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This paper presents the static behaviour of two-directional functionally graded (FG) sandwich beams
subjected to various sets of boundary conditions by using a quasi-3D shear deformation theory and
the Symmetric Smoothed Particle Hydrodynamics (SSPH) method. The SSPH code, which is developed
based on the present formulation of the FG sandwich beam, is validated by solving a simply supported
conventional functionally graded beam problem. Numerical results which are in terms of maximum
dimensionless transverse deflections, dimensionless axial, normal and shear stresses are compared with
the analytical solutions and the results from previous studies. Various FG sandwich beam structures are
investigated by considering different aspect ratios (L/h) and sets of boundary conditions and using
power-law distribution.
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1. Introduction

In recent years, the use of the structures which are made of
functionally graded materials have been increasing in many mod-
ern engineering applications such as aerospace, marine, automo-
tive, nuclear energy, biomedical and civil engineering due to
varying material properties over a changing dimension which
allow to enhance the bond strength through the layer interfaces,
high resistance to temperature shocks, lower transverse shear
stresses and high strength to weight ratio.

Due to the significant shear deformation effects especially for the
thick FGBs, three main theories that are first-order shear
deformation theory, higher-order shear deformation theory and
quasi-3D shear deformation theory have been employed by the
researchers topredict andunderstand the static, vibration andbuck-
ling responses of these structures during the last decade [1–36].

On the other hand, a new type functionally graded material
(FGM) with material properties varying in two or three directions
is needed to fulfill the technical requirements such as the temper-
ature and stress distributions in two or three directions for
aerospace craft and shuttles where the conventional FGMs (or
1D-FGM) with material properties which vary in one direction
are not so efficient [37]. The mechanical and thermal behaviour
of two-directional FG structures have been investigated so far.
The 2D steady-state free and forced vibrations of two-directional
FGBs by using the Element Free Galerkin Method are analyzed in
[38]. The state-space based differential quadrature method is
employed to obtain the semi-analytical elasticity solutions for
bending and thermal deformations of functionally graded beams
(FGBs) with various end conditions [39]. A symplectic elasticity
solution for static and free vibration analyses of two-directional
FGBs with the material properties varying exponentially in both
axial and thickness directions are presented in [40]. The buckling
behaviour of Timoshenko beams composed of two directional
FGM is studied in [41]. The static behaviour of the two directional
FGBs by using various beam theories is presented in [42]. The flex-
ure of the two directional FG curved beams is analyzed in [43].

As it is seen from above discussions, the studies related to static
and dynamic analysis of the two-directional FGBs are very limited.
Moreover, there is no work available in the literature related to the
elastostatic analysis of the two-directional FG sandwich beams by
employing a quasi-3D theory which includes both shear deforma-
tion and thickness stretching effects according to the author
knowledge. Since the thickness-stretching effect becomes very
important especially for the thick two directional FG sandwich
beams, a quasi-3D theory should be considered for this compli-
cated problem. One may easily show that the numerical methods
such as finite element methods (FEM), meshless methods, general-
ized differential quadrature method (GDQM), etc. can be used to
overcome these problems which have complex governing
equations.

Meshless methods are the most promising and have attracted
considerable attention for the analysis of engineering problems
with intrinsic complexity. Meshless methods are widely used in
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Fig. 1. Compact support of the weight function Wðn;xÞ for the node located at
x ¼ ðxi; yiÞ.
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static and dynamic analyses of the isotropic, laminated composite
and FGBs problems [44–50]. However, the studies are very limited
regarding to the analysis of two directional FG structures by
employing a meshless method [38,42,51–53].

The main novelty of this paper is that the elastostatic behaviour
of the two directional FG sandwich beams are analyzed based on a
quasi-3D theory by using the SSPH method for the first time. The
SSPH codes are developed to determine the displacement and
stresses of two-directional FG sandwich beams for various bound-
ary conditions, power-law indexes and sandwich structures.
Numerical results are compared with the analytical solutions and
the results from previous studies.

In Section 2, the formulation of the basis function of the SSPH
method is given. In Section 3, the homogenization of material
properties of the two directional FG sandwich beam is presented.
The formulation of the quasi-3D theory is given in Section 4. In Sec-
tion 5, numerical results are given for the problems with three dif-
ferent boundary conditions which are simply supported (SS),
clamped-clamped (CC) and clamped-free (CF).

2. Formulation of symmetric smoothed particle hydrodynamics
method

Taylor Series Expansion (TSE) of a scalar function for 1D case
can be given by

f ðnÞ ¼ f ðxÞ þ ðn� xÞf 0ðxÞ þ 1
2!

ðn� xÞ2f 00ðxÞ þ 1
3!

ðn� xÞ3f 000ðxÞ

þ 1
4!

ðn� xÞ4f ðIVÞðxÞ þ 1
5!

ðn� xÞ5f ðVÞðxÞ

þ 1
6!

ðn� xÞ6f ðVIÞðxÞ þ � � � ð1Þ

where f ðnÞ is the value of the function at n located in near of x. If the
zeroth to sixth order terms are employed and the higher order
terms are neglected, the Eq. (1) can be written as

f ðnÞ ¼ Pðn; xÞQðxÞ ð2Þ
where

QðxÞ ¼ f ðxÞ; df ðxÞ
dx

;
1
2!

d2f ðxÞ
dx2

; . . . ;
1
6!

d6f ðxÞ
dx6

" #T

ð3Þ

Pðn; xÞ ¼ ½1; ðn� xÞ; ðn� xÞ2; . . . ; ðn� xÞ6� ð4Þ
The number of terms employed in the TSE can be increased to

improve the accuracy depending on the order of the governing
equations. However, increasing the number of terms to be
employed definitely increases the CPU time and may decrease
the effectiveness of the method. Determination of the number of
terms mainly depends on the experience of the researcher. To
determine the unknown variables given in the matrix Q ðxÞ, both
sides of Eq. (2) are multiplied with Wðn; xÞPðn; xÞT and evaluated
for every node in the CSD. In the global numbering system, let
the particle number of the jth particle in the compact support of
Wðn; xÞ be r (j). The following equation is obtained

XNðxÞ
j¼1

f ðnrðjÞÞWðnrðjÞ; xÞPðnrðjÞ; xÞT ¼
XNðxÞ
j¼1

½PðnrðjÞ; xÞTWðnrðjÞ; xÞPðnrðjÞ; xÞ�QðxÞ

ð5Þ
where NðxÞ is the number nodes in the compact support domain
(CSD) of the Wðn;xÞ as shown in Fig. 1.

Then, Eq. (5) can be given by

Cðn; xÞQðxÞ ¼ Dðn; xÞFðxÞðn; xÞ ð6Þ
where Cðn;xÞ ¼ Pðn;xÞTWðn;xÞPðn;xÞ and Dðn;xÞ ¼ Pðn;xÞTWðn;xÞ.
The solution of Eq. (6) is given by

QðxÞ ¼ Kðn; xÞFðnÞ ð7Þ
where KðxÞðn;xÞ ¼ Cðn;xÞ�1Dðn; xÞ. Eq. (7) can be also written as
follows

QIðxÞ ¼
XM
J¼1

KIJFJ ; I ¼ 1;2; . . . ;7 ð8Þ

where M is the number of nodes and FJ ¼ fðnJÞ. Seven components
of Eq. (8) for 1D case are written as

f ðxÞ ¼ Q1ðxÞ ¼
XM
J¼1

K1JFJ

df ðxÞ
dx ¼ Q2ðxÞ ¼

XM
J¼1

K2JFJ

d2f ðxÞ
dx2

¼ 2!Q3ðxÞ ¼ 2!
XM
J¼1

K3JFJ

d3f ðxÞ
dx3

¼ 3!Q4ðxÞ ¼ 3!
XM
J¼1

K4JFJ

d4f ðxÞ
dx4

¼ 4!Q5ðxÞ ¼ 4!
XM
J¼1

K5JFJ

d5f ðxÞ
dx5

¼ 5!Q6ðxÞ ¼ 5!
XM
J¼1

K6JFJ

d6f ðxÞ
dx6

¼ 6!Q7ðxÞ ¼ 6!
XM
J¼1

K7JFJ

ð9Þ

Details of the SSPH method can be found in [42,54–57].

3. Homogenization of material properties

Consider a two-directional functionally graded beam namely
Type A as shown in Fig 2a, which is made of a mixture of ceramic
and metal, with length L, width b and thickness h. Two types of FG
sandwich beams namely 2D-FG and Ceramic Faces and 1D-FG Core
(Type B) and 2D-FG faces ceramic core (Type C) are considered.

The rule of mixture is used to find the effective material prop-
erties at a point. According to the rule of mixtures, the effective
material properties of the beam such as Young’s modulus E and
shear modulus G can be given by
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Fig. 2. Geometry and coordinate of a two-directional FG Sandwich Beams.
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Eðx; zÞ ¼ E1V1ðx; zÞ þ E2V2ðx; zÞ
Gðx; zÞ ¼ G1V1ðx; zÞ þ G2V2ðx; zÞ

ð10Þ

where E1; E2;G1 and G2 are the material properties of two con-
stituents, V1 and V2 are the volume fractions of the constituents.
The relation between the volume fractions can be expressed as
follows;

V1ðx; zÞ þ V2ðx; zÞ ¼ 1 ð11Þ
3.1. Type A: 2D-FG Beam

According to the power-law rule, the volume fraction of the
ceramic can be given by

Vcðx; zÞ ¼ 1� x
2L

� �px 1
2
þ z
h

� �pz

ð12Þ

where px and pz are the gradation exponents (power-law index)
which determine the material properties through the thickness
(h) and length of the beam (L). When the px and pz are set to zero,
the beam becomes homogeneous. The effective material properties
can be found by using the Eqs. (10)–(12) as follows

Eðx; zÞ ¼ ðEc � EmÞ 1� x
2L

� �px 1
2 þ z

h

� �pz þ Em

Gðx; zÞ ¼ ðGc � GmÞ 1� x
2L

� �px 1
2 þ z

h

� �pz þ Gm

ð13Þ
3.2. Type B: Sandwich Beam with 2D-FG and Ceramic Faces and 1D-FG
Core

The upper face of the sandwich beam is made of 2D-FG, the
lower face is made of ceramic and the core is made of 1D-FG as

shown in Fig. 2b. The volume fraction of the ceramic phase V ðiÞ
c

given by;

V ð1Þ
c ¼ 1� x

2L

� �px 2ðz�h2Þ
h�2h2

� �pz
for z 2 ½h2;h=2�

V ð2Þ
c ¼ z�h2

h1�h2

� �pz
for z 2 ½h1;h2�

V ð3Þ
c ¼ 1 for z 2 h1;� h

2

� 	
ð14Þ
3.3. Type C: Sandwich Beam with 2D-FG Faces and Ceramic Core

The two faces of the sandwich beam are made of 2D-FG and the
core is made of ceramic as shown in Fig. 2c. The volume fraction of

the metal phase V ðiÞ
m given by;

V ð1Þ
m ¼ 1� x

2L

� �px 2ðz�h2Þ
h�2h2

� �pz
for z 2 ½h2; h=2�

V ð2Þ
m ¼ 0 for z 2 ½h1;h2�

V ð3Þ
m ¼ 1� x

2L

� �px 2ðh1�zÞ
hþ2h1

� �pz
for z 2 ½h1;�h=2�

ð15Þ
4. Mathematical formulation

The axial and transverse displacements of a beam by using the
present quasi-3D theory [28] including both shear deformation
and thickness stretching effects are given by

Uðx; zÞ ¼ uðx; tÞ � z dwbðxÞ
dx � 4z3

3h2
dwsðxÞ
dx

¼ uðxÞ � zw0
bðxÞ � f ðzÞw0

s

ð16aÞ

Wðx; zÞ ¼ wbðxÞ þwsðxÞ þ ð1� 4z2

h2
ÞwzðxÞ

¼ wbðxÞ þwsðxÞ þ gðzÞwz

ð16bÞ

where u;wb;ws and wz are four unknowns to be determined. The
only nonzero strains associated with the displacement field given
in Eq. (16) can be written by:

ex ¼ @U
@x

¼ u0 � zw00
b � f ðzÞw00

s ð17aÞ

ez ¼ @W
@z

¼ g0ðzÞwz ð17bÞ

cxz ¼
@W
@x

þ @U
@z

¼ gðzÞðw0
b þw0

sÞ ð17cÞ

The following linear elastic constitutive equation can be written
by using the related stresses and strains:

rx

rz

rxz

2
64

3
75 ¼ Eðx; zÞ

1� m2

1 m 0
m 1 0
0 0 1�m

2

2
64

3
75

ex
ez
cxz

2
64

3
75 ð18aÞ

rx

rz

rxz

2
64

3
75 ¼ Eðx; zÞ

1� m2

u0 � zw00
b � fw00

s þ mg0wz

mu0 � mzw00
b � mfw00

s þ g0wz

1�m
2

� �
gðw0

b þw0
sÞ

2
64

3
75 ð18bÞ

To obtain the governing equations, the virtual strain energy of
the beam can be written by:

dU ¼
Z L

0

Z
A
ðrxdex þ rxzdcxz þ rzg0dezÞdAdx ð19Þ

The stress resultants Nx;M
b
x ;M

s
x;Qxz and Rz can be written

respectively as follows:

Nx ¼
Z þh=2

�h=2
brxdz ð20aÞ

Mb
x ¼

Z þh=2

�h=2
brxzdz ð20bÞ

Ms
x ¼

Z þh=2

�h=2
brxfdz ð20cÞ
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Qxz ¼
Z þh=2

�h=2
brxzgdz ð20dÞ

Rz ¼
Z þh=2

�h=2
brzg0dz ð20eÞ

By using the Eq. (20), one can rewrite the Eq. (18) as:

dU ¼
Z L

0
½Nxdu0 �Mb

xdw
00
b �Ms

xdw
00
s þ Qxzðdw0

s þ dw0
zÞ þ Rzdwz�dx

ð21Þ
The virtual potential energy of the transverse load qðxÞ is given

by

dV ¼ �
Z L

0
qðdwb þ dwsÞdx ð22Þ

Since the total virtual work done equals zero and the coeffi-
cients of du; dwb; dws and dwz are zero in 0 < x < L, one can obtain
the following governing equations,

dNx

dx
¼ 0 ð23aÞ

d2Mb
x

dx2
þ qðxÞ ¼ 0 ð23bÞ

d2Ms
x

dx2
þ dQxz

dx
þ qðxÞ ¼ 0 ð23cÞ

dQxz

dx
� Rz ¼ 0 ð23dÞ

By using Eq. (18), the stress resultants given in Eq. (20) can be
expressed as,

Nx

Mb
x

Ms
x

Qxz

Rz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

A B Bs X 0
B D Ds Y 0
Bs Ds H Ys 0
X Y Ys Z 0
0 0 0 0 As

2
6666664

3
7777775

u0

�w00
b

�w00
s

wz

w0
s þw0

z

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð24Þ

where

ðA;B;Bs;D;Ds;H; ZÞ ¼
Z þh=2

�h=2

Eðx; zÞb
1� m2

ð1; z; f ; z2; fz; f 2; g02Þdz ð25aÞ

As ¼
Z þh=2

�h=2

Eðx; zÞb
2ð1þ mÞ g

2dz ð25bÞ

ðX;Y ;YsÞ ¼
Z þh=2

�h=2

Eðx; zÞmb
1� m2

g0ð1; z; f Þdz ð25cÞ

The governing equations of the quasi-3D theory can be obtained
by substituting Eq. (24) into Eq. (23) as:

Au00 þ A0u0 � ðBw000
b þ B0w00

bÞ � ðBsw000
s þ B0

sw
00
s Þ þ Xw0

z þ X0wz ¼ 0

ð26aÞ

Bu000 þ 2B0u00 þ B00u0 � ðDwðIVÞ
b þ 2D0w000

b þ D00w00
bÞ

� ðDswðIVÞ
s þ 2D0

sw
000
s þ D00

sw
00
s Þ þ Yw00

z þ 2Y 0w0
z þ Y 00wz þ q ¼ 0

ð26bÞ

Bsu000 þ 2B0
su

00 þ B00
s u

0 � ðDsw
ðIVÞ
b þ 2D0

sw
000
b þ D00

sw
00
bÞ

� ðHwðIVÞ
s þ 2H0w000

s þ H00w00
s Þ þ Ysw00

z þ 2Y 0
sw

0
z þ Y 00

swz

þ Asðw00
s þw00

z Þ þ A0
sðw0

s þw0
zÞ þ q ¼ 0 ð26cÞ
�Xu0 þ Yw00
b þ Ysw00

s þ Asðw00
s þw00

z Þ þ A0
sðw0

s þw0
zÞ � Zwz ¼ 0 ð26dÞ

The natural boundary conditions are of the form:

du : Nx ð27aÞ

dwb : M
b0
x ð27bÞ

dw0
b : M

b
x ð27cÞ

dws : M
s0
x þ Qxz ð27dÞ

dw0
s : M

s
x ð27eÞ

dwz : Qxz ð27fÞ
4.1. Representation of the governing equations by using the SSPH
method

The governing equations of the problem based on the present
quasi-3D beam theory can be written in a similar way by replacing
f ðxÞ given in Eq. (9) with uðxÞ;wbðxÞ;wsðxÞ and wzðxÞ as follows,

XM
J¼1

½2AK2J þ A0K1J �uj �
XM
J¼1

½6BK4J þ 2B0K3J �wbJ

�
XM
J¼1

½6BsK4J þ 2B0
sK3J �wsJ þ

XM
J¼1

½XK2J þ X0K1J�wzj ¼ 0 ð28aÞ

XM
J¼1

½6BK4J þ 4B0K3J þ B00K2J�uj �
XM
J¼1

½24DK5J þ 12D0K4J þ 2D00K3J�wbJ

�
XM
J¼1

½24DsK5J þ 12D0
sK4J þ 2D00

s K3J �wsJ

þ
XM
J¼1

½2YK3J þ 2Y 0K2J þ Y 00K1J �wzj ¼ �q ð28bÞ

�
XM
J¼1

XK2Juj þ
XM
J¼1

2YK3JwbJ þ
XM
J¼1

½2YsK3J þ 2AsK3J þ A0
sK2J�wsJ

þ
XM
J¼1

½2AsK3J þ A0
sK2J � ZK1J�wzj ¼ 0 ð28cÞ

XM
J¼1

½6BsK4J þ4B0
sK3J þB00

s K2J�uj�
XM
J¼1

½24DsK5J þ12D0
sK4J þ2D00

s K3J �wbJ

�
XM
J¼1

½24HK5J þ12H0K4J þ2H00K3J �2AsK3J �A0
sK2J�wsJ

þ
XM
J¼1

½2YsK3J þ2Y 0
sK2J þY 00

s K1J þ2AsK3J þA0
sK2J �wzj ¼�q ð28dÞ
5. Numerical results

The bending behaviour of the two directional FG sandwich
beams is investigated by using a quasi-3D shear deformation the-
ory. The numerical results are obtained by using the SSPH method
for various gradation exponents, aspect ratios and sets of boundary
conditions. Since there is no available previous results based on a
higher order shear deformation theory and a quasi-3D shear defor-
mation theory for the bending analysis of two-directional FGBs
with power law rule, the developed SSPH code is verified by
solving a simply supported conventional FGB problem subjected
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to uniformly distributed load. The numerical solutions are com-
pared with the solutions from previous studies along with the ana-
lytical solutions [27,28]. The dimensionless maximum transverse
deflections, axial, normal and shear stresses are calculated to make
the comparisons on a fair ground.

For each problem studied here, the physical parameters of the
beam are L = 2 m and b = 0.1 m. Two different two aspect ratios,
L/h = 5 and 20 are considered for the boundary conditions defined
as S-S and C-C. The numerical solutions could not be obtained for
the aspect ratio (L/h) which is greater than 5 for the boundary con-
dition defined as CF. The possible reasons behind this case are dis-
cussed in section 5.2.3. The distributed load q0 is set to 10,000 N/m.
The material properties of the two constitutes are given by

Ceramic ðAl2O3Þ : E1 ¼ 380 GPa and m1 ¼ 0:3

Metal ðAluminiumÞ : E2 ¼ 70 GPa and m2 ¼ 0:3

The following non-dimensional quantities are used for the rep-
resentation of the results;

Non-dimensional transverse deflection of the beam:

w ¼ 100E2bh
3

q0L
4 Wðx;0Þ for SS and CC beams

w ¼ 100E2bh
3

q0L
4 WðL;0Þ for CF beam

ð29Þ

Non-dimensional axial, normal and shear stresses of the beam:

rx ¼ bh
q0L
rx

L
2 ; z
� �

rz ¼ bh
q0L
rz

L
2 ; z
� �

rxz ¼ h
q0L
rxzð0; zÞ

ð30Þ
Table 1
Convergence studies of the developed SSPH code for S-S and C-C FGBs, L/h = 5.

Method Theory

Vo et al. [28] Navier Present
Number of nodes Smoothing length
81 1D Present

1.1D Present
1.2D Present
1.3D Present

161 1D Present
1.1D Present
1.2D Present
1.3D Present

201 1D Present
1.1D Present
1.2D Present
1.3D Present

Table 2
Verification studies of the developed meshless code for S-S FGB, dimensionless maximum

Method Theory ez p ¼ 0

L/h = 5
Li et al. [27] TBT ¼ 0 3.1657
Vo et al. [28] Navier TBT ¼ 0 3.1654

Present –0 3.1397
Vo et al. [28] FEM TBT ¼ 0 3.1654

Present –0 3.1397
SSPH Present –0 3.1402

L/h = 20
Li et al. [27] TBT ¼ 0 2.8962
Vo et al. [28] Navier TBT ¼ 0 2.8962

Present –0 2.8947
Vo et al. [28] FEM TBT ¼ 0 2.8963

Present –0 2.8947 p ¼ 0
SSPH Present –0 2.8952
5.1. Verification and comparison studies

To verify the developed code, a simply supported FGB under
uniformly distributed load is considered. Since the SSPH method
is employed to solve an engineering problem with more than 2
unknowns for the first time, the detailed analysis is required. After
performing comprehensive analysis with the weight functions
employed by the researchers in [42,54–57], satisfactory results
could not be obtained. Moreover, the weight functions given in
[58] except the one given in Eq. (31) also could not provide satis-
factory results. Therefore, the following weight function proposed
in [58] is employed for the analysis studied within this paper,

Wðx;nÞ¼
1� d

q

� �7
35 d

q

� �6
þ245 d

q

� �5
þ720 d

q

� �4
þ1120 d

q

� �3

þ928 d
q

� �2
þ336 d

q

� �
þ48 06d6q

0 d>q

8>>>><
>>>>:

9>>>>=
>>>>;

ð31Þ

where d ¼ jx� nj=h, h is the smoothing length and q is the scaling
factor that determines the size of the support domain. In Table 1,
the results of the convergence studies are given. The dimensionless
maximum transverse deflections of a FG beam under uniformly dis-
tributed load are calculated for different node distributions,
smoothing lengths and end conditions, mainly SS and CC for
pz = 0, px = 0 and L/h = 5. The scaling factor is set to 8 as given in
[42]. For the numerical calculations to be performed by the SSPH
method for the convergence studies uniformly distributed 81, 161
and 201 nodes are considered. The SSPH method shows stability
in terms of the computed transverse deflection values when
ez SS CC

p ¼ 0 p ¼ 0

–0 3.1397 0.8327

–0 3.1473 0.8968
–0 3.1354 0.8346
–0 3.0815 0.8372
–0 3.1408 0.8376
–0 3.1468 0.8388
–0 3.1394 0.8348
–0 3.1152 0.8897
–0 3.1245 0.8350
–0 3.1406 0.8341
–0 3.1402 0.8349
–0 3.1381 0.8372
–0 3.1425 0.8421

transverse deflections for various gradation exponents.

p ¼ 1 p ¼ 2 p ¼ 5 p ¼ 10

6.2599 8.0602 9.7802 10.8979
6.2594 8.0677 9.8281 10.9381
6.1338 7.8606 9.6037 10.7578
6.2590 8.0668 9.8271 10.9375
6.1334 7.8598 9.6030 10.7572
6.1343 7.8602 9.6041 10.7571

5.8049 7.4415 8.8151 9.6879
5.8049 7.4421 8.8182 9.6905
5.7201 7.2805 8.6479 9.5749
5.8045 7.4412 8.8173 9.6899
5.7197 7.2797 8.6471 9.5743
5.7215 7.2826 8.6485 9.5745
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employing 201 nodes in the problem domain as the smoothing
length varies. Therefore, for the analysis to be performed for SS
and CC boundary conditions, the number of nodes is employed as
201, the radius of the support domain (q) is chosen as 8 and the
smoothing length (h) which provides the most accurate results sets
to 1:1D where D is the minimum distance between two adjacent
nodes. Regarding to the analysis for the CF beam, the numerical cal-
culations are performed according to the following meshless
parameters which are found by performing the trial and error
method; the number of nodes in the problem domain is employed
as 247, the radius of the support domain (q) is chosen as 5.302
and the smoothing length (h) sets to 1:2D. A generic method to find
good meshless parameters for the SSPH method is still to be found.

The maximum non-dimensional transverse deflections, axial,
normal and shear stresses obtained based on the present quasi-
3D shear deformation theory for various aspect ratios and grada-
tion exponents in the z direction are given in Table 2–5 along with
the results from previous studies and the analytical solution of the
problem. It is clear that the results obtained by using the SSPH
Table 3
Verification studies of the developed meshless code for S-S FGB, dimensionless axial stres

Method Theory ez

L/h = 5
Li et al. [27] TBT ¼ 0 3.8020
Vo et al. [28] Navier TBT ¼ 0 3.8020

Present –0 3.8005
Vo et al. [28] FEM TBT ¼ 0 3.8040

Present –0 3.8020
SSPH Present –0 3.8005

L/h = 20
Li et al. [27] TBT ¼ 0 15.0130
Vo et al. [28] Navier TBT ¼ 0 15.0129

Present –0 15.0125
Vo et al. [28] FEM TBT ¼ 0 15.0200

Present –0 15.0200
SSPH Present –0 15.0147

Table 4
Verification studies of the developed meshless code for S-S FGB, dimensionless transverse

Method Theory ez p ¼ 0

L/h = 5
Li et al. [27] TBT ¼ 0 0.7500
Vo et al. [28] Navier TBT ¼ 0 0.7332

Present –0 0.7233
Vo et al. [28] FEM TBT ¼ 0 0.7335

Present –0 0.7291
SSPH Present –0 0.7246

L/h = 20
Li et al. [27] TBT ¼ 0 0.7500
Vo et al. [28] Navier TBT ¼ 0 0.7451

Present –0 0.7432
Vo et al. [28] FEM TBT ¼ 0 0.7470

Present –0 0.7466
SSPH Present –0 0.7425

Table 5
Verification studies of the developed meshless code for S-S FGB, dimensionless normal str

Method Theory ez p ¼ 0

L/h = 5
Vo et al. [28] Navier Present –0 0.1352
Vo et al. [28] FEM Present –0 0.1352
SSPH Present –0 0.1352

L/h = 20
Vo et al. [28] Navier Present –0 0.0337
Vo et al. [28] FEM Present –0 0.0338
SSPH Present –0 0.0338
method agree completely with those of previous papers [27,28].
Table 2–5 show that the results obtained by the SSPH method
are in excellent agreement with the results given in [27,28]. And
finally, because of the stretching effect, the transverse deflections
computed based on the quasi-3D theory are slightly smaller than
those obtained from the Third Order Beam Theory (TBT). Due to
this agreement, the verification of the developed code is
established.

5.2. Elastostatic analysis of Two-Directional FGBs

Three different boundary conditions, S-S, C-C and C-F are con-
sidered respectively for the bending analysis of two directional
FG sandwich beams subjected to uniformly distributed load. The
transverse deflections, axial, normal and shear stresses are com-
puted based on the present quasi-3D theory for various gradation
exponents in both direction and aspect ratios. The details of the
boundary conditions (BCs) used for the numerical analysis are
given in Table 6.
s rx
L
2 ;

h
2

� �
for various gradation exponents.

p ¼ 1 p ¼ 2 p ¼ 5 p ¼ 10

5.8837 6.8812 8.1030 9.7063
5.8836 6.8826 8.1106 9.7122
5.8812 6.8818 8.1140 9.7164
5.8870 6.8860 8.1150 9.7170
5.8840 6.8860 8.1190 9.7220
5.8815 6.8821 8.1145 9.7170

23.2054 27.0989 31.8112 38.1372
23.2053 27.0991 31.8130 38.1385
23.2046 27.0988 31.8137 38.1395
23.2200 27.1100 31.8300 38.1600
23.2200 27.1100 31.8300 38.1600
23.2099 27.1122 31.8070 38.1252

shear stress rxzð0;0Þ for various gradation exponents.

p ¼ 1 p ¼ 2 p ¼ 5 p ¼ 10

0.7500 0.6787 0.5790 0.6436
0.7332 0.6706 0.5905 0.6467
0.7233 0.6622 0.5840 0.6396
0.7335 0.6700 0.5907 0.6477
0.7291 0.6661 0.5873 0.6439
0.7234 0.6618 0.5840 0.6396

0.7500 0.6787 0.5790 0.6436
0.7451 0.6824 0.6023 0.6596
0.7432 0.6809 0.6010 0.6583
0.7470 0.6777 0.6039 0.6682
0.7466 0.6776 0.6036 0.6675
0.7432 0.6789 0.6037 0.6606

ess rz
L
2 ;

h
2

� �
for various gradation exponents.

p ¼ 1 p ¼ 2 p ¼ 5 p ¼ 10

0.0670 0.0925 0.0180 �0.0181
0.0672 0.0927 0.0183 �0.0179
0.0671 0.0925 0.0182 �0.0180

�0.5880 �0.6269 �1.1698 �1.5572
�0.5874 �0.6261 �1.1690 �1.5560
�0.5880 �0.6266 �1.1706 �1.5589
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5.2.1. S-S Two-directional FG sandwich beams
Three types of two-directional FGBs (Type A, Type B and

Type C) which have the boundary conditions as simply sup-
ported two directional FGB under uniformly distributed
load are considered. Various gradation exponents in both
directions and different aspect ratios are used to compute the
dimensionless transverse deflections and stresses. As it is seen
from Table 7, the computed maximum transverse deflection
Table 6
Boundary conditions used for the numerical computations.

BC x = 0 x

S-S u ¼ 0;wb ¼ 0;ws ¼ 0;wz ¼ 0;Mb
x ¼ 0;Ms

x ¼ 0 u
C-C u ¼ 0;wb ¼ 0;ws ¼ 0;wz ¼ 0;w0

b ¼ 0;w0
s ¼ 0 u

C-F u ¼ 0;wb ¼ 0;ws ¼ 0;wz ¼ 0;w0
b ¼ 0;w0

s ¼ 0 N

Table 7
The maximum transverse deflection of the S-S two-directional FG Sandwich Beams (Type

Aspect Ratio (L/h) pz px

0 0.1

2 0 4.4752 4.58
0.1 4.8908 5.01
0.5 6.5541 6.69
1 8.3858 8.54
2 11.0281 11.1

5 0 3.1402 3.21
0.1 3.4711 3.55
0.5 4.7635 4.86
1 6.1343 6.24
2 7.8602 7.96

10 0 2.9455 3.01
0.1 3.2622 3.34
0.5 4.5015 4.59
1 5.8035 5.90
2 7.3967 7.48

20 0 2.8952 2.96
0.1 3.2103 3.28
0.5 4.4347 4.52
1 5.7215 5.82
2 7.2826 7.37

Table 8
The axial stress rx

L
2 ;

h
2

� �
of the S-S two-directional FG Sandwich Beams (Type A).

Aspect Ratio (L/h) pz px

0 0.1

2 0 1.6260 1.62
0.1 1.7367 1.73
0.5 2.1407 2.13
1 2.5312 2.52
2 2.9921 2.97

5 0 3.8005 3.80
0.1 4.0565 4.05
0.5 4.9896 4.97
1 5.8815 5.85
2 6.8821 6.83

10 0 7.5287 7.53
0.1 8.0237 8.02
0.5 9.8766 9.58
1 11.6349 11.5
2 13.5902 13.4

20 0 15.0147 15.0
0.1 16.0255 16.0
0.5 19.7048 19.6
1 23.2099 23.1
2 27.1122 26.9
decreases as the aspect ratio increases. With the increasing of
the gradation exponents in both directions, the transverse
deflection values are increasing.

In Table 8, the dimensionless axial stress values are presented
for various aspect ratios and gradation exponents. It is clear that
the stress increases as the gradation exponent in the z direction
increases. As it is expected, the axial stress value increases when
the aspect ratio increases.
= L

¼ 0 or Nx ¼ 0;wb ¼ 0;ws ¼ 0;wz ¼ 0;Mb
x ¼ 0;Ms

x ¼ 0
¼ 0;wb ¼ 0;ws ¼ 0;wz ¼ 0;w0

b ¼ 0;w0
s ¼ 0

x ¼ 0;Mb
x ¼ 0;Ms

x ¼ 0;Mb0

x ¼ 0;Ms0
x þ Qxz ¼ 0;Qxz ¼ 0

A).

0.5 1 2

67 5.0566 5.6889 7.0829
42 5.5164 6.1864 7.6508
51 7.2875 8.0657 9.6541
76 9.2249 9.9797 11.5627
931 11.7844 12.5526 14.0412

65 3.5415 3.9711 4.9566
42 3.9016 4.3687 5.3972
36 5.2784 5.8191 6.9479
12 6.6798 7.2342 8.3430
17 8.3640 8.8636 9.8333

77 3.3215 3.7333 4.6555
01 3.6655 4.1031 5.0682
57 4.9843 5.4912 6.5521
40 6.3124 6.8297 7.8657
91 7.8588 8.3170 9.2137

59 3.2632 3.6662 4.5679
67 3.6065 4.0367 4.9861
74 4.9092 5.4076 6.4513
06 6.2218 6.7299 7.7469
34 7.7357 8.1853 9.0653

0.5 1 2

62 1.6258 1.6235 1.6144
62 1.7331 1.7269 1.7094
63 2.1171 2.0901 2.0297
05 2.4765 2.4193 2.3026
15 2.8865 2.7895 2.6000

09 3.8003 3.7945 3.7703
54 4.0484 4.0338 3.9906
94 4.9349 4.8718 4.7292
66 5.7536 5.6196 5.3454
47 6.6463 6.4155 5.9789

01 7.5306 7.5211 7.4775
12 8.0057 7.9749 7.8852
63 9.7674 9.6417 9.3574
856 11.3818 11.1163 10.5730
966 13.1246 12.6689 11.8073

165 15.0136 14.9895 14.8909
204 15.9900 15.9313 15.7614
642 19.4863 19.2343 18.6648
113 22.7061 22.1731 21.0861
255 26.1830 25.2728 23.5505



A. Karamanlı / Composite Structures 174 (2017) 70–86 77
It is found in Table 9 that with the increasing of the gradation
exponent in the x direction, the shear stress values are increasing.
The dimensionless shear stress value decreases as the aspect ratio
increases. It is clear in Table 10 that the dimensionless normal
stress value almost vanishes as the aspect ratio increases (the gra-
dation exponent in the z direction is set to zero).

In Table 11, the maximum dimensionless maximum transverse
deflection values of type B FGB are given for the various types of
sandwich structures, aspect ratios and gradation exponents. It is
found that the computed deflection values increases as the grada-
tion exponent in the z direction increases. For pz = 0, the dimen-
sionless maximum transverse deflection decreases as the
thickness ratio of the middle layer increases with the increasing
of the gradation exponent in the x direction.

The dimensionless maximum transverse deflections based on
the sandwich beam with 2D-FG faces and ceramic core are
presented for various types of sandwich structures, aspect ratios
Table 9
The transverse shear stress rxzð0; 0Þ of the S-S two-directional FG Sandwich Beams (Type

Aspect Ratio (L/h) pz px

0 0.1

2 0 0.6834 0.6
0.1 0.6900 0.6
0.5 0.6990 0.7
1 0.6829 0.6
2 0.6246 0.6

5 0 0.7246 0.7
0.1 0.7304 0.7
0.5 0.7400 0.7
1 0.7234 0.7
2 0.6618 0.6

10 0 0.7496 0.7
0.1 0.7434 0.7
0.5 0.7532 0.7
1 0.7361 0.7
2 0.6739 0.6

20 0 0.7425 0.7
0.1 0.7498 0.7
0.5 0.7599 0.7
1 0.7432 0.7
2 0.6789 0.6

Table 10
The normal stress rz

L
2 ;

h
2

� �
of the S-S two-directional FG Sandwich Beams (Type A).

Aspect Ratio (L/h) pz px

0 0.1

2 0 0.3373 0.337
0.1 0.3559 0.355
0.5 0.4292 0.428
1 0.5052 0.502
2 0.5943 0.589

5 0 0.1352 0.135
0.1 0.1074 0.107
0.5 0.0562 0.056
1 0.0671 0.065
2 0.0925 0.088

10 0 0.0676 0.067
0.1 �0.0114 �0.0
0.5 �0.1790 �0.1
1 �0.2083 �0.2
2 �0.2139 �0.2

20 0 0.0338 0.033
0.1 �0.1304 �0.1
0.5 �0.5025 �0.5
1 �0.5880 �0.5
2 �0.6266 �0.6
and gradation exponents in Table 12. It is clear that the transverse
deflection value increases as the gradation exponent in the z direc-
tion increases. As it is expected, increasing of the thickness ratio of
the ceramic layer in type C decreases the transverse deflection. It is
observed that the maximum dimensionless deflection values
obtained by using the FG structure as 2-2-1 are just between the
values obtained by 1-1-1 and 1-2-1, as expected. It is clear that
the maximum dimensionless deflection value decreases as the
aspect ratio increases.

The variations of the dimensionless axial stress values with dif-
ferent thickness ratios are plotted in Fig. 3 for type B. For all con-
figurations, the maximum tensile stress is obtained at the top
(bottom) surface of the sandwich beam. The maximum axial stress
increases as the gradation exponent in the x direction decreases on
the top surface of the sandwich beam.

In Fig. 4, the dimensionless normal stress values are plotted
through the thickness of the sandwich beam, type B. For all the
A).

0.5 1 2

906 0.7189 0.7519 0.8085
971 0.7249 0.7573 0.8122
058 0.7318 0.7618 0.8107
889 0.7119 0.7380 0.7791
291 0.6460 0.6645 0.6923

318 0.7597 0.7923 0.8484
374 0.7651 0.7973 0.8519
465 0.7725 0.8022 0.8508
295 0.7521 0.7780 0.8186
668 0.6836 0.7017 0.7290

590 0.7961 0.8440 0.9437
503 0.7774 0.8090 0.8622
598 0.7852 0.8143 0.8617
420 0.7644 0.7895 0.8291
783 0.6946 0.7123 0.7386

498 0.7784 0.8125 0.8718
571 0.7856 0.8194 0.8776
667 0.7933 0.8240 0.8750
493 0.7727 0.7993 0.8415
835 0.7009 0.7199 0.7486

0.5 1 2

3 0.3372 0.3367 0.3349
8 0.3552 0.3541 0.3509
3 0.4245 0.4192 0.4077
9 0.4935 0.4815 0.4580
7 0.5719 0.5507 0.5124

2 0.1351 0.1350 0.1346
5 0.1082 0.1089 0.1106
2 0.0568 0.0579 0.0611
6 0.0604 0.0553 0.0498
2 0.0730 0.0583 0.0422

6 0.0676 0.0675 0.0673
111 �0.0098 �0.0077 �0.0030
782 �0.1743 �0.1684 �0.1532
099 �0.2150 �0.2183 �0.2144
205 �0.2426 �0.2609 �0.2706

8 0.0338 0.0338 0.0337
298 �0.1264 �0.1211 �0.1077
005 �0.4913 �0.4776 �0.4431
906 �0.5984 �0.6015 �0.5864
388 �0.6791 �0.7108 �0.7197



Table 11
The maximum transverse deflections of the S-S two-directional FG Sandwich Beams (Type B).

px pz L/h = 5 L/h = 20

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 3.1402 3.1402 3.1402 3.1402 2.8952 2.8952 2.8952 2.8952
0.1 3.2319 3.2647 3.3633 3.2281 2.9705 3.0036 3.1033 2.9587
0.5 3.5665 3.7089 4.1666 3.5564 3.2475 3.3872 3.8441 3.2129
1 3.9204 4.1632 4.9663 3.9185 3.5512 3.7820 4.5694 3.4559
2 4.4795 4.8517 6.0529 4.5100 4.0426 4.3525 5.5161 3.9168

0.1 0 3.1738 3.1699 3.1566 3.1761 2.9290 2.9258 2.9121 2.9302
0.1 3.2680 3.2976 3.3825 3.2652 3.0055 3.0358 3.1222 2.9946
0.5 3.6072 3.7473 4.1929 3.5979 3.2866 3.4249 3.8702 3.2459
1 3.9636 4.2062 4.9984 3.9629 3.5934 3.8235 4.6015 3.4977
2 4.5262 4.8981 6.0882 4.5572 4.0876 4.3984 5.5521 3.9889

0.5 0 3.3177 3.2961 3.2219 3.3282 3.0680 3.0492 2.9770 3.0751
0.1 3.4148 3.4288 3.4554 3.4190 3.1475 3.1648 3.1967 3.1412
0.5 3.7690 3.9000 4.2943 3.7657 3.4452 3.5758 3.9707 3.4012
1 4.1395 4.3762 5.1223 4.1427 3.7644 3.9902 4.7252 3.6683
2 4.7134 5.0815 6.2272 4.7483 4.2697 4.5834 5.6906 4.1249

1 0 3.5023 3.4530 3.2971 3.5272 3.2476 3.2038 3.0517 3.2666
0.1 3.6000 3.5911 3.5396 3.6165 3.3283 3.3248 3.2782 3.3306
0.5 3.9745 4.0902 4.4116 3.9806 3.6467 3.7635 4.0872 3.6065
1 4.3592 4.5853 5.2673 4.3703 3.9806 4.1973 4.8687 3.8897
2 4.9463 5.3046 6.3883 4.9875 4.4975 4.8125 5.8502 4.3698

2 0 3.8760 3.7547 3.4258 3.9431 3.6143 3.5019 3.1791 3.6706
0.1 3.9704 3.9025 3.6842 4.0201 3.6922 3.6322 3.4214 3.7229
0.5 4.3826 4.4539 4.6148 4.4178 4.0507 4.1256 4.2887 4.0308
1 4.7919 4.9847 5.5178 4.8292 4.4091 4.5943 5.1177 4.3463
2 5.3917 5.7219 6.6645 5.4564 4.9371 5.2373 6.1249 4.8377

Table 12
The maximum transverse deflections of the S-S two-directional FG Sandwich Beams (Type C).

px pz L/h = 5 L/h = 20

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 13.7597 10.3450 5.0616 11.7408 13.4506 10.0800 4.8017 11.4238
0.1 11.5719 8.9629 4.8170 10.0642 11.2682 8.6934 4.5568 9.7633
0.5 7.8402 6.4901 4.2556 7.1171 7.5572 6.2234 3.4000 6.8266
1 6.2095 5.3611 3.9321 5.7775 5.9373 5.0983 3.6789 5.5046
2 4.9737 4.4839 3.6449 4.7393 4.7119 4.2269 3.3941 4.4783

0.1 0 12.4834 9.6719 4.9708 10.7770 12.1706 9.4059 4.7111 10.4790
0.1 10.7054 8.4885 4.7401 9.4128 10.3994 8.2165 4.4818 9.1047
0.5 7.5039 6.2886 4.2112 6.8473 7.2199 6.0221 3.9561 6.5597
1 6.0343 5.2502 3.9030 5.6327 5.7613 4.9879 3.6501 5.3608
2 4.8871 4.4286 3.6275 4.6673 4.6274 4.1711 3.3772 4.4070

0.5 0 9.4397 7.8718 4.6673 8.4185 9.1206 7.6106 4.4108 8.1127
0.1 8.4793 7.1439 4.4862 7.6764 8.1706 6.8700 4.2298 7.3680
0.5 6.5069 5.6587 4.0580 6.0408 6.2253 5.3945 3.8040 5.7569
1 5.4735 4.8856 3.8004 5.1692 5.2055 4.6256 3.5490 4.9004
2 4.6040 4.2344 3.5666 4.4251 4.3451 3.9800 3.3169 4.1669

1 0 7.5490 6.6017 4.3873 6.9846 7.2296 6.3437 4.1323 6.7955
0.1 6.9827 6.1379 4.2462 6.4602 6.6753 5.8568 3.9922 6.1562
0.5 5.7178 5.1238 3.9088 5.3861 5.4388 4.8611 3.6551 5.1050
1 4.9904 4.5528 3.6976 4.7624 4.7252 4.2959 3.4477 4.4948
2 4.3387 4.0486 3.5031 4.1978 4.0816 3.7958 3.2549 3.9396

2 0 5.7615 5.2893 4.0154 5.4086 5.4296 5.0292 3.7635 5.2302
0.1 5.4854 5.0452 3.9241 5.2058 5.1789 4.9130 3.6723 4.9122
0.5 4.8192 4.4731 3.6960 4.6212 4.5439 4.2129 3.4455 4.3456
1 4.3952 4.1214 3.5475 4.2499 4.1325 3.8677 3.3012 3.9833
2 3.9824 3.7913 3.4100 3.8886 3.7303 3.5412 3.1634 3.6276
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types of skin-core-skin thickness ratios except 1-8-1, the maxi-
mum normal stress on the top surface of the sandwich beam
increases as the gradation exponent in the x direction increases.
However, it is interesting that the normal stress value decreases
at the top surface of the 1-8-1 sandwich beam as the gradation
exponent in the x direction increases.

It is clear in Fig. 5 that the maximum shear stress is obtained by
setting the gradation exponent in the x direction as 5 for all
skin-core-skin thickness ratios of type B. As it is expected, the
shear stress value is zero at the top and bottom surfaces of the
sandwich beam. It is also interesting that there is a sudden drop
for the shear stress value at a point which is located between the
core (1D FG) and the top skin (2D FG).

As it is seen in Fig. 6 plotted for the variation of the axial
stress for Type C, the axial stress value increases on the top and
bottom surfaces of the beam as the gradation exponent in the x



Fig. 3. Variation of the axial stress rx
L
2 ; z
� �

of FG S-S beams under uniform load (px = 2, L/h = 5, Type B).

Fig. 4. Variation of the normal stress rz
L
2 ; z
� �

of FG S-S beams under uniform load (px = 2, L/h = 5, Type B).
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direction increases. However, the maximum axial stress values
are observed around the skin to core transition zone except for
the non-symmetric sandwich beam. The maximum axial stress
is obtained around the transition zone which is between to lower
skin and the core for 2-2-1 non-symmetric sandwich beam of
type C.



Fig. 5. Variation of the shear stress rxzð0; zÞ of FG S-S beams under uniform load (pz = 1, L/h = 5, Type B).

Fig. 6. Variation of the axial stress rx
L
2 ; z
� �

of FG S-S beams under uniform load (px = 2, L/h = 5, Type C).
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The variations of the normal stress values are plotted in Fig. 7 for
different gradation exponents and skin-core-skin ratios. For all con-
figurations, expect 2-2-1 with px = 10, the maximum normal stres-
ses are obtained around the skin to core transition zone. However,
for the 2-2-1 with px = 10, the maximum normal stress values are
obtained at the top and bottom surfaces of the sandwich beam.

In Fig. 8, the maximum dimensionless shear stress values are
plotted for various gradation exponents in the z direction. It is
interesting to see that the maximum shear stress for both symmet-
ric and non-symmetric sandwich beams occurs at the middle plane
of the beam. As the gradation exponent in the z direction increases
the shear stress value decreases.

5.2.2. C-C Two-directional FG sandwich beam
The dimensionless maximum transverse deflections and the

axial, normal and shear stresses of the clamped-clamped FG sand-



Fig. 7. Variation of the normal stress rz
L
2 ; z
� �

of FG S-S beams under uniform load (px = 2, L/h = 5, Type C).

Fig. 8. Variation of the shear stress rxzð0; zÞ of FG S-S beams under uniform load (pz = 1, L/h = 5, Type C).
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wich beam are investigated for type B and type C structures. The
results are given in Tables 13 and 14 and Fig. 9.

It is found in Table 13 that the computed transverse deflection
value increases as the gradation exponent in the z direction
increases. For pz = 0, the dimensionlessmaximumtransverse deflec-
tion decreases as the thickness ratio of the middle layer increases
with the increasing of the gradation exponent in the x direction.

In Table 14, the dimensionless maximum transverse deflections
of the sandwich beam, type C, are presented for various aspect
rations, gradation exponents in both directions and different



Table 13
The maximum transverse deflections of the C-C two-directional FG Sandwich Beams (Type B).

px pz L/h = 5 L/h = 20

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 0.8349 0.8349 0.8349 0.8349 0.5898 0.5898 0.5898 0.5898
0.1 0.8670 0.8729 0.8922 0.8715 0.6058 0.6124 0.6323 0.6040
0.5 0.9799 1.0059 1.1125 1.0085 0.6667 0.6925 0.7833 0.6561
1 1.0620 1.1337 1.3272 1.1625 0.7291 0.7729 0.9321 0.7138
2 1.2564 1.3703 1.6542 1.3897 0.8273 0.8970 1.1291 0.8106

0.1 0 0.8433 0.8422 0.8379 0.8442 0.5971 0.5964 0.5934 0.5974
0.1 0.8751 0.8812 0.8963 0.8812 0.6133 0.6192 0.6363 0.6117
0.5 0.9905 1.0401 1.0892 1.0196 0.6842 0.7001 0.7887 0.6647
1 1.1154 1.1646 1.3292 1.1763 0.7352 0.7819 0.9389 0.7230
2 1.2656 1.3617 1.6543 1.3914 0.8373 0.9068 1.1368 0.8204

0.5 0 0.8765 0.8700 0.8529 0.8812 0.6259 0.6216 0.6066 0.6272
0.1 0.9098 0.9108 0.9126 0.9202 0.6432 0.6462 0.6511 0.6428
0.5 1.0410 1.0434 1.1412 1.0596 0.7057 0.7314 0.8093 0.6991
1 1.1443 1.1758 1.3392 1.2035 0.7651 0.8189 0.9643 0.7597
2 1.3366 1.4308 1.6848 1.4035 0.8766 0.9450 1.1656 0.8597

1 0 0.9161 0.9053 0.8686 0.9271 0.6610 0.6519 0.6209 0.6650
0.1 0.9533 0.9462 0.9308 0.9649 0.6806 0.6787 0.6674 0.6824
0.5 1.0778 1.0595 1.1739 1.1148 0.7470 0.7694 0.8320 0.7423
1 1.1945 1.2603 1.4025 1.2256 0.8164 0.8596 0.9923 0.8054
2 1.3587 1.4592 1.7128 1.5048 0.9254 0.9900 1.1970 0.9080

2 0 0.9784 0.9596 0.8938 1.0058 0.7279 0.7064 0.6439 0.7389
0.1 1.0286 1.0080 0.9588 1.0662 0.7505 0.7360 0.6934 0.7594
0.5 1.1574 1.1599 1.1856 1.1935 0.8239 0.8368 0.8685 0.8294
1 1.2749 1.3221 1.4290 1.3663 0.8977 0.9336 1.0373 0.8926
2 1.4465 1.5462 1.7667 1.5917 1.0038 1.0672 1.2464 0.9962

Table 14
The maximum transverse deflections of the C-C two-directional FG Sandwich Beams (Type C).

px pz L/h = 5 L/h = 20

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 3.0687 2.3400 1.2521 2.6572 2.6921 2.0196 0.9723 2.2951
0.1 2.6198 2.0587 1.2014 2.3013 2.2539 1.7270 0.9234 1.9596
0.5 1.8359 1.5487 1.0796 1.6899 1.5298 1.2587 0.8121 1.3874
1 1.4933 1.3115 1.0094 1.4061 1.2016 1.0327 0.7481 1.1174
2 1.2311 1.1265 0.9472 1.1825 0.9554 0.8580 0.6922 0.9120

0.1 0 2.7982 2.1951 1.2321 2.4789 2.4284 1.8804 0.9533 2.1007
0.1 2.4305 1.9559 1.1824 2.2046 2.0753 1.6396 0.9077 1.8245
0.5 1.7642 1.5040 1.0686 1.6311 1.4620 1.2172 0.8030 1.3356
1 1.4552 1.2865 1.0026 1.3714 1.1650 1.0097 0.7422 1.0883
2 1.2108 1.1142 0.9424 1.1653 0.9378 0.8465 0.6891 0.8983

0.5 0 2.1958 1.8353 1.1648 1.9802 1.8446 1.5321 0.8932 1.6559
0.1 1.9858 1.6810 1.1265 1.8104 1.6482 1.3839 0.8572 1.4934
0.5 1.5574 1.3703 1.0352 1.4622 1.2333 1.0989 0.7726 1.1470
1 1.3351 1.2079 0.9794 1.2733 1.0580 0.9385 0.7224 1.0167
2 1.1506 1.0708 0.9288 1.1123 0.8825 0.8094 0.6835 0.8826

1 0 1.8405 1.5948 1.1085 1.7057 1.5060 1.3033 0.8410 1.3890
0.1 1.7019 1.4902 1.0774 1.5903 1.3804 1.2032 0.8127 1.2779
0.5 1.4053 1.2669 1.0046 1.3330 1.1099 0.9856 0.7451 1.0410
1 1.2405 1.1423 0.9571 1.1924 0.9476 0.8822 0.7051 0.9078
2 1.0965 1.0329 0.9153 1.0674 0.8389 0.7777 0.6555 0.7934

2 0 1.5091 1.3610 1.0402 1.4299 1.1979 1.0790 0.7760 1.1246
0.1 1.4271 1.2953 1.0182 1.3603 1.1250 1.0178 0.7564 1.0614
0.5 1.2413 1.1497 0.9646 1.1956 0.9597 0.8808 0.7111 0.9141
1 1.1316 1.0640 0.9300 1.0932 0.8611 0.8000 0.6699 0.8267
2 1.0313 0.9851 0.8975 1.0086 0.7681 0.7253 0.6446 0.7462
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skin-core-skin thickness ratios. It is clear that the transverse
deflection value increases as the gradation exponent in the z direc-
tion increases. As it is expected, the increasing of the ceramic con-
tent of the structure decreases the transverse deflection value. It is
observed that the maximum dimensionless transverse deflection
values obtained by using the 2-2-1 structure are just between
the values obtained by 1-1-1 and 1-2-1, as expected. It is clear that
the maximum dimensionless transverse deflection value decreases
as the aspect ratio increases.
As it is seen in Fig. 9, the axial stress increases as the gradation
exponent in the x direction increases at the top and the bottom
surfaces of the sandwich beam. However, the maximum axial
stress values are observed around the transition zone which is
between the upper (lower) skin and the core with the gradation
exponent in the x direction as px = 0. The similar case is valid for
the normal stress as well. Based on the values of the dimensionless
shear stress plotted in Fig. 9, the maximum shear stress is obtained
in the middle plane of the beam. As it is expected, the shear stress



Fig. 9. Variation of the stresses rx
L
2 ; z
� �

; rz
L
2 ; z
� �

; rxzð0; zÞ of FG C-C beams under uniform load (px = 2, pz = 1, L/h = 5, 1-2-1, Type C).

Table 15
The maximum transverse deflections of the C-F two-directional FG Sandwich Beams (Type B).

px pz L/h = 3 L/h = 5

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 30.8511 30.8511 30.8511 30.8511 27.6636 27.6636 27.6636 27.6636
0.1 32.3478 32.7501 33.9527 32.2990 28.6873 29.2354 31.0260 28.5773
0.5 35.7137 37.2101 42.0063 35.6116 31.3358 32.9204 38.4992 30.9358
1 39.2977 41.8099 50.0417 39.2827 34.3117 36.8200 45.9049 33.6296
2 44.9406 48.7686 60.9201 45.2819 39.3970 43.0553 55.7854 38.3142

0.1 0 31.9015 31.9312 32.1886 31.9225 29.7702 30.0227 30.7079 29.6378
0.1 32.6318 32.9688 34.0822 32.6406 30.0224 30.6333 31.3462 30.0124
0.5 35.9236 37.3989 42.1233 35.8415 31.8002 33.3152 38.6997 31.4718
1 39.4960 42.0062 50.0447 39.5118 34.7104 37.1800 46.1141 34.0828
2 45.1448 48.9810 61.0762 45.5134 39.7536 43.3838 55.9978 38.7176

0.5 0 32.3621 32.4822 32.3431 32.4202 30.2258 30.3661 30.8084 30.1554
0.1 33.2068 33.4876 34.3491 33.1846 30.6396 31.0142 32.0980 30.5481
0.5 36.6291 38.0511 42.5134 36.5549 33.1028 34.5173 39.3815 32.7825
1 40.2727 42.7318 50.6819 40.2367 36.0320 38.4108 46.8644 35.4589
2 45.9509 49.7111 61.6227 46.3479 41.0354 44.5865 56.7859 40.1049

1 0 33.1494 32.9736 32.6014 33.2488 30.9957 30.9402 30.9759 31.0388
0.1 33.7845 34.0449 34.7391 33.8189 31.4203 31.7327 32.6091 31.3393
0.5 37.3937 38.8305 43.0492 37.3187 34.2625 35.6295 40.0856 33.9110
1 41.1322 43.6099 51.2829 41.1621 37.3461 39.6738 47.6815 36.7622
2 46.9412 50.6149 62.2880 47.2804 42.4078 45.8940 57.6630 41.5255

2 0 34.9285 34.3365 33.1248 35.3033 32.8736 32.3082 31.3750 32.8887
0.1 35.0174 35.1077 35.3151 35.5457 33.3542 32.9383 33.2750 33.2281
0.5 38.8406 40.1626 44.0390 38.8570 36.1435 37.3791 41.1898 35.8202
1 42.8227 45.2932 52.5661 42.8472 39.4876 41.7319 49.0417 38.9134
2 48.8797 52.6239 63.6040 49.1244 44.7043 48.0935 59.1517 43.8744
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value is zero at top and the bottom surfaces of the beam. The max-
imum shear stress increases as the gradation exponent in the z
direction decreases.

5.2.3. C-F Two-directional FG sandwich beam
Finally, the results of elastostatic analysis of the C-F FG sand-

wich beam under uniformly distributed load are obtained for
various gradation exponents and aspect ratios. For this example,
accurate and agreed results cannot be obtained when the aspect
ratio is greater than 5 and the gradation exponent in the x direction
is greater than 2. This point is crucial to determine future studies
based on the present quasi-3D shear deformation theory and the
SSPH method. It is not clear that increasing the gradation exponent
in the x direction deteriorates the accuracy of the present quasi-3D
theory when employing higher aspect ratios. For this example, two
different aspect ratios are employed to investigate the inefficiency
of the present theory and the numerical method. It is not found a
concrete reason that may explain the loss of accuracy when the
aspect ratio is set to above 5. However, the developed SSPH code
works very well for the aspect ratio lower than 6.

As it is seen from Table 15, the maximum transverse deflection
increases as the gradation exponent in the z direction increases for



Table 16
The maximum transverse deflections of the C-F two-directional FG Sandwich Beams (Type C).

px pz L/h = 3 L/h = 5

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1

0 0 136.9991 103.3784 50.3014 118.0826 127.6384 96.6263 43.1688 113.0070
0.1 115.3140 89.5492 47.8237 101.4237 106.7625 82.7347 41.0276 96.7551
0.5 78.2025 64.7501 42.1990 72.0151 70.8790 58.1097 36.0461 68.2075
1 61.8945 53.3634 38.9498 58.6490 55.1374 47.0225 33.1415 55.4228
2 49.4529 44.5126 36.0325 48.3508 43.2444 38.5398 30.5694 45.6642

0.1 0 133.4669 101.7698 50.2666 114.9350 122.4045 93.8669 42.6404 108.2332
0.1 113.0266 88.4514 47.7988 99.6256 103.1453 80.6911 40.6110 93.7119
0.5 74.4259 64.3347 42.1831 71.2924 69.3732 57.1657 35.8266 66.8920
1 61.4878 53.1647 38.9020 58.3130 54.3137 46.4849 33.0055 54.6829
2 49.2967 44.4487 36.0371 48.1423 42.8319 38.2668 30.4942 45.2804

0.5 0 121.9465 95.8655 49.7060 105.1019 104.9075 83.7009 40.2252 92.7760
0.1 105.2029 84.2960 47.3493 93.2968 90.5026 72.9827 38.7195 82.7805
0.5 74.4014 62.6153 41.9403 68.4383 63.6496 53.4150 34.8321 61.3354
1 59.9906 52.2866 38.7884 56.6631 51.0425 44.2826 32.3947 51.2206
2 48.6458 44.0517 35.9585 47.2989 41.1472 37.1179 30.1566 43.3719

1 0 110.0557 89.0003 48.6191 90.9987 87.9811 72.6506 37.2154 64.7954
0.1 96.6748 79.2645 46.5284 83.0437 77.6217 64.4714 36.3421 63.9215
0.5 70.7806 60.4115 41.5131 61.5324 57.3192 49.0825 33.5601 57.2458
1 58.0489 51.0888 38.5053 50.6997 47.2790 41.6715 31.6014 51.4485
2 47.7180 43.4621 35.8174 43.7508 39.1340 35.7019 29.7120 44.3256

2 0 88.5473 74.8915 45.8780 81.1447 63.8857 55.1042 31.9012 63.2332
0.1 80.7093 68.9819 44.4299 76.6237 58.3723 50.6618 32.0742 62.4496
0.5 63.6103 55.8076 40.4401 62.0931 47.0441 41.7644 31.2084 56.6573
1 54.0877 48.5051 37.8609 53.1952 40.9234 37.1261 30.1039 50.5046
2 45.7781 42.1696 35.4481 45.6600 35.5964 33.1584 28.8526 43.2953

Fig. 10. Variation of the stresses rx
L
2 ; z
� �

; rz
L
2 ; z
� �

; rxzð0; zÞ of FG C-F beams under uniform load (px = 2, pz = 1, L/h = 5, 1-2-1, Type C).
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type B. For pz = 0, the dimensionless maximum dimensionless
deflection decreases as the thickness ratio of the middle layer
increases with the increasing of the gradation exponent in the x
direction.

In Table 16, the dimensionless transverse deflections are pre-
sented based on the various aspect ratios, gradation exponents in
both directions and different types of skin-core-skin thickness
ratios. It is observed that either the gradation exponent in the x
direction or the gradation exponent in the z direction increases
the transverse deflection decreases. As it is expected, by increasing
of the ceramic volume, the deflections are decreasing. It is found
that the maximum dimensionless deflection values obtained by
using the FG structure as 2-2-1 are just between the values
obtained by 1-1-1 and 1-2-1, as expected.

It is observed in Fig. 10 that the dimensionless axial stress value
computed by using quasi-3D formulation increases as the gradation
exponent in the x direction decreases. However, themaximumaxial
stress values are observed around the transition zone which is
between the upper (lower) skin and the core (with the gradation
exponent in the x direction as px = 0). The similar case is valid for
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the normal stress as well. Based on the values of the dimensionless
shear stress plotted in Fig. 10, themaximum shear stress is obtained
in the middle plane of the beam. As it is expected, the shear stress
value is zero at top and bottom surfaces of the beam. It is interesting
that the maximum shear stress with px = 2 is obtained when the
gradation exponent in the z direction is set to 0.1.

6. Conclusion

The static behaviour of the two directional functionally graded
sandwich beams subjected to different sets of boundary conditions
and uniformly distributed load are investigated by employing the
SSPH basis functions and using strong formulation of the problem.
A quasi-3D theory which includes both shear deformation and
thickness stretching effect is used to evaluate the transverse
deflections, axial, normal and shear stresses of two directional FG
sandwich beams. The developed code is verified by studying a sim-
ply supported conventional FGB problem and comparing the
results with previous studies and the analytical solutions.

Three different boundary conditions are considered with differ-
ent gradation exponents in both directions and various aspect
ratios. The effect of the normal strain is investigated and it is found
that it is important and should be considered in the static beha-
viour of the two directional functionally graded sandwich beams.

Another important point is that for CF beam, the computed
results by employing the aspect ratio higher than 5 are not agree
very well with the previous studies as the gradation exponent in
the x direction is set to higher than 2. At least within the scope
of this work, it may be told that by using the SSPHmethod and pre-
sent quasi-3D theory, it is not recommended to use the gradation
exponent in the x direction greater than 2 as the aspect ratio
increases with CF boundary condition. This situation should be
investigated in future studies.

It is found that the SSPH method provides satisfactory results at
least for the problems studied here. Based on the results of three
numerical examples it is recommended that the SSPH method
can be applied for solving linear two directional functionally
graded sandwich beam problems by employing a quasi-3D theory.
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