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A B S T R A C T

The vibration of biderctionally exponentially graded orthotropic plates (BEGOPs) resting on the two-parameter
elastic foundation is studied. Pasternak elastic foundation (PEF) model is used as two-parameter foundation
model. The heterogeneity of the orthotropic exponentially changes depending on the axial and thickness co-
ordinates. The motion equation is derived based on the classical plate theory and solved by using Galerkin
method. To validate of current results was made a comparison with the previous studies. The effects of material
gradient and orthotropy, and the two-parameter elastic foundations on the dimensional frequency parameters
(DFPs) are investigated.

1. Introduction

The wide use of modern composites in various products of modern
technology required not only the development of traditional methods
for the analysis of thin-walled plates, but also the formulation of new
tasks and revealed the need to take into account the new main factors
that determine the bearing capacity of structures. Among these factors,
anisotropy and heterogeneity of the material occupy an important
place. These factors introduce additional complexity into the study of
the vibration and stability problems of composite structures. A great
contribution to the theory of anisotropic plates was made the work
Reddy [1].

Inhomogeneous structures are often used in technical designs that
take full advantage of continuous and gradual changes in the physical
and mechanical properties of the material. Such structures are widely
used in aviation, aerodynamic structure, space vehicles, light-alloy
structure of cars and in other engineering structures. Compared to
homogeneous orthotropic plates, the adoption of continuous change of
material properties can provide important benefits. Indeed, the increase
in the number of constructive variables extends the possibilities of
advanced composite materials, as well as stability and vibration beha-
viors may be significantly altered. The reason for the appearance of
heterogeneity of the material can be, manufacturing technology,
thermal and mechanical treatment, heterogeneity of compositions and a
number of other reasons. As a result of the above reasons, the in-
homogeneity can simultaneously depend on the spatial coordinates.

The basic knowledge on the changes of the material properties is given
in the work of Lomakin [2]. Efforts related to the determination of
various types of functionally graded anisotropic materials have been
the focus of research in recent years [3–6]. Using above mentioned
models, several important problems were solved about the oscillations
of the functionally graded orthotropic plates [7–12].

In many practical applications, composite plates are in contact with
soils or other solid particles and can have significant and unavoidable
effect on their behaviors. To correctly determine the influence of the
elastic foundation, there are various models, among which one of the
effective model was proposed by Pasternak, which is called a two-
parameter elastic foundation [13]. Besides, a comprehensive review of
elastic foundation models is discussed in the Ref. [14]. The vibration of
homogeneous orthotropic plates resting on the two-parameter elastic
foundations, which has practical applications in civil, mechanical,
marine and aerospace engineers have been studied using various ana-
lytical and numerical methods [15–21].

In recent years, the urgency of solving the stability and vibration
problems of functionally graded composite plates has increased dra-
matically. This is explained, first of all, by the continuous expansion of
the introduction of inhomogeneous composite plates into load-bearing
elements of structures working in contact with different environments.
The numerous studies on the vibration of functionally graded ortho-
tropic plates resting on the Pasternak elastic foundation have been
published in the literature [22–29]. In the majority of the above men-
tioned studies, the change in the elastic properties of FG orthotropic
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materials was carried out as the function of thickness or axial co-
ordinates, separately. The main contribution to this study is made by
the development and implementation of the vibration analysis for thin
exponentially graded (EG) orthotropic plates which the material prop-
erties vary depending on the axial and thickness coordinates together
and resting on the Pasternak elastic foundation.

2. Formulation of the problem

The configuration of rectangular biderctionally exponentially
graded orthotropic plate (BEGOP) with the length a, the breadth b and
the thickness h and resting on the Pasternak elastic foundation (PEF) is
illustrated in Fig. 1. The plate referred to a system of rectangular co-
ordinate system Oxyz. The mid-plane being =z 0 and the origin is at
one corners of the orthotropic plate. The x and y axes are taken along
the principle directions of orthotropy and z axis is normal to the them.
The reaction of the PEF is related to the deflection, w, with the fol-
lowing relationship [13,14].
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where K N m( / )w
3 and K N m( / )p

2 are spring and shear moduli of the two-
parameter elastic foundation [15–27].

It is assumed that the material properties of the orthotropic plate
vary in the axial and thickness directions, as follows:
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where E1
0 and E2

0 are the Young’s modulus in the x and y directions,
respectively; G12

0 is the shear modulus and ρ0 is the density of the
homogeneous orthotropic plate. Furthermore, f X( )1 and ψ X( )1 are ex-
ponential functions characterize the change of the Young’s and shear
moduli, and density in the x direction, respectively; f Z( )2 and ψ Z( )2 are
exponential functions characterize the change of the Young’s and shear
moduli, and density, respectively, in the z direction and the following
definitions apply [3–9]:
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ψ (0.5)2 are the values of the function, ψ Z( )2 , on the = −Z 0.5 and =Z 0.5
planes of the plate, respectively. Poisson’s ratios of orthotropic material
ν12 and ν21 are constant and the following inequality is satisfied:
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3. Basic equation

Based on the classical plate theory (CPT), the relationships between
the stresses and strains at an arbitrary point of the BEGOPs are written
in the following form [2–7]:
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Let us assume that the Kirchhoff-Love hypotheses are valid for the
BEGOPs, and have [1]
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where e e e, ,11 22 12 are the strains in the mid-plane.
The force and moment resultants are expressed by the following

relations [1]:
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Since there are no external forces in the plane of the plate
= =T i j( 0, , 1,2)ij (it assumed that the plate experiences a pure

bending), it is therefore assumed that the resultant forces are every-
where equal to zero. In this case, the following conditions can be
written:
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where χ χ,11 22 and χ12 are the curvatures of the middle plane and the
following definitions apply:
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Taking into account relations (4), (5) and (7) in the expression (6),
we obtain the following expressions for the moments:
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where D D D, , T1
0

2
0 0 are flexural rigidities of the homogeneous orthotropic

plate (HOP), Λ is the parameter and the following notations apply:
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Taking into account Eqs. (1) and (2), the partial differential equa-
tion of the motion for the BEGOPs on the PEF can be written as [6,8]:
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where the following definition applies:
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Substituting (9) into Eq. (11), after elementary transformations weFig. 1. The rectangular BEGOP on the PEF and the coordinate system.
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obtain:
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The Eq. (13) is the motion equation of BEGOPs resting on the
Pasternak-Winkler elastic foundations.

4. The solution of equation of motion

We assume that the boundary conditions for the bending of con-
tinuous the BEGOP coincide with the usual ones in the homogeneous
isotropic plate.

We take the harmonic solution of Eq. (13) in the form [15,16]
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a

nπy
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(14)

which satisfies the movable simply-supported boundary conditions
edges of the BEGOPs, here = −i 1 , m and n positive integers and A is
the unknown amplitude.

Substituting (14) into Eq. (13) and applying Galerkin method, after
integrating we obtain expression for the frequency (in rad/s) of BEGOPs
resting on the PEF.
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where the following definitions apply:
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where =η mπ a/1 and =η mπ b/2 .
The expression for the dimensionless frequency parameter (DFP) for

BEGOPs resting on the PEF is defined as:
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As = =Π Π 1ρ1 1 and = =K K 0w p from expression (15) is obtained the
frequency for the unconstrained plates made of BEGOPs in which elastic
properties vary only in the thickness direction, z.

As = = = =Π Π Π Π 1ρ ρ1 2 1 2 and = =K K 0w p , the frequency coin-
cides with the frequency of the HOP without the elastic foundation and
expressed as:
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5. Results and discussion

5.1. Comparative studies

In first example, the values of the DFP, =ω ω a h ρ E( / ) /1
2 0

2
0 , for

square HOPs without elastic foundations for =a h/ 100 are compared
with the Levy type solution of Thai and Kim [22] and presented in
Table 1. The following material properties were used in the comparison:
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The values obtained in this study are in a good agreement with those
obtained in the study of the Thai and Kim [22].In second example, the
values of dimensionless frequency parameter, =ω ωa ρ h D/1

2 0 0 , for the
functionally graded (along the x axis) isotropic rectangular plate are

compared with the results of Xia et al. [6]. Here =
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0
12(1 )

0 3

0
2 is flexural

rigidity for homogeneous isotropic plates. Consider the functionally
graded isotropic rectangular plate with geometric dimensions =a h/ 20
and =b a/2, and the Young's modulus of isotropic plate changes along
the x direction according to =E E f X( )0 . Here = + −f X k( ) 1 ( 1)x
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functionally graded function, =k f
f
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of the f X( ) function at the left and right ends of the plate,
respectively. The material properties of homogeneous isotropic
rectangular plate are taken to be = = = ×E E E 3 10 Pa0
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3. It can be seen from
Table 2 that the values of the DFP of the functionally graded (along the
x axis) isotropic plate are in good agreement with those obtained by Xia
et al. [6]. The difference between the results is due to the fact that our
study uses the CPT, while in the other study the shear deformation plate
theory is used.

In Table 3 presents a comparative study of the DFP, ω1, for the
flexural modes of thin homogeneous isotropic square plates resting on
the PEF. Dimensionless parameters are specified as
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The data are taken from study of Ferreira et al. [19]. It can be seen

Table 1
Comparison the values of DFP for square HOPs with the results of Thai and Kim [22].

=ω ωa h ρ E/ /1 2 0
2
0

E E/1
0

2
0 Thai and Kim [22] Present study

10 10.4963 10.4963
25 15.2278 15.2278
40 18.8052 18.8052

Table 2
Comparison of the values of DFP for functionally graded isotropic plates with the results
of Xia et al. [6].

=ω ωa ρ h/D1 2 0 0

f f(1)/ (0)1 1 Xia et al. [6] Present study

1 48.540 49.348
3 66.722 69.788

Table 3
Comparison of DFPs for the flexural modes of thin square plates on the PEF.

Kw Kp References ω1

102 10 Xiang et al. [15] 2.6551
Zhou et al. [18] 2.6551
Ferreira et al. [19] 2.6559
Present study 2.6558

5×102 10 Xiang et al. [15] 3.3400
Zhou et al. [18] 3.3398
Ferreira et al. [19] 3.3406
Present study 3.34057

V.C. Haciyev et al. Composite Structures 184 (2018) 372–377

374



from Table 3, our results are excellent agreement with those of Xiang
et al. [15], using a Mindlin approach, Zhou et al. [18], who used a 3D
Ritz approach and Ferreira et al. [19] using radial basic functions.

5.2. Study of influences of material gradient, orthotropy and PEF on the
DFPs

This section presents new numerical calculations and analyzes re-
lated to the influences of material gradient in x and z directions and
material orthotropy on the DFPs of the rectangular plates resting on the
PEF. In Figs. 2–5, the elastic properties for the homogeneous Carbon
Fiber Reinforced Polymer (CFRP) are taken as [1]

= = = = =E E G ν ρ138.6 GPa, 8.27 GPa; 4.12 GPa, 0.26, 1824

kg/m
1
0

2
0

12
0

12
0

3

Figs. 2 and 3 show the distribution of the DFPs of homogeneous (H)
and EG profiles of CFRP rectangular plates in accordance with
the ratio a h/ . According these figures, the curves related to

= × ×K K( , ) (2.5 10 , 2.5 10 )w p
6 4 and =K(K , ) (0,0)w p represent the plates

with and without the PEF. Here = = = =α α β β 11 2 1 2 refers to homo-
geneous orthotropic plate. The geometric parameters of the plate are:

=a b/ 0.5 and =b m1 . It is concluded from these figures that the values
of the DFPs for H and EG profiles of CFRP rectangular plates without
the PEF do not depend on the ratio, a h/ , whereas, the values of the DFPs
increase with the increasing ratio a h/ , as the considering the effect of
the PEF.In absence of the PEF, the influence of the biderctionally

graded (BG) profiles of the material properties on the DFPs does
not depend on the variation of the ratio, a h/ . For instance, as
the Young's moduli vary only in the x direction, i.e., for

= = = =α α β β0.5, 1.5, 2.0; 11 2 1 2 , the effects of graded profiles on the
DFPs are (−15.55%), 10.81% and 19.43%, respectively, as the a h/
increases from 25 to 100. The efficiencies of graded profiles are
(−29.11%), 22.55%, 41.74%, respectively, as the a h/ increases from
25 to 100 for = = = =α α β β0.5, 1.5, 2.0; 11 2 1 2 , i.e., as the Young's
moduli change together in the x and z directions, and the density re-
mains constant. When the Young's moduli and density of the CRFP plate
change in the x direction and do not change in the z direction, i.e., for

= = = =α β α β0.5, 1.5, 2.0; 11 1 2 2 , the effects of graded profiles on the
DFPs are negligible, while as = = = =α β α β 0.5, 1.5, 2.01 1 2 2 , thee ef-
fects are weak and is around (−1.17%).

If the considering effect of the PEF, the influence of the EG profiles
on the DFPs decrease with the increasing of the ratio, a h/ . For instance,
as the Young's moduli vary only in the x direction, i.e., for

= = = =α α β β0.5, 1.5, 2.0; 11 2 1 2 , the effects of graded profiles on the
DFPs decrease from (−15.16%) to (−5.72%), from 10.58% to 4.31%
and from 18.99% to 7.92%, respectively, since the a h/ increases from
25 to 100. The efficiencies of graded profiles diminish from (−28.28%)
to (−10.14%), from 22.08% to 9.26% and from 40.86% to 17.88% for

= = = =α α β β0.5, 1.5, 2.0; 11 2 1 2 , respectively, i.e., as the Young's
moduli change together in the x and z directions, and the density re-
mains constant. When the Young's moduli and density of the CRFP
plate change in the x direction and do not change in the z direction, i.e.,
for = = = =α β α β0.5, 1.5, 2.0; 11 1 2 2 , the effects of graded profiles on
the DFPs increase from 0.51% to 11.69%, from (−0.2%) to (−5.87%)
and from (−0.34%) to (−9.6%), respectively, since the a h/
increment from 25 to 100. When the Young's moduli and density
of the CRFP plate change together in the x and z directions, i.e., for

= = = =α β α β 0.5, 1.5, 2.01 1 2 2 , the effects of graded profiles on the
DFPs increment from 0.03% to 25.33%, from (−0.81%) to (−11.2%)
and from (−1.76%) to (−17.8%), respectively, since the a h/ increases
from 25 to 100.

In all plates with the homogeneous and graded profiles, the influ-
ence of the PEF on the values of the DFP becomes more pronounced, as
the ratio a h/ increases. Depending on the choice of BG profiles, the
influence of the PEF on the values of the DFP of plates varies con-
siderably. When the HOP is compared with the BEGOPs, the effect of
the PEF on the DFP values for graded profiles of rectangular plates is
more pronounced at ⩽α β, 1i i , whereas this effect becomes less pro-
nounced at >α β, 1i i . In addition, at the same values of the parameters αi
and βi, the effect of the PEF on the values of DFP weakens the origin-
ality of the graded profiles among themselves.In Figs. 4 and 5, the
characteristics curves of the DFPs of HOP and BEGOPs with and without
the PEF ( = × ×K K( , ) (5 10 , 5 10 )w p

6 4 and =K(K , ) (0,0)w p ) in ac-
cordance with the ratio a b/ are plotted for the nine values of the

Fig. 2. Distribution of DFPs of unconstrained HOP and BEGOPs in accordance with the
ratio a/h.

Fig. 3. Distribution of DFPs of HOP and BEGOPs resting on the PEF in accordance with
the ratio a/h.

Fig. 4. Distribution of DFPs of unconstrained HOP and BEGOPs in accordance with the
ratio a/b.
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Young’s moduli, shear modulus and density variation parameters and
for = =a h b m/ 50, 1 . It should be remembered that if one of the var-
iation parameters of Young’s and shear moduli, and density is equal to
one, this means that this property of the material is homogeneous. The
Young’s and shear moduli, and density variation parameters that are
not considered in the analysis are considered to be equal to one. It can
be inferred that the magnitudes of the DFPs of HOP and BEGOPs with
and without the PEF increase with the increasing of the aspect ratio,
a b/ .

In absence of the PEF, the effects of graded profiles on the values of
the DFPs monotonically and slightly change, since a b/ increases from
0.5 to 2. For example, as = = = =α α β β0.5, 11 2 1 2 , the effect of graded
profiles on the DFPs for the plate without the PEF very slightly de-
creases from (−15.55%) to (−15.39%); as = = = =α α β β2, 1, 11 2 1 2 ,
the effect very slightly increases from 19.43% to 19.67% and as

= = = =α β α β 0.5, 2.01 1 2 2 , the effect very slightly decreases from
(−1.17%) to (−0.96%), respectively, since the ratio a b/ increases to
2.0.Also Figs. 4 and 5 reveal that the effects of graded profiles on the
values of the DFPs for plates resting on the PEF relatively rapidly and
discontinuous change, since a b/ increases from 0.5 to 2. For example, as

= = = =α β α β 0.5, 1.5, 2.0,1 1 2 2 the effects of graded profiles on the
DFPs for plates on the PEF increase from 11.88% to 15.51%, from
(−5.26%) to (−6.67%) and from (−8.48%) to (−10.59%), respec-
tively, since the ratio a/b increases from 0.5 to 1.5, then these effects
decrease to 13.86%, (−5.97%) and (−9.51%), respectively, since the
ratio a/b increases to 2.0. As = = = =α α β β2, 1, 11 2 1 2 , the effect of
graded profile on the DFP first decreases from 14.23% to 12.83%, since
the ratio a b/ increases from 0.5 to 1.5, then this effect increases to
13.59%, since the ratio a b/ increases to 2.0.

Likewise, the effects of PEF on the values of the DFPs for HOP and
BEGOPs first increase, since a b/ increases from 0.5 to 1.5 and then
decrease as the ratio a b/ increases to 2.0. For example, the effect of PEF
on the DFP first increases from 18.19% to 25.64%, since the ratio a b/
increases from 0.5 to 1.5, and then this effect decreases to 21.95%,
since the ratio a b/ increases to 2.0 for the HOP. The effects of the
PEF on the DFPs for BEGOPs with = = = =α β α β 0.5, 1.5, 2.01 1 2 2 in-
crease from 33.8% to 44.53%, from 12.44% to 18.51% and from
9.45% to 13.46%, respectively, since the ratio a b/ increases from 0.5 to
1.5, and then these effects decrease to 40.2%, 15.05% and 11.42%,
respectively, since the ratio a b/ increment to 2.0.To study the effects of
one- and two-parameter elastic foundations on the DFPs for HOP
and BEGOPs are plotted curves in accordance with the ratio of the
orthotropy E E/1 2 for different values of αi and =β i( 1,2)i parameters
with =a h/ 50 and =a b/ 0.5 and presented in Figs. 6–8. The
parameters of Winkler and Pasternak elastic foundations are con-
sidered: = × ×K(K , ) (2.5 10 , 2.5 10 )w p

6 4 , = ×K K( , ) (2.5 10 , 0)w p
6

and =K(K , ) (0,0)w p . The elastic properties for the homogeneous
orthotropic materials are taken as =E 200 GPa1

0 ,
= = = =E E k k G E ν/ ; 5,20, 35, 50, 0.5 , 0.3,2

0
1
0

12
0

2
0

12 =ρ 1 kg/m0 3. As it
seen from Figs. 6–8, the magnitudes of the DFPs of HOP and BEGOPs
with and without elastic foundations decrease with the increasing of the
orthotropy ratio, E E/1 2. The values of the DFP are increasing when the
Winkler and Pasternak elastic foundation effects are taken into con-
sideration. The effect of PEF on the DFP values appears to be more
pronounced than the Winkler elastic foundation (WEF).In absence of

Fig. 5. Distribution of DFPs of HOP and BEGOPs resting on the PEF in accordance with
the ratio a/b.

Fig. 6. Distribution of DFPs of HOP and BEGOPs without elastic foundations in ac-
cordance with the orthotropy ratio E E/1 2.

Fig. 7. Distribution of DFPs of HOP and BEGOPs resting on the PEF in accordance with
the orthotropy ratio E E/1 2.

Fig. 8. Distribution of DFPs of HOP and BEGOPs with and without the one and two-
parameter elastic foundations in accordance with the orthotropy ratio E E/1 2.
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the elastic foundations and when the orthotropy ratio, E E/1 2, varies
from 5 to 50, the effect of graded profiles on the PEF values shows a
slight change, with the greatest effect varying from 19.61% to 19.51%,
while if the considering effects of Winkler and Pasternak elastic foun-
dations, the effects of the graded profiles varying from 18.3% to
18.11% and from 17. 75% to 17.33%, respectively, for

= = = =α α β β2, 1.1 2 1 2 As can be seen from Figs. 6–8, the elastic
foundations effects reduce the influences of graded profiles on the DFP
values.Table 4 presents the variation of the DFP values for HOP
and BEGOPs resting on the PEF depending on the wave numbers (m, n)
for three different values of the parameter α1 (=0.5, 1.5
and 2) with =a h/ 50, =a b/ 1, b=1m, = = =α β β 12 1 2 ,

= × ×K(K , ) (2.5 10 , 2.5 10 )w p
6 4 and =K(K , ) (0,0)w p . It can observe that

the change of the effect of the gradient profile in the x direction on the
DFP values for the unconstrained BEGOPs is very small, since the wave
numbers (m, n) increase. If we consider the effect of PEF, the effect of
graded profiles increases significantly, depending on the increase of
wave numbers (m, n). For example, with =α 0.5,1 1.5, and 2, these
effects increase from (−11.91%) to (−15%), from 8.64% to 10.94%
and from 15.61% to 19.9%. As the number of waves is greater than two
(m, n) > (2,2), the effect of the PEF on the values of the DFPs is sig-
nificantly reduced.

6. Conclusions

Based on the CPT, the free vibration of BEGOPs resting on the two-
parameter elastic foundations is studied. The PEF model is used as two-
parameter elastic foundation model. The biderctionally graded profiles
of the orthotropic materials vary depending on the axial and thickness
coordinates. The motion equation is derived based on the classical plate
theory and solved by using Galerkin method. To validate of current
results was made a comparison with the previous studies. The effects of
material gradient, orthotropy and the two-parameter elastic founda-
tions on the DFPs are investigated.
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