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The aim of this work is to determine an approximate solution of a fractional or-
der Volterra-Fredholm integro-differential equation using by the Sinc-collocation 
method. Conformable derivative is considered for the fractional derivatives. Some 
numerical examples having exact solutions are approximately solved. The compar-
isons of the exact and the approximate solutions of the examples are presented both 
in tables and graphical forms.
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Introduction

In recent years, numerous problems from physics, mathematics, biology, chemistry, 
engineering, and other various sciences involving fractional calculus has been studied by many 
authors. Several numerical methods for solving linear and non-linear fractional integro-differ-
ential equations based on Riemann-Liouville and Caputo derivative have been presented. Many 
numerical methods such as, wavelets [1, 2], Adomian decomposition method [3, 4], homotopy 
perturbation method [5], homotopy analysis method [6], and variational iteration method [7] 
have been used to solve fractional integral equations and integro-differential equations.

In this work, we consider the following form of the fractional Volterra-Fredholm in-
tegro-differential equation:

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, d , d
x b

x y x f x K x t y t t K x t y t tα
α

α α

µ λ λ= + +∫ ∫  (1)

with the boundary conditions:

 ( ) 0, ( ) 0y a y b= =  (2)

where ( )y α  is the conformable fractional derivative for 1 2α< ≤ . Here ( )T fα  where 0 ,t >  
(0,1)α ∈  be understood as conformable fractional derivative which was defined in [8]. Some 

properties of the conformable fractional derivative are given in the next section. 
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Preliminaries 

In this section, the fundamental theorems and definitions are introduced. Readers can 
look for more details in [9-16].

Definition 1. Let ( , 1]n nα ∈ +  and f be an n-differentiable function at t, where t 0 ,>  
Then the conformable fractional derivative of f of order α is defined:

 

( ) ( ) ( )1 1

0
l m

( )
( )( i)

tf t t f
T f t

α α α α

α ε

ε

ε

 −  −  −

→

+
−

=


 (3)

where  α is the smallest integer greater than or equal to α. 
Remark 1. As a consequence of Definition 1, one can easily show that:

 ( )( )( ) ( )f t tT t fα α α
α

 −  =  (4)

where ( , 1]n nα ∈ +  and f is ( 1)n +  differentiable at 0t > .
Theorem 1. Let ( , 1]n nα ∈ +  and f, g be α-differentiable at a point 0t > . Then:

(1)   ( ) ( ) ( )T af bg aT bTf gα α α+ = + , for all ,a b ∈,
(2)   ( )p pT t pt α

α
−= , for all p ∈,

(3)   0( )Tα λ = , for all constant functions ( )f t λ= ,
(4)   ( ) ( ) ( )fg gT fT gT fα α α= + , and
(5)   2( / ) [ ( ) /( ])f g f gT gT fT gα α α= +

Definition 2. The function:

 
sin( ) , 0

sinc( )
1, 0

x x
x x

x

π ≠= π
 =

 (5)

is called the sinc (sinc cardinal) function.
Definition 3. The translated sinc function with space points are defined:

 ( , )( ) si

sin
,

1,

nc

x kh
hx khS k h x x k

h
hx kh

h
x kh

 − π    ≠
− π

− = = 


=

 



 (6)

where 0h >  and 0,  1,  2,  k = ± ± …
For establishing the approximation on ( , )a b , the conformal map is defined:

 ( ) z az In
b z

φ − =  − 
 (7)

Here, the basis functions are attained using the composite translated sinc functions given:

 ( )( , )( ) (  ) ( ) sinck
z khS S k h z z

h
z φοφ − = =   

 (8)

 1( )
1

w

w

a bez
e

wφ − +
= =

+
 (9)
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is the inverse map of ( )w zφ= . The sinc grid points ( , )kz a b∈  in ED  are real numbers, so that 
they can denoted by kx . The notation o denotes the Hadamard matrix multiplication. For the 
evenly spaced points { }kkh ∞

=−∞
, the image corresponding to these points is defined:

 1  , 0, 1, ( ) 2, 
1

kh

k kh

a bex k
e

khφ − +
= = = ± ± …

+
 (10)

The sinc-collocation method

Consider the approximate solution of eq. (1) is given:

  ( ) ( ) , 1
N

n k k
k M

y c S Nx x n M
=−

= = + +∑  (11)

Here, ( )kS x  is the composite function of ( , )S k h  and ( )xφ  for some fixed step size h. The 
unknown coefficients ck in eq. (11) are obtained with the help of the sinc-collocation method (SCM).

Theorem 2. The conformable fractional derivative of ( )ny x  is: 

 ( ) [ ]
2

22
2

d d( ) ( ) , 1 2
d

) ( )
d

( ) (
N

n k k k
k M

x xy c x x S xx Sα α φ φ α
φ φ

−

=−

 
′′ ′ 

 
= + < ≤∑  (12)

Proof. The conformable fractional derivative of ( )ny x  can also be written from eq. (11):

 ( ) ( )( ) ( )
N

n k k
k M

y c Sx xα α

=−

= ∑  (13)

with the help of eqs. (3) and (4), we have:

 ( ) 2 ''( ) ( )k kx xS x Sα α−=  (14)

When we write eq. (14) in eq. (13), we find that:

 ( ) [ ]
2

22
2

d( d( )) ( ) (( )
d

)
d

N

n k k k
k M

y c x x S Sx xx xα α φ φ
φ φ

−

=−

 
′′ ′+

 
= ∑  

With the aid of Theorem 2.13 in [17], the below two lemmas are presented.
Lemma 1. The following relation provides:

 ( ) 11
1

( )
( ,

,
)

)
) ( d

(

jx N
j k

jk k
k M ka

K x t
K y t t h yx t

t
δ

φ
−

=− ′
≈ ∑∫  (15)

where

 ( )1

0

sin 1d ,
2

j k

jk jk jk
t t

t
σ δ σ

−
−π

= = +
π∫  (16)

and ky  is the approximate value of ( )ky t .
Lemma 2. The following relation provides

 2
2

,( )d
(
( )( , )

)

b N
k

k
k M ka

K x tK y t t hx y
t

t
φ=− ′

≈ ∑∫  (17)

where yk is the approximate value of y(tk).



Bayram, M., et al.: A Solution Method for Integro-Differential Equations of ... 
S10 THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S7-S14

Replacing each term of eq. (1) with the approach defined in eqs. (11)-(17) and the 
producing with 2{(1/ ) }φ′ , we determine:

 ( )
22

1 1 2
3 4

1

( ) ( )( ) ( , ,d 1( )
d ( ) ( ) ( )

) ( )
iN

k k
k i k jki

k M i k k

K x t K x tc g S g g f x
t t x

x x xδ
φ φ φ φ

−

=− =

       + + =    
   

 
 ′ ′  ′   

∑ ∑  (18)

where

 
' 2 2

2
1 2 3 1 4 2( ) ( )1 1( ) 1,  , ,

( ) ( ) ( )
( )g g x g h gx h

x x
x x

x
xα λ λ

φ φ φ
−     

= − = = − = −     
    ′ ′ ′

 (19)

We know from [18] that:

 ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, ,jk kj jk kj jk kjδ δ δ δ δ δ= = − =   (20)

Theorem 3. Let us consider the boundary value problem eqs. (1) and (2). Then the 
discrete sinc-collocation system for determining the unknown coefficients N

k M{ }  kc =−  of the ap-
proximate solution is given:

 

( ) ( ) ( )1 2 12 1 1
232

2
4

( ) ( ) ( )
( )

( )
( ) ( )

(

,
( ) 1

,
( )

)

j j j k
jk jk j jkN

k
k j

k M j k j
j

k

g x g x K x t
g x

h h t
c f x

K x t x
g x

t

δ δ δ
φ

φ
φ

−

=−

 
+ + +      =

 
 ′      

    + 

  ′   
′   

∑  (21)

for , ,j M N= − … . 
Some notations are defined to rewrite eq. (21) in the matrix form. Let D(y) be a diag-

onal matrix whose diagonal elements are 1( ), ( ), , ( )M M Ny x y x y x− − + …  and non-diagonal ele-
ments are zero:

 1 2
1 22 2

, ,
 ,

(

( )

) ( )

( ) ( ) ( )
j k j k

j k j k

K x t K x t
E E

x t x tφ φ φ φ
= =

 ′ ′ ′ ′     
 (22)

denote a matrix and also let ( )iI  denote the matrices:

 ( ) ( ) , 1, 0,1, 2i i
jkI iδ = = −   (23)

where ( ) ( ) ( )1 0 1
1 2, , , , , ,D G E E I I I− , and ( )2I  are n n×  matrices. By using the previous notations in 

eq. (21), we can represent it:

 Ac B=  (24)
where

 ( ) ( )
2

1
3 1 4 2

1

1 ( ) ( )   ( )i
ii

i

A D g I D g E I D g E
h

ο −

=

 = − − ∑  (25)

 
( )2

fB D I
φ

 
=  

  ′
 (26)

 1( , , , )T
M M Nc c c c− − += …  (27)
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The notation ο  in A denotes the Hadamard matrix multiplication. Finally, we can reach 
the approximate solution of eq. (21) after finding the unknown coefficients kc  in the system.

Numerical examples

In this section, SCM is applied to two different problems using Mathematica10. In 
each example, we consider 1/2/h N= π  and N M= .

Example 1. Let us take the following boundary value problem:

 ( )
1 2( ) ( ,( ) ( )d ( )d  , (0) 0,  () 1)( , ) 0

x b

a a

x xy f x K t xy t t K y t t yt yα = + + = =∫ ∫  (28)

where

 1 2( , )7 , sin( ), cos( ), )
4

(K x t K x tx t x tα = = − = −  

and

 
( ) ( ) ( ) ( )

5 9
2 3 44 4( ) 24 6 6 12 12

17cos 1 30cos 18sin 1 18sin
f x x x x x x x

x x x x
= + + − − − + −

− − − + − +
 

This problem has an exact solution in the form of 3 () )( 1x x x= − . The comparisons of 
the exact and the approximate solutions of the example are shown graphically for different N 
values in fig. 1. In addition, the approximate solution obtained with the aid of SCM of this 
problem is shown in tab. 1. 

(a) (b) (c)N = 4 N = 16 N = 64

Exact

SCM

Exact

SCM

Exact

SCM

(a) (b) (c)N = 4 N = 16 N = 64

Exact

SCM

Exact

SCM

Exact

SCM

Figure 1. Graphs of the exact and 
approximate solutions for example 1

Example 2. Let us consider the fractional integro-differential equation:

 ( )
1 2( ) 2 ( , ) ( )d ( , ) ( )d , (0) 0,  (1 0) )(

x b

a a

y f x K x t y t t K x t y t t y yxα = − − = =∫ ∫  (29)
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where

 2
1 2( ,3 , , )

2
) ( ,K xx t xt K x ttα = = − = −  

and

 ( )
3 41 2

20 6 3 6
x x xf x x= + − − +  

The exact solution of this problem is ( ) ( 1)x x x= − . The numerical solutions deter-
mined by SCM of the problem are presented in tab. 2. Furthermore, the comparisons of the 
exact and approximate solutions are given graphically in fig. 2.

Table 1. Errors between the exact and the 
approximate solution of Example 1

x N = 4 N = 8 N = 16 N = 32 N = 64
0.1 4.763∙10–4 2.250∙10–4 4.387∙10–6 8.397∙10–8 3.403∙10–10

0.2 1.212∙10–3 5.622∙10–5 1.356∙10–5 8.274∙10–8 1.479∙10–10

0.3 1.903∙10–3 3.566∙10–4 2.956∙10–6 1.653∙10–7 1.253∙10–10

0.4 5.898∙10–4 2.867∙10–4 2.459∙10–5 2.490∙10–7 7.088∙10–11

0.5 5.797∙10–3 5.590∙10–4 1.965∙10–5 1.690∙10–7 1.793∙10–10

0.6 1.091∙10–2 1.360∙10–3 5.734∙10–5 3.868∙10–7 1.744∙10–10

0.7 1.179∙10–2 8.753∙10–4 1.851∙10–5 6.084∙10–7 5.926∙10–10

0.8 5.200∙10–3 7.183∙10–4 2.811∙10–5 7.760∙10–7 9.909∙10–10

0.9 3.554∙10–3 2.366∙10–4 3.453∙10–5 3.566∙10–8 9.636∙10–10

(a) (b) (c)N = 4 N = 16 N = 64

Exact

SCM

Exact

SCM

Exact

SCM

(a) (b) (c)N = 4 N = 16 N = 64

Exact

SCM

Exact

SCM

Exact

SCM
Figure 2. Graphs of the exact 
and approximate solutions for 
example 2
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Conclusion

This work focused on the determination of an approximate solution of Volterra-Fred-
holm integro-differential equations introduced in eq. (1). The conformable derivative is taken 
as the fractional derivative. The SCM is applied to eq. (1). It can be easily seen that SCM gives 
good results for the eq. (1). Perspective of the conformable derivative sense, It can be seen that 
numerical solutions regarding to the proposed method are also approximated well like previous 
studies based on other fractional derivative definitions. As a result, we can say that SC algo-
rithm is a powerful tool for obtaining the approximate solution of eq. (1). 
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