0,∞) ,R+), a ∈ C1 ([t0,∞) ,R+), and p,
q ∈ C ([t0,∞) ,R+) with t0 > 0. The authors established
some interval oscillation criteria for the equation by a
certain Riccati transformation and inequality technique.

In [31], Xiang et al. studied the oscillation behavior of
the equation with the form

[

a(t)
(

p(t)+ q(t)
(

Dα
−x
)

(t)
)η
]′

− b(t) f

(

∫ ∞

t
(s− t)−α x(s)ds

)

= 0

where t ≥ t0 > 0, α ∈ (0,1), Dα
− is the Liouville

right-sided fractional derivative of orderα, η is a quotient
of odd positive integers,a, b andq are positive continuous
functions on [t0,∞) for t0 > 0, p is a nonnegative
continuous functions on [t0,∞) for t0 > 0, and
f ∈C (R,R) with f (x)/xη > K for all K ∈ R+, x 6= 0. By
using a generalized Riccati transformation technique and
an inequality, the authors established some oscillation
theorems for the equation.

In [32], Xu researched oscillation of the following
fractional differential equations

[

a(t)
[

(

r (t)Dα
−x(t)

)′]η]′

−F

(

t,
∫ ∞

t
(v− t)−α x(v)dv

)

= 0

where t ∈ [t0,∞), α ∈ (0,1), Dα
− is the Liouville

right-sided fractional derivative of orderα, η is a quotient
of odd positive integers, r ∈ C2 ([t0,∞) ,R+),
a ∈ C1 ([t0,∞) ,R+) and
F
(

t,
∫ ∞

t (v− t)−α x(v)dv
)

∈ C ([t0,∞)×R,R), there
exists a function q ∈ C ([t0,∞) ,R+) such that
F
(

t,
∫ ∞

t (v− t)−α x(v)dv
)

/
(
∫ ∞

t (v− t)−α x(v)dv
)η ≥

q(t) for
∫ ∞

t (v− t)−α x(v)dv 6= 0 andx 6= 0, t ≥ t0. The
author was dealing with the oscillation problem of the
equation.

Now, in this study, we are concerned with the
oscillation of nonlinear fractional differential equations of

the form;
[

a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

]′

+ p(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

− q(t) f

(

∫ ∞

t
(s− t)−α x(s)ds

)

= 0 (1)

wheret ∈ [t0,∞), α ∈ (0,1), γ1 andγ2 are the quotient of
two odd positive number,the functiona ∈C1 ([t0,∞) ,R+),
r ∈ C2 ([t0,∞) ,R+), q ∈ C ([t0,∞) ,R+) ,the function of f
belong toC (R,R) , f (x)/x ≥ k for all k ∈ R+, x 6= 0 ,
α ∈ (0,1), and Dα

−x(t) denotes the Liouville right-side
fractional derivative of orderα of x(t) defined by

Dα
−x(t) =− 1

Γ (1−α)

d
dt

∫ ∞

t
(s− t)−α x(s)ds

wheret ∈ R+ andΓ is the gamma function defined by

Γ (t) =
∫ ∞

t
st−1e−sds, t ∈ R+

As usual, a solutionx(t) of (1) is called oscillatory if
it has arbitrarily large zeros, otherwise it is called
non-oscillatory. Equation (1) is called oscillatory if all its
solutions are oscillatory.

2 Preliminaries

In this section, we present some background materials
from fractional calculus theory, which will be used
throughout this paper.

Definition 2.1. [8]:The Liouville right-sided fractional
integral of orderα > 0 of a function f : R+ → R on the
half-axisR+ is given by

(

Iα
− f
)

(x) :=
1

Γ (α)

∫ ∞

x

f (t)dt

(t − x)1−α , for t > 0

provided the right-hand side is pointwise defined onR+,
whereΓ is the gamma function.

Definition 2.2. [8]: The Liouville right-sided fractional
derivative of orderα > 0 of a functionf : R+ →R on the
half-axisR+ is given by

(

Dα
− f
)

(x) := (−1)⌈α⌉ d⌈α⌉

dt⌈α⌉

(

I⌈α⌉−α
− f

)

(x)

= (−1)⌈α⌉ 1
Γ (⌈α⌉−α)

× d⌈α⌉

dt⌈α⌉

∫ ∞

x

f (t)dt

(t − x)α−⌈α⌉+1
, for t > 0

provided the right-hand side is pointwise defined onR+,
where⌈α⌉ := min{z ∈ Z : z ≥ α} is the ceiling function.

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 3, 683-691 (2017) /www.naturalspublishing.com/Journals.asp 685

Before our main results, now we state a useful lemma.

Lemma 2.3. [33]: Assume thatA andB are nonnegative
real numbers. Then,

λ ABλ−1−Aλ ≤ (λ −1)Bλ (2)

for all λ > 1.

3 Main Results

In this section, we establish some oscillation criteria for
(1). Firstly, for the sake of convenience, we denote
δ1 (t, ti) =

∫ t
ti

(

1/a1/γ2 (s)
)

ds for i = 0,1,2,3,4,5;

A(t) = exp
(

∫ t
t0
(p(s)/a(s))ds

)

and let

G(t) =
∫ ∞

t (s− t)−α x(s)ds for α ∈ (0,1), t > 0. Then,
using Definition 2.2., we obtain
G′ (t) :=−Γ (1−α)

(

Dα
−x
)

(t).

Lemma 3.1. Assume x(t) is an eventually positive
solution of (1), and

∫ ∞

t0

1

[A(s)a(s)]1/γ2
ds = ∞ (3)

∫ ∞

t0

1

r1/γ1 (s)
ds = ∞ (4)

∫ ∞

t0

[

1
r (ζ )

∫ ∞

ζ
[B(τ)]1/γ2 dτ

]1/γ1

dζ = ∞ (5)

whereB(x) = [A(x)a(x)]−1∫ ∞
x A(s)q(s)ds. Then, there

exist a sufficiently large T such that
(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0 on [T,∞) and eitherDα
−x(t) < 0

on [T,∞) or limt→∞ G(t) = 0.

Proof. From the hypothesis, there exist at1 such that
x(t) > 0 on [t1,∞), so thatG(t) > 0 on [t1,∞), and we
have

[

A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

]′

= A(t)q(t) f

(

∫ ∞

t
(v− t)−α x(v)dv

)

≥ kA(t)q(t)G(t)> 0, t > t1 (6)

Then A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

is strictly

increasing on [t1,∞), thus we know that
(

r (t)
(

Dα
−x(t)

)γ1
)′

is eventually of one sign. Fort2 > t1

is sufficiently large, we claim
(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0 on

[t2,∞). Otherwise, assume that there exists a sufficiently

large t3 > t2 such that
(

r (t)
(

Dα
−x(t)

)γ1
)′

> 0 on

[t3,∞) .Thus, we get that

r (t)
(

Dα
−x(t)

)γ1 − r (t3)
(

Dα
−x(t3)

)γ1

=

∫ t

t3

(

A(s)a(s)

[

(

r (s)
(

Dα
−x(s)

)γ1
)′]γ2

)1/γ2

[A(s)a(s)]
1/γ2

ds (7)

≥ A1/γ2 (t3)a1/γ2 (t3)
(

r (t3)
(

Dα
−x(t3)

)γ1
)′

×
∫ t

t3

1

[A(s)a(s)]1/γ2
ds

Then from (3) we have limt→∞ r (t)
(

Dα
−x(t)

)γ1 =+∞,
which implies that for a certain constantt4 > t3, Dα

−x(t)>
0, t ∈ [t4,∞), then

G(t)−G(t4) =
∫ t

t4
G′ (s)ds

=−Γ (1−α)

∫ t

t4

(

r (s)
(

Dα
−x(s)

)γ1
)1/γ1

r1/γ1 (s)
ds

≤−Γ (1−α)r1/γ1 (t4)Dα
−x(t4)

×
∫ t

t4

1

r1/γ1 (s)
ds

by (4) we obtain limt→∞ G(t) = −∞, which contradicts
to G(t) > 0 on [t1,∞). So we have
(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0 on [t2,∞), and Dα
−x(t) is

eventually of one sign. Now we assumeDα
−x(t) > 0 on

[t5,∞) wheret5 > t4 is sufficiently large. So,G′ (t) < 0,
t ∈ [t5,∞) and we have limt→∞ G(t) = β ≥ 0. We claim
that β = 0. Otherwise, assumeβ > 0; thenG(t) ≥ β on
[t5,∞), and f (G(t)) > kβ ≥ M for M ∈ R+, by (6), we
have

[

A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

]′

= q(t) f

(

∫ ∞

t
(v− t)−α x(v)dv

)

≥ kA(t)q(t)G(t)> MA(t)q(t) , t > t5 (8)

Substitutingt with s in (8) and integrating it with respect
to s from t to ∞ leads to

−A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

≥ M
∫ ∞

t
A(s)q(s)ds

− lim
t→∞

A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

That is

−A(t)a(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

≥ M
∫ ∞

t
A(s)q(s)ds
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which means
(

r (t)
(

Dα
−x(t)

)γ1
)′

≤ −M1/γ2 [B(t)]1/γ2 (9)

Substitutingt with τ in (9) and integrating it with respect
to τ from t to ∞ yields

− r (t)
(

Dα
−x(t)

)γ1 ≤−M1/γ2

∫ ∞

t
[B(τ)]1/γ2 dτ

That is

G′ (t)≤−M1/γ1γ2Γ (1−α)

[

1
r (t)

∫ ∞

t
[B(τ)]1/γ2 dτ

]1/γ1

(10)

Substitutingt with ζ in (10) and integrating it with respect
to ζ from t5 to t, we have

G(t)−G(t5)≤−M1/γ1γ2Γ (1−α)

×
∫ t

t5

[

1
r (ζ )

∫ ∞

ζ
[B(τ)]1/γ2 dτ

]1/γ1

dζ

By (5), we have limt→∞ G(t) = −∞, which contradicts to
the fact thatG(t) > 0. Then we get thatβ = 0, which is
limt→∞ G(t) = 0. The proof is complete.

Lemma 3.2. Assume thatx(t) is an eventually positive
solution of (1) such that

(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0, Dα
−x(t)< 0 (11)

on [t1,∞) , wheret1 > t0 is sufficiently large. Then, fort ≥
t1, we have

G′ (t) ≥ −Γ (1−α)δ 1/γ1
1 (t, t1)A1/γ1γ2 (t)a1/γ1γ2 (t) (12)

×

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]1/γ1

r1/γ1 (t)

Proof. Assume thatx is an eventually positive solution of

(1). So, by (6), we obtain thata(t)

[

(

r (t)
(

Dα
−x(t)

)γ1
)′]γ2

is strictly increasing on[t1,∞). Then,

r (t)
(

Dα
−x(t)

)γ1

≤ r (t)
(

Dα
−x(t)

)γ1 − r (t1)
(

Dα
−x(t1)

)γ1

=
∫ t

t1

(

A(s)a(s)

[

(

r (s)
(

Dα
−x(s)

)γ1
)′]γ2

)1/γ2

[A(s)a(s)]1/γ2
ds

≤ A1/γ2 (t)a1/γ2 (t)
(

r (t)
(

Dα
−x(t)

)γ1
)′

×
∫ t

t1

1

[A(s)a(s)]1/γ2
ds

= A1/γ2 (t)a1/γ2 (t)
(

r (t)
(

Dα
−x(t)

)γ1
)′

δ1 (t, t1) . (13)

That is,

Dα
−x(t)

≤







A1/γ2 (t)a1/γ2 (t)
(

r (t)
(

Dα
−x(t)

)γ1
)′

δ1 (t, t1)

r (t)







1/γ1

(14)

So, the proof is complete.

Theorem 3.3.Assume (3)-(5) andγ1γ2 = 1 hold. If there
exists two functions φ ∈ C1 ([t0,∞) ,R+) and
ρ ∈C1 ([t0,∞) , [0,∞)) such that

∫ t

t2
{kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (t)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

= ∞ (15)

for all sufficiently largeT , then every solution of (1) is
oscillatory or satisfies limt→∞ G(t) = 0.

Proof. Suppose the contrary thatx(t) is non-oscillatory
solution of (1). Then without loss of generality, we may
assume that there is a solutionx(t) of (1) such thatx(t)> 0
on [t1,∞) , wheret1 is sufficiently large. By Lemma 3.1.,

we have
(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0, t ∈ [t2,∞) , wheret2 > t1
is sufficiently large, and eitherDα

−x(t) < 0 on [t2,∞) or
limt→∞ G(t) = 0. If we takeDα

−x(t)< 0 on[t2,∞). Define
the following generalized Riccati function:

ω (t) = φ (t)

×















−
A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

G(t)
+ρ (t)















(16)

For t ∈ [t2,∞) , we have

ω ′ (t) =−φ ′ (t)
A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

G(t)

−φ (t)















A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

G(t)















′

+φ ′ (t)ρ (t)+φ (t)ρ ′ (t)
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So,

ω ′ (t) =
φ ′ (t)
φ (t)

ω (t)

−φ (t)
G(t)

(

A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

)′

G2 (t)

+φ (t)
G′ (t)A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

G2 (t)

+φ (t)ρ ′ (t)

=
φ ′ (t)
φ (t)

ω (t)

−φ (t)
A(t)q(t) f (G(t))

G(t)

+φ (t)
G′ (t)A(t)a(t)

(

(

r (t)
(

Dα
−x(t)

)γ1
)′)γ2

G2 (t)

+φ (t)ρ ′ (t)

Using (12), we obtain

ω ′ (t)≤ φ ′ (t)
φ (t)

ω (t)− kA(t)q(t)φ (t)

−φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)

(

ω (t)
φ (t)

−ρ (t)

)2

(17)

+φ (t)ρ ′ (t)

That is

ω ′ (t)≤ φ ′ (t)
φ (t)

ω (t)− kA(t)q(t)φ (t)

−φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)

ω2 (t)
φ2 (t)

+φ (t)
2Γ (1−α)δ 1/γ1

1 (t, t2)ρ (t)

r1/γ1 (t)

ω (t)
φ (t)

−φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)
ρ2(t)+φ (t)ρ ′ (t)

So, we have

ω ′ (t)≤−kA(t)q(t)φ (t)

− Γ (1−α)δ 1/γ1
1 (t, t2)

r1/γ1 (t)φ (t)
ω2 (t)

+
2φ (t)Γ (1−α)δ 1/γ1

1 (t, t2)ρ (t)+ r1/γ1 (t)φ ′ (t)

r1/γ1 (t)φ (t)
ω (t)

−φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)
ρ2 (t)+φ (t)ρ ′ (t) (18)

In (18), settingλ = 2, A =

(

Γ (1−α)δ 1/γ1
1 (t,t2)

r1/γ1(t)φ(t)

)1/2

ω (t) and

B =
2φ(t)Γ (1−α)δ 1/γ1

1 (t,t2)ρ(t)+r1/γ1(t)φ ′(t)

2
(

r1/γ1(t)φ(t)Γ (1−α)δ 1/γ1
1 (t,t2)

)1/2 , using Lemma 2.3.,

we have

ω ′ (t)≤−kA(t)q(t)φ (t)

+

[

2φ (t)Γ (1−α)δ 1/γ1
1 (t, t2)ρ (t)+ r1/γ1 (t)φ ′ (t)

]2

4r1/γ1 (t)φ (t)Γ (1−α)δ 1/γ1
1 (t, t2)

−φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)
ρ2(t) (19)

+φ (t)ρ ′ (t)

Substitutingt with s in (19), and integration both sides of
(19) with respect tos from t2 to t yields

∫ t

t2
{kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (t)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

≤ ω (t2)

< ∞

which contradicts to (15), so proof is complete.

Theorem 3.4. Assume (3)-(5) and γ1γ2 = 1 hold.
Furthermore, suppose thatφ , ρ are defined as in Theorem
3.3. and there exists a functionH ∈ C (D,R), where
D := {(t,s) | t ≥ s ≥ t0}, such thatH (t, t) = 0, for t ≥ t0,
H (t,s) > 0, for t > s ≥ t0, and H has a non-positive
continuous partial derivativeH

′
s (t,s) and

lim
t→∞

sup
1

H (t, t0)

{

∫ t

t0
H (t,s){kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

}

= ∞ (20)

for all sufficiently largeT , then every solution of (1) is
oscillatory or satisfies limt→∞ G(t) = 0.

Proof. Suppose the contrary thatx(t) is non-oscillatory
solution of (1). Then without loss of generality, we may
assume that there is a solutionx(t) of (1) such thatx(t)> 0
on [t1,∞) , wheret1 is sufficiently large. By Lemma 3.1.,

we have
(

r (t)
(

Dα
−x(t)

)γ1
)′

< 0, t ∈ [t2,∞) , wheret2 > t1
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is sufficiently large, and eitherDα
t x(t) < 0 on [t2,∞) or

limt→∞ G(t) = 0. Letω (t) , be defined as in Theorem 3.3..
Thus we have (19). So,

kA(t)q(t)φ (t)

−

[

2φ (t)Γ (1−α)δ 1/γ1
1 (t, t2)ρ (t)+ r1/γ1 (t)φ ′ (t)

]2

4r1/γ1 (t)φ (t)Γ (1−α)δ 1/γ1
1 (t, t2)

+φ (t)
Γ (1−α)δ 1/γ1

1 (t, t2)

r1/γ1 (t)
ρ2(t)+φ (t)ρ ′ (t) (21)

≤−ω ′ (t)

Substitutingt with s in (21), multiplying both sides by
H (t,s) and then integrating it with respect tos from t2 to
t, we get that

∫ t

t2
H (t,s){kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

≤−
∫ t

t2
H (t,s)ω ′ (s)ds

=−G(t, t)ω (t)+G(t, t2)ω (t2)+
∫ t

t2
G

′
s (t,s)ω (s)∆s

≤ G(t, t2)ω (t2)

≤ G(t, t0)ω (t2) (22)

and then,

I =
∫ t

t0
H (t,s)

×{kA(s)q(s)φ (s)

−

[

2φ (s)Γ 1/γ1 (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ 1/γ1 (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ 1/γ1 (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

I =
∫ t2

t0
H (t,s)

×{kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

+

∫ t

t2
H (t,s)

×{kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

≤ H (t, t0)ω (t2)

+H (t, t0)
∫ t2

t0
|kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

∣

∣

∣

∣

∣

ds

So,

lim
t→∞

sup
1

H (t, t0)

{

∫ t

t0
H (t,s){kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

}

≤ ω (t2)+
∫ t2

t0
|kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

∣

∣

∣

∣

∣

ds

< ∞

which contradicts (20). So the proof is complete.
Using Theorem 3.3. and Theorem 3.4., we can derive

a lot of oscillation criteria with respect to chooseH, φ
andρ . For instance, we can chooseH (t,s) = (t − s)λ , or
H (t,s) = ln

(

t
s

)

, we obtain the following corollaries.
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Corollary 3.5. Under the conditions of Theorem 3.4. and

lim
t→∞

sup
1

(t − t0)
λ

{

∫ t

t0
(t − s)λ {kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

}

= ∞ (23)

Then every solution of (1) is oscillatory or satisfies
limt→∞ G(t) = 0.
Corollary 3.6 Under the conditions of Theorem 3.4. and

lim
t→∞

sup
1

ln(t)− ln(t0)

{

∫ t

t0
(ln(t)− ln(s)){kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

}

= ∞ (24)

Then every solution of (1) is oscillatory or satisfies
limt→∞ G(t) = 0.

4 Examples

In this section, we present some examples that apply the
main results established.
Example 4.1. Consider the following fractional
differential equation
[

t2
(

[

(

Dα
−x(t)

)1/2
]′)2

]′

−t−2
(

∫ ∞

t
(s− t)−α x(s)ds

)

(25)

×sin2
(

∫ ∞

t
(s− t)−α x(s)ds

)

= 0, t ≥ 1

This corresponds to (1) with t0 = 1; γ1 = 1
2; γ2 = 2;

α ∈ (0,1); a(t) = t2; r (t) = 1; p(t) = 0; q(t) = t−2 and
f (x)/x =

(

1+ sin2 x
)

≥ 1= k. On the other hand,

δ1 (t, t2) =
∫ t

1

1
s

ds = ln t

which implies limt→∞ δ1 (t, t2) = ∞, and so, (3) holds.
Then, there exists a sufficiently largeT > t2 such that
δ1 (t, t2)> 1 on[T,∞). In (4),

∫ ∞

1

1

r1/γ1 (s)
ds =

∫ ∞

1
ds = ∞ (26)

In (5),

∫ ∞

t0

[

1
r (ζ )

∫ ∞

ζ
[B(τ)]1/γ2 dτ

]1/γ1

dζ

=
∫ ∞

1

[

∫ ∞

ζ

[

1
τ2

∫ ∞

τ

1
s2 ds

]1/2

dτ

]2

dζ = ∞ (27)

Lettingφ (t) = t, ρ (t) = 0 in (15),

S =
∫ t

t2
{kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (t)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2(s)+φ (s)ρ ′ (s)

}

ds

≥
∫ t

1

{

1
s
− 1

4sΓ (1−α)δ 2
1 (s, t2)

}

ds

S ≥
∫ t

1

{

1− 1

4Γ (1−α)δ 2
1 (s, t2)

}

1
s

ds

=
∫ T

1

{

1− 1

4Γ (1−α)δ 2
1 (s, t2)

}

1
s

ds

+
∫ t

T

{

1− 1

4Γ (1−α)δ 2
1 (s, t2)

}

1
s

ds

≥
∫ T

t2

{

1− 1

4Γ (1−α)δ 2
1 (s, t2)

}

1
s

ds

+

∫ t

T

{

1− 1
4Γ (1−α)

}

1
s

ds

= ∞

So, (25) is oscillatory by Theorem 3.3..

Example 4.2. Consider the following fractional
differential equation

[

t1/5
(

[

(

Dα
−x(t)

)5
]′)1/5

]′

+ t−1
(

[

(

Dα
−x(t)

)5
]′)1/5

(28)

− t−2
(

∫ ∞

t
(s− t)−α x(s)ds

)

×exp

(

(

∫ ∞

t
(s− t)−α x(s)ds

)2
)

= 0, t ≥ 2

This corresponds to (1) with t0 = 2; α ∈ (0,1); γ1 = 5;
γ2 =

1
5; a(t) = t1/5; r (t) = 1; p(t) = t−1; q(t) = t−2 and

f (x)/x = exp
(

x2
)

≥ 1 = k. Moreover,
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1≤ A(t) = exp
(
∫ t

2 s−6/5ds
)

≤ exp
(

5/ 5
√

2
)

. On the other

hand,

δ1 (t, t2) =
∫ t

t0

1

[A(s)a(s)]
1/γ2

ds

≥ exp
(

−25/ 5
√

2
)

∫ t

2

1
s

ds

which implies limt→∞ δ1 (t, t2) =∞ and so (3) holds. Then,
there exists a sufficiently largeT > t2 such thatδ1 (t, t2)>
1 on[T,∞) . In (4),

∫ ∞

t0

1

r1/γ1 (s)
ds =

∫ ∞

2
ds = ∞ (29)

In (5),

∫ ∞

t0

[

1
r (ζ )

∫ ∞

ζ
[B(τ)]1/γ2 dτ

]1/γ1

dζ (30)

≥ exp
(

−5/ 5
√

2
)

∫ ∞

2

[

∫ ∞

ζ

[

τ−1/5
∫ ∞

τ
s−2ds

]5

dτ

]1/5

dζ

= ∞

Letting φ (t) = t ,ρ (s) = 0 andλ = 1 in (23), we have

lim
t→∞

sup
1

(t − t0)
λ

{

∫ t

t0
(t − s)λ {kA(s)q(s)φ (s)

−

[

2φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)ρ (s)+ r1/γ1 (s)φ ′ (s)

]2

4r1/γ1 (s)φ (s)Γ (1−α)δ 1/γ1
1 (s, t2)

+φ (s)
Γ (1−α)δ 1/γ1

1 (s, t2)

r1/γ1 (s)
ρ2 (s)+φ (s)ρ ′ (s)

}

ds

}

≥ lim
t→∞

sup
1

t −2

×
{

∫ t

2
(t − s)

{

s−1− 1

4sΓ (1−α)δ 1/5
1 (s, t2)

}

ds

}

= lim
t→∞

sup
1

t −2

×
{

∫ t

2
(t − s)

{

1− 1

4Γ (1−α)δ 1/5
1 (s, t2)

}

1
s

ds

}

= lim
t→∞

sup
1

t −2















∫ T
2 (t − s)

{

1− 1

4Γ (1−α)δ 1/5
1 (s,t2)

}

1
s ds

+
∫ t

T (t − s)

{

1− 1

4Γ (1−α)δ 1/5
1 (s,t2)

}

1
s ds















≥ lim
t→∞

sup
1

t −2











∫ T
2 (t − s)

{

1− 1

4Γ (1−α)δ 1/5
1 (s,t2)

}

1
s ds

+
∫ t

T (t − s)
{

1− 1
4Γ (1−α)

}

1
s ds











= ∞

So (23) holds, and then we deduce that (28) is
oscillatory by Corollary 3.5..

5 Conclusion

In this study, we are concerned with the oscillation for a
class of nonlinear fractional differential equations. As one
can see, by the aid of Liouville right-sided fractional
derivative definition, we have a correlation between first
order derivative of theG(t) and fractional order derivative
of G(t). By using the correlation, inequality, integration
average technique, and Riccati transformation, we are
established some oscillation criteria. Finally we give
examples.
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