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Abstract: In this paper, we have given numerical solutions of the elasticity problem of settled on the elastic ground with variable
coefficient. Firstly, we calculate the generalized successive approximation of the given boundary value problem and we transform
it into Pad́e series form, which give an arbitrary order for solving differential equation numerically. Secondly, we apply Homotopy
Perturbation Method(HPM) to given boundary value problem. Then we compare HPM and the generalized successive approximation
-Pad́e Approximates method by means of numerical solution of given boundary problem. Results reveal that HPM presents more
effective and accurate solution for given boundary value problem.
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1 Introduction

A common method used for the solution of boundary
value problem is the integral method[1,2]. With this
method, we obtain an integral equation that is equivalent
to the boundary value problem and the solution of the
integral equation is defined as the solution of the
boundary value problem. The equivalent integral equation
is usually a Fredholm equation in the classical theory. In
this study, we obtain a Fredholm-Volterra integral
equation different from the classical theory and we
compare Homotopy perturbation Method and The
generalized successive approximation method. We
applied these methods to an example which is the
elasticity problem of unit length homogeny beam, which
is a special form of boundary value problem.

The elasticity problem of settled of the elastic ground
with variable coefficient has the form

d4x
dt4 +a(t)x = f (t), 0≤ t ≤ T (1)

d2x(0)
dt2 = A1,

d3x(0)
dt3 = B1 (2)

x(T ) = A2,
dx(T )

dt
= B2 (3)

where a(t) and f (t) are beforehand continuous
functions on the interval 0≤ t ≤ T. We applied the
successive approximations method to the problem and
then convert it to Pad́e series [3,4].

2 An Equivalent Integral Equation

The linear equations

x(t) = f (t)+

T
∫

0

K(t,s)x(s)ds (4)

x(t) = f (t)+

t
∫

0

K(t,s)x(s)ds (5)
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x(t) = f (t)+

t
∫

0

K1(t,s)x(s)ds+

T
∫

0

K2(t,s)x(s)ds (6)

are said to be Fredholm, Volterra and
Volterra-Fredholm integral equations, respectively. In
these equations, the functionf (t) is called free term of
the equations,K(t,s) andKi(t,s)(i = 1,2) are kernels of
the integral equations, andx(t) is transmission or
unknown function on the interval 0≤ t ≤ T .
C[0,T ] is defined to be spaces of all sets of continuous
functions on the closed interval[0,T ]. Let x(t) ∈ C[0,T ],
the norm of thex(t) is defined to be a function‖ . ‖ with
real value such that

‖ x ‖= max0≤t≤T | x(t) | .

Fx andVx are are defined as follows

Fx ≡

T
∫

0

K(t,s)x(s)ds

and

Vx ≡

t
∫

0

K(t,s)x(s)ds

on the C[0,T ], and these are known Fredholm and
Volterra operator, respectively. IfFx ∈ C[0,T ] for
x(t) ∈ C[0,T ], then it is said that operatorFx acts on
C[0,T ].

If operatorFx acts fromC[0,T ] to R then operatorFx is
said to be a linear functional. Furthermore, if the function
K(t,s) can be written as

K(t,s) =
n

∑
i=1

ai(t)bi(s) (7)

Then K(t,s) is called degenerated kernel. If kernel
function of integral operator in the integral equation is
degenerated, then this kind of integral equation is called
integral equation with a degenerated kernel [5].

Suppose that Eq.(4) Fredholm equation has kernel
Eq.(7). Therefore equation Eq.(4) can be written as

x(t) = f (t)+
n

∑
i=0

ai(t)

T
∫

0

bi(s)x(s)ds (8)

Now, we investigate the solution of the integral equations
(8), such that

x(t) = f (t)+
n

∑
i=0

ai(t)Ci.

To findC j, we can write following system

Ci =

T
∫

0

bi(s) f (s)ds+
n

∑
j=0

T
∫

0

ai(s)bi(s) f (s)dsC j,

(i = 1, ...,n).

If the determinant of the above system is different than
zero, that is∆ 6= 0, then we find out

Ci =
1
∆

n

∑
j=1

∆i j

T
∫

0

b j(s) f (s)ds

where∆i j is algebraic complementary of determinant
∆ . ∆i j can be obtained by deletingith row and jth of the
determinant ∆ . Therefore, if equation Eq.(4) has
degenerated kernel, then the solution of the Eq.(4) is

x(t) = f (t)+
n

∑
i, j=1

ai(t)
∆i j

∆

T
∫

0

b j(s) f (s)ds

or

x(t) = f (t)+

T
∫

0

[ n

∑
i, j=1

ai(t)b j(s)
∆i j

∆
f (s)ds

]

.

3 Green Function and Solutions of Boundary
Value Problems

Let us consider boundary values problem

x′′(t)+b(t)x′+a(t)x = f (t),

α0x(0)+β0x′(0) = γ0,

α1x(0)+β1x′(0) = γ1

(9)

where a(t),b(t) and f (t) (0 ≤ t ≤ T ) are
beforehand functions,αi,βi and γi (i = 0,1) are
constants [6]. Appropriate homogeneous boundary value
problem can be written for problem Eqs.(9) as follows

x′′(t)+b(t)x′+a(t)x = 0, (10)

α0x(0)+β0x′(0) = 0, (11)

α1x(0)+β1x′(0) = 0. (12)

3.1.Definition: A function G(t,s) has following
properties for its known values ∈ (0,T ).

i. If t 6= s, then G(t,s) is solution of the given problem
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with Eq.(10).

ii. If t = s, thenG(t,s) is continuous function with respect
to t. Partial derivative of theG(t,s) with respect tot has
first kind of discontinuity and its jumping number 1.

That is,

G(s+0,s) = G(s−0,s),

G′
t(s+0,s)−G′

t(s−0,s) = 1
(13)

To establish Green function, letx1(t) andx2(t) be two
linear independent solution of the Eq.(10). Furthermore,
let solutionsx1(t) and x2(t) satisfy boundary conditions
(11) and (12), respectively. Now, let us consider following
function

G(x,s) =

{

ϕ(s)x1(t), 0≤ t ≤ s,
ψ(s)x2(t), s < t ≤ T (14)

Let us choose functionsϕ(t) andψ(t) providing that
condition (13). That is,

ψ(s)x2(s) = ϕ(s)x1(s), ψ(s)x′2(s)−ϕ(s)x′1(s) = 1

By solving the above system we obtain functionsϕ(s)
and ψ(s). If we substitute values ofϕ(s) and ψ(s) in
Eq.(14), then functionG(x,s) is obtained which is Green
function of Eqs.(10)-(12).

3.2.Theorem: If G(x,s) are Green functions of problems
Eqs.(10)-(12) and f (t) is continious function, then
function

x(t) =

T
∫

0

G(t,s) f (s)ds

is solution of non-homogeneous problem Eq.(9) [6].

4 An Equivalent Fredholm-Volterra Integral
Equations

Suppose thatF(t) = f (t) − a(t)x. If we consider the
boundary conditions (2) and the following equation

d4x
dt4 = F(t)

is integrated four time between 0 andt, then the
following equations can be obtained

x′′′(t) = x′′′(0)+

t
∫

0

F(s)ds,

x′′(t) = x′′(0)+ x′′′(0)t +

t
∫

0

(t − s)F(s)ds,

x′(t) = x′(0)+ x′′(0)t +
x′′′(0)t2

2
+

t
∫

0

(t − s)2

2
F(s)ds,

x(t) = x(0)+ x′(0)t + x′′(0)t2

2 + x′′′(0)t3

6 +
t
∫

0

(t−s)3

6 F(s)ds

where

x(t) = x(0)+ x′(0)t +
A1t2

2

+
B1t3

6
+

t
∫

0

(t − s)3

6
F(s)ds

(15)

Nevertheless, boundary conditions (2)-(3) and
x(t),x′(t) are used,

A2 = x(0)+ x′(0)T + A1T 2

2 + B1T 3

6 +
T
∫

0

(T−s)3

6 F(s)ds

B2 = x′(0)+A1T +
B1T 2

2
+

T
∫

0

(T − s)3

2
F(s)ds

are obtained. After solving above system, we have

x(0) = A2−T B2+
A1T 2

2
+

B1T 3

3

+

T
∫

0

(T − s)3

6
(2T + s)F(s)ds

x′(0) = B2−A1(T )−
B1T 2

2
−

T
∫

0

(T − s)2

6
F(s)ds

(16)

If we used Eq.(16) in Eq.(15), then we obtain

x(t) = A2−T B2+
A1T 2

2
+

B1T 3

3

+

T
∫

0

(T − s)2(2T + s)
6

F(s)ds+

(

B2−A1T −
B1T 2

2

)

−
T
∫

0

(T−s)2(t)
2 F(s)ds+ A1T 2

2 + B1T 3

6 +
t
∫

0

(t−s)3

6 F(s)ds

or

x(t) = A2−T B2+
A1T 2

2
+

B1T 3

3

+

(

B2−A1T −
B1T 2

2

)

t +
A1T 2

2
+

B1T 3

6
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+

T
∫

0

[

(T − s)2(2T + s)
6

−
t(T − s)2

2

]

F(s)ds

+

t
∫

0

(t − s)3

6
F(s)ds.

Therefore, if we take into consideration

F(t) = f (t)−a(t)x

then

x(t) = A2−T B2+
A1T 2

2
+

B1T 3

3

+

(

B2−A1T −
B1T 2

2

)

t +
A1T 2

2
+

B1T 3

6

+

T
∫

0

[

(T − s)2(2T + s)
6

−
t(T − s)2

2

]

f (s)ds

+

t
∫

0

(t − s)3

6
f (s)ds

−

T
∫

0

[

(T − s)2(2T + s)
6

−
t(T − s)2

2

]

a(s)x(s)ds

−

t
∫

0

(t − s)3

6
a(s)x(s)ds

where if we choose

h(t) = A2−T B2+
A1T 2

2

+
B1T 3

3
+

(

B2−A1T −
B1T 2

2

)

t +
A1T 2

2
+

B1T 3

6

+

T
∫

0

[

(T − s)2(2T + s)
6

−
t(T − s)2

2

]

f (s)ds

+

t
∫

0

(t − s)3

6
f (s)ds

then we obtain

x(t) = h(t)−

t
∫

0

(t − s)3

6
a(s)x(s)ds

−

T
∫

0

[

(T − s)2(2T + s)
6

−
t(T − s)2

2

]

a(s)x(s)ds

(17)

Eq.(17) is called that linear Volterra-Fredholm
integral equation in which Fredholm operator has
degenerated kernel. Let

V x ≡−

t
∫

0

(t − s)3

6
a(s)x(s)ds

F1x ≡−

T
∫

0

[

(T − s)2(2T + s)
6

]

a(s)x(s)ds

F2x ≡

T
∫

0

[

(T − s)2

2

]

a(s)x(s)ds.

In this case the Eq.(17) can be written as follows:

x(t) = h(t)+V x+F1x+ tF2x (18)

because of F1x,F2x Fredholm and Vx Volterra
operators. Thus, problem (1)-(3) is equivalent to the
integral equation Eq.(18) [6].

5 The Generalized Successive Approximation
Method

An approximation for the Volterra-Fredholm integral
equation (18) can be obtained by the following formula

xn(t) = h(t)+V xn−1+F1xn−1+ tF2xn−1 (19)

where(n = 0,1,2, ...),h(t) = x0(t) is an arbitary and
continuous function. To find the approximationxn(t) from
those equations, we must solve the linear
Volterra-Fredholm integral equation

y(t) = h̃(t)+F1y+ tF2y (20)

which has a degenerated kernel. The last equation Eq.(20)
has a solution

y(t) = h̃(t)+C1+ tC2, (21)

where the unknown termsC1 andC2 can be calculated by
solving the following Linear equation system :

(1−F11)C1− (F1t)C2 = F1h̃

−(F21)C1+(1−F2t)C2 = F2h̃
(22)

Suppose the determinant of the coefficient matrix of
this system is different than zero, that is,

∆ = (1−F11)(1−F2t)− (F1t)(F21)

=

(

1+ 1
6

T
∫

0
(T − s)2(2T + s)a(s)ds

)
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×

(

1− 1
2

T
∫

0
s(T − s)2a(s)ds

)

+ 1
12

(

T
∫

0
s(T − s)2(2T + s)a(s)ds

)

×

(

T
∫

0
(T − s)2a(s)ds

)

6= 0.

Therefore we can computeC1 andC2 as

C1 =
1
∆

[

(F1h̃)(1−F2t)+(F1t)(F2h̃)

]

C2 =
1
∆

[

(1−F11)(F2h̃)+(F1h̃)(F21)

]

.

If we substituteC1 andC2 into the Eq.(21) we get the
solution of the Eq.(20). That is,

y(t) = h̃+
1
∆
[1−F2t + tF21](F1h̃)

+
1
∆
[(1−F11)t +F1t](F2h̃).

(23)

If we use Eq.(19) and the equality

h̃(t) = h(t)+V xn−1

we obtain the approximationxn(t) by the following
formula:

xn(t) = h∗(t)+
1−F2t + tF21

∆
F1V xn−1

+
(1−F11)t +F1t

∆
F2V xn−1+V xn−1,

(24)

where

h∗(t) = h(t)+
1−F2t + tF21

∆
F1h (25)

+
(1−F11)t +F1t

∆
F2h

To show that the approximationsxn(t) approach to the
solution of the problem (1)-(3) it is enough to check that
the linear operator

A(x) =
1−F2t + tF21

∆
F1V x

+
(1−F11)t +F1t

∆
F2V x+V x

satisfies the inequalities

‖A(x)‖ ≤ β‖x‖,

β =

(

|1−F2t|+T |F21|
6|∆ |

T
∫

0

(T − s)2(2T + s)|a(s)|ds

+
T |1−F11|+ |F1T |

2|∆ |

T
∫

0

(T − s)2|a(s)|ds+1

)

×

(

1
6

T
∫

0

(T − s)3|a(s)|ds

)

< 1.

Thus, the convergence velocity of the approximations
to the problem satisfies the inequalities

‖xn − x‖ ≤ β n‖x0− x‖

or

‖xn − x‖ ≤
β n

1−β
‖x1− x0‖.

6 Pad́e Series

The Power series can be transformed into Padé series
easily. Pad́e series is defined in the following:

a0+a1x+a2x2+ ...=
p0+ p1x+ ...+ pMxM

1+q1x+ ...+qLxL (26)

Multiply both sides of Eq.(26) by the denominator of
right-hand side in Eq.(26) and compare the coefficients of
both sides in Eq.(26). We have

al +
M

∑
k=1

al−kqk = p1, (l = 0, ...,M) (27)

al +
L

∑
k=1

al−kqk = 0, (l = M+1, ...,M+L). (28)

Solving the linear equation in Eq.(28), we haveqk
(k = 1, ...,L). And substitutingqk into Eq.(26), we have
pk, (l = 0, ...,M)[1,2].

7 Homotopy Perturbation Method

Homotopy Perturbation method was introduced by
Chineese mathematician J.H.He. HPM is very effective
method and it can be applied various kinds of problems in
the literature. One wants to learn more details about the
HPM can see to the [7,9].

Instead of ordinary perturbation methods, this method
doesn’t need a small parameter in an equation. According
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to this method, a homotopy with an embedding parameter
is constructed and the embedding parameter is considered
as a ”small parameter”. Thus, this method is called the
homotopy perturbation method.

To illustrate the homotopy perturbation method,
consider the following nonlinear differential equation

A(u) = f (r),r ∈ Ω (29)

with boundary conditions

B(u,
∂u
∂n

) = 0,r ∈ Γ (30)

Here A is a general differential operator,B is a
boundary operator,f (r) is a known analytic function, and
Γ is the boundary of the domainΩ . Generally speaking,
the operatorA can be divided into two partsL and N,
where L is a linear andN is a nonlinear operator.
Therefore, Eq.(29) can be rewritten as follows:

L(u)+N(u) = f (r). (31)

By using homotopy tecnique, we construct a homotopy
v(r, p) : Ω × [0,1]→ R which satisfies

H(v, p) = (1− p)[L(v)−L(u0)]+ (32)

p[A(v)− f (r)] = 0, p ∈ [0,1],r ∈ Ω

whereu0 is an initial approximation of Eq.(29) which
satisfies the boundary conditions Eq.(30). Obviously, from
Eq.(32) we have

H(v,0) = [L(v)−L(u0)] = 0,

H(v,1) = A(v)− f (r) = 0.
(33)

The changing process ofp from zero to unity is just
that ofv(r, p) from u0(r) to u(r). In topology, this is called
deformation, andL(v)−L(u0) andA(v)− f (r) are called
homotopy. We considerv as following:

v = v0+ pv1+ p2v2+ ... . (34)

According to the HPM, the best approximate solution
of Eq.(31) can be explained as a series of powers ofp

u = lim
p→1

= v0+ v1+ v2+ ... . (35)

The above convergence is given in [10].

8 An Example

Consider elasticity problem of homogeneous beam with
unit length. Suppose that left end of beam is free and right
end of it is fixed. Let loads of beam be smooth, i.e,f (t) =
t2 and elasticity coefficienta(t) = 1. Therefore, boundary
value problem can be written as

d4x
dt4 + x = t2,

x′′(0) = 0,x′′′(0) = 0, (36)

x(1) = 0,x′(1) = 1

Now, we calculate approximate solution by using the
The Generalized Successive Approximation- Padé
Approximates Method Algoritm and Eq.(24). Therefore,

x3(t) = 0.000002t9−0.000022t8+0.002777t6

−0.007242t5+0.037593t4+0.86914t −0.902233

is an approximate solution of the problem Eq.(36)
with ∆ = 1.0836805566= 0. We transformx3(t) into Pad́e
series form as follows:

[7/6] = (−0.9022336418+0.8562379857t
+0.008166896781t2+0.004239419663t3

+0.03726935617t4−0.006513660254t5

+0.002849747602t6)/(1+0.01430226793t
+0.004725831968t2−0.0001463043916t3

+0.0002178515553t4−0.000002415627288t5)

Let’s apply Homotopy Perturbation method to the
given boundary value problem. Construct the homotopy
in like Eq.(32) and solve Eq.(36). From here, we obtained

v0 =−1+ t

v1 =
1

360
(38−51t +15t4−3t5+ t6);

v2 = (1−15656+21535t −7980t4+2142t5

−45t8+5t9− t10)× (1814400)−1;

v3 = (30433332−41890863t +15671656t4−4311307t5

+114114t8−17017t9+91t12−7t13

+t14)× (43589145600)−1.

Then approximation solution is obtained as follows :

x(t) = v(t) = lim
p→1

v0+ pv1+ p2v2+ p3v3+ ...

= v0+ v1+ v2+ v3+ ... .

c© 2013 NSP
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Table 1: x(ti) is numerical solution,x(ti)[7/6] is the Pad́e series of
x(ti), xHPM (ti) is HPM solution for Eq.(36).

ti x(ti) x(ti)[7/6] xHPM(ti)
0 -0.902427266 -0.9022336418 -0.902375006

0.1 -0.815492260 -0.8153157545 -0.81544719
0.2 -0.728506616 -0.7283472377 -0.728468698
0.3 -0.641344324 -0.6412021225 -0.641313447
0.4 -0.553802224 -0.5536772731 -0.553778129
0.5 -0.465603669 -0.4654961076 -0.465585932
0.6 -0.376400304 -0.3763103551 -0.376388315
0.7 -0.285771959 -0.2856998765 -0.285764836
0.8 -0.193224425 -0.1931705935 -0.19322109
0.9 -0.098185658 -0.0981505540 -0.098184782
1.0 0 0.00001580208 0

Table 2: Comparison of two methods(HPM) and Generalized
Successive Approximation-Padé Approximates Method.

ti |x(ti)− x(ti)[7/6]| |x(ti)− xHPM(ti)|
0 0.0001936154 0.0000522602

0.1 0.0001764969 0.0000450698
0.2 0.0001593673 0.0000379179
0.3 0.0001421993 0.0000308768
0.4 0.0001249510 0.0000240947
0.5 0.0001075655 0.0000177365
0.6 0.0000899721 0.0000119889
0.7 0.0000720919 0.0000007122
0.8 0.0000538339 0.0000003335
0.9 0.00003510447 0.0000000876
1.0 0.00001580208 0

Conclusion

The fundamental goal of this study has been to construct
approximations to numerical solutions of the elasticity
problem of settled of the elastic ground with variable
coefficients. We show in Tables1-2 the solutions of
Eq.(36) by numerical methods. The numerical values on
the Tables1-2 are coincide with the exact solutions of
Eq.(36) . As it is seem in Tables1-2, Homotopy
Perturbation Method is more accurate and effective than
Generalized Successive Approximation-Padé
Approximants Method.
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[6] E. Çelik, M. Bayram, The basic successive substitute
approximations Method and Padé Approximantions to
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