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A B S T R A C T

This paper presents the free vibration behavior of two directional functionally graded beams subjected to various
sets of boundary conditions which are simply supported (SS), clamped-simply supported (CS), clamped-clamped
(CC) and clamped-free (CF) by employing a third order shear deformation theory. The material properties of the
beam vary exponentially in both directions. In order to investigate the free vibration response, the equations of
motion are derived by means of Lagrange equations. The axial, transverse deflections and rotation of the cross
sections are expressed in polynomial forms including auxiliary functions which are used to satisfy the boundary
conditions. The verification and convergence studies are performed by using computed results from a previous
study which is based on the Timoshenko beam formulation. The results for extensive studies are provided to
understand the influences of the different gradient indexes, various aspect ratios and boundary conditions on the
free vibration responses of the two directional functionally graded beams.

1. Introduction

Functionally Graded Materials (FGMs) are a class of composites that
have received great attention in many modern engineering applications
such as military, aerospace, nuclear energy, biomedical, automotive,
civil engineering and marine. Due to its lower transverse shear stresses,
high resistance to temperature shocks and no interface problems
through the layer interfaces, the researchers have extensively examined
the static, vibration and buckling responses of these structures during
the last decade [1–24]. However, the conventional FGMs (or 1D-FGM)
with material properties which vary in one direction are not efficient to
satisfy the technical requirements such as the temperature and stress
distributions in different directions for aerospace craft and shuttles
[25].

The mentioned deficiency of the conventional FGM can be elimi-
nated by using a new type FGM with material properties varying in
desired directions. The mechanical and thermal behaviors of two-di-
rectional FG structures have been investigated so far. The Element Free
Galerkin Method is employed to optimize the natural frequencies of 2D
two-directional functionally graded beams (FGBs) in [26]. The static
and thermal deformations of bi-directional FGBS are investigated by
employing the state-space based differential quadrature method obtain
the semi-analytical elasticity solutions [27]. A symplectic elasticity
solution for static and free vibration analyses of 2D-FGBs with the
material properties varying exponentially in [28]. The fully coupled

thermo-mechanical behavior of 2D-FGBs is studied using an isogeo-
metric finite element model in [29]. Free and forced vibration of Ti-
moshenko 2D-FGBS under the action of a moving load is investigated in
[30]. The buckling of Timoshenko beams composed of 2D-FGM is stu-
died in [31]. The static behavior of the 2D-FGBs by using various beam
theories is presented in [32]. An analytical solution for the static de-
formations of the bi-directional functionally graded thick circular
beams is developed based on a new shear deformation theory with a
logarithmic function in the postulated expression for the circumfer-
ential displacement in [33]. The flexure behavior of the two directional
FG sandwich beams by using a quasi-3D theory and the SSPH (Sym-
metric Smoothed Particle Hydrodynamics) method is studied in [34].

As it is seen from above discussions, most of the studies are related
to the static, dynamic and buckling analysis of conventional function-
ally graded (1D-FG) beams. The studies related to two directional FGBs
are still limited. As far as author aware, there is no reported work on the
free vibration analysis of the two directional FBGs based on a third
order shear deformation theory. Main differences of this paper from the
related paper [30] are: the present theory does not require a shear
correction factor which depends on the material and geometrical
properties as well as boundary conditions [35] of the 2D-FGBs and
satisfies the zero traction boundary condition of the top and bottom
surfaces of the beam, the second and third natural frequencies of the
2D-FGBs for various end conditions, aspect ratios and gradient indexes
are presented within this paper and it is clear that the accuracy of the
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Timoshenko beam theory decreases as the mode number increases [7].
As a result, a third order shear deformation theory is necessary to have
a better prediction of vibration responses of the two directional FGBs.
The main novelty of this paper is that the free vibration behavior of the
two directional FGBs is analyzed based on a third order shear de-
formation theory by using the Lagrange equations with four different
end conditions for the first time.

2. Theory and formulation

2.1. Homogenization of material properties

A two-directional functionally graded beam of length L, width b and
thickness h is shown in Fig. 1. The material properties of the beam vary
exponentially not only in the z-direction (thickness direction) but also
in the x-direction (along the length of the beam). The Young’s modulus
E, shear modulus G, Poissons’s ratio ν and mass density ρ vary ac-
cording to the following expressions [30]
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where E ν,m m and ρm are the material properties of the reference material
value at the point (−L/2, −h/2), px and pz are the gradient indexes
which determine the material properties through the thickness (h) and
length of the beam (L), respectively. When the px and pz are set to zero
then the beam becomes homogeneous.

2.2. Kinetic, strain and stress relations

The following displacement field is given for the third order shear
deformation theory (Reddy Beam Theory (RBT))

= + − ⎛
⎝

+ ∂
∂

⎞
⎠

=

U x z t u x t zϕ x t αz ϕ x t w x t
x

W x z t w x t

( , , ) ( , ) ( , ) ( , ) ( , )

( , , ) ( , )

3

(2)

Here u and w are the axial and transverse displacements of any
point on the neutral axis ϕ, is the rotation of the cross sections,

=α h4/(3 )2 . By using the Eq. (2), the strain-displacement relations of
the RBT are given by
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Fig. 1. Geometry and coordinate of a two-directional FGB.

Table 1
Kinematic boundary conditions used for the numerical computations.

BC = −x L/2 =x L/2
S-S = =u w0, 0 =w 0
C-S = = =u w ϕ0, 0, 0, ′ =w 0 =w 0
C-C = = =u w ϕ0, 0, 0, ′ =w 0 = = =u w ϕ0, 0, 0, ′ =w 0
C-F = = =u w ϕ0, 0, 0, ′ =w 0

Table 2
Boundary exponents for various boundary conditions.

BC Left end Right end

pu pw pϕ qu qw qϕ

SS 1 1 0 0 1 0
CS 1 2 1 0 1 0
CC 1 2 1 1 2 1
CF 1 2 1 0 0 0

Table 3
Verification and convergence studies, dimensionless fundamental frequencies λ( )1 of SS two directional FGBs with respect to gradient index and aspect ratio change.

Beam theory px L/h= 5
pz

L/h= 20
pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Timoshenko [30] 0 2.6767 2.6748 2.6669 2.6533 2.6337 2.6103 2.8369 2.8349 2.8251 2.8115 2.7919 2.7685
RBT 2 terms 2.9433 2.9402 2.9310 2.9157 2.8947 2.8682 3.1468 3.1436 3.1342 3.1187 3.0972 3.0700

4 terms 2.6780 2.6753 2.6672 2.6539 2.6354 2.6121 2.8380 2.8351 2.8267 2.8127 2.7933 2.7689
6 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
8 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
10 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
12 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681

Timoshenko [30] 0.4 2.6728 2.6689 2.6611 2.6474 2.6279 2.6044 2.8330 2.8291 2.8212 2.8076 2.7880 2.7626
RBT 2 terms 2.9448 2.9417 2.9325 2.9172 2.8961 2.8695 3.1525 3.1493 3.1399 3.1243 3.1027 3.0755

4 terms 2.6740 2.6740 2.6713 2.6632 2.6497 2.6312 2.8350 2.8322 2.8237 2.8097 2.7904 2.7660
6 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
8 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
10 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
12 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636

Timoshenko [30] 1 2.6455 2.6416 2.6337 2.6201 2.6005 2.5771 2.8095 2.8056 2.7978 2.7841 2.7646 2.7412
RBT 2 terms 2.9522 2.9491 2.9398 2.9245 2.9033 2.8766 3.1820 3.1788 3.1693 3.1536 3.1318 3.1044

4 terms 2.6527 2.6500 2.6418 2.6283 2.6096 2.5860 2.8193 2.8165 2.8080 2.7941 2.7749 2.7505
6 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
8 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
10 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
12 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
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where = =β α h3 4/( 2).
The stress-strain relationship of a two directional functionally

graded beam in the material coordinate axes is given by
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where (σxx , σxz) are the stresses and (εxx , γxz) are the strains with respect
to the axes.

2.3. Formulation of free vibration

The strain energy of the beam including the energy associated with
the shearing strain can be written as

∫= +U σ ε σ γ dV1
2

( )
V xx xx xz xz (5)

whereV is the volume of the beam. By substituting Eqs. (3) and (4) into
Eq. (5), the strain energy can be obtained as the form of

Table 4
Verification and convergence studies, dimensionless fundamental frequencies λ( )1 of CF two directional FGBs with respect to gradient index and aspect ratio change.

Beam theory px L/h= 5
pz

L/h= 20
pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Timoshenko [30] 0 0.9844 0.9832 0.9796 0.9735 0.9661 0.9576 1.0126 1.0126 1.0087 1.0029 0.9970 0.9873
RBT 2 terms 0.9925 0.9916 0.9887 0.9840 0.9775 0.9693 1.0180 1.0170 1.0140 1.0090 1.0021 0.9933

4 terms 0.9858 0.9849 0.9821 0.9774 0.9710 0.9628 1.0131 1.0121 1.0090 1.0041 0.9972 0.9885
6 terms 0.9852 0.9842 0.9814 0.9767 0.9703 0.9622 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884
8 terms 0.9849 0.9840 0.9811 0.9765 0.9701 0.9619 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884
10 terms 0.9848 0.9839 0.9810 0.9764 0.9700 0.9618 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884
12 terms 0.9848 0.9839 0.9810 0.9764 0.9700 0.9618 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884

Timoshenko [30] 0.4 0.8709 0.8697 0.8673 0.8624 0.8564 0.8486 0.8955 0.8935 0.8916 0.8876 0.8798 0.8721
RBT 2 terms 0.8844 0.8835 0.8810 0.8768 0.8710 0.8636 0.9049 0.9040 0.9013 0.8969 0.8907 0.8830

4 terms 0.8730 0.8722 0.8697 0.8655 0.8598 0.8525 0.8951 0.8942 0.8915 0.8871 0.8810 0.8733
6 terms 0.8723 0.8715 0.8690 0.8649 0.8592 0.8519 0.8950 0.8941 0.8915 0.8871 0.8810 0.8733
8 terms 0.8721 0.8713 0.8688 0.8649 0.8589 0.8517 0.8950 0.8941 0.8914 0.8870 0.8810 0.8733
10 terms 0.8720 0.8712 0.8687 0.8645 0.8588 0.8516 0.8950 0.8941 0.8914 0.8870 0.8810 0.8733
12 terms 0.8720 0.8712 0.8687 0.8645 0.8588 0.8516 0.8950 0.8941 0.8914 0.8870 0.8810 0.8733

Timoshenko [30] 1 0.7216 0.7216 0.7177 0.7138 0.7099 0.7021 0.7392 0.7392 0.7373 0.7333 0.7275 0.7216
RBT 2 terms 0.7443 0.7436 0.7415 0.7379 0.7330 0.7268 0.7593 0.7585 0.7563 0.7525 0.7474 0.7409

4 terms 0.7234 0.7227 0.7206 0.7172 0.7124 0.7064 0.7394 0.7387 0.7365 0.7329 0.7278 0.7215
6 terms 0.7228 0.7221 0.7200 0.7166 0.7118 0.7058 0.7394 0.7387 0.7365 0.7328 0.7278 0.7214
8 terms 0.7226 0.7219 0.7198 0.7164 0.7116 0.7056 0.7394 0.7386 0.7364 0.7328 0.7278 0.7214
10 terms 0.7225 0.7218 0.7197 0.7163 0.7115 0.7055 0.7394 0.7386 0.7364 0.7328 0.7278 0.7214
12 terms 0.7225 0.7218 0.7197 0.7163 0.7115 0.7055 0.7394 0.7386 0.7364 0.7328 0.7278 0.7214

Table 5
Verification and convergence studies, dimensionless fundamental frequencies (λ )1 of CC two directional FGBs with respect to gradient index and aspect ratio change.

Beam theory px L/h= 5
pz

L/h= 20
pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Timoshenko [30] 0 5.1943 5.1904 5.1806 5.1630 5.1396 5.1083 6.3486 6.3427 6.3251 6.2939 6.2529 6.2001
RBT 2 terms 5.3585 5.3543 5.3417 5.3210 5.2922 5.2556 6.3865 6.3803 6.3616 6.3307 6.2881 6.2341

4 terms 5.2767 5.2727 5.2605 5.2403 5.2124 5.1770 6.3579 6.3517 6.3331 6.3024 6.2600 6.2064
6 terms 5.2486 5.2446 5.2326 5.2127 5.1851 5.1501 6.3544 6.3482 6.3296 6.2990 6.2566 6.2030
8 terms 5.2375 5.2335 5.2215 5.2017 5.1743 5.1395 6.3527 6.3465 6.3280 6.2974 6.2550 6.2015
10 terms 5.2330 5.2290 5.2171 5.1974 5.1701 5.1354 6.3518 6.3456 6.3271 6.2695 6.2542 6.2007
12 terms 5.2314 5.2274 5.2155 5.1958 5.1685 5.1339 6.3513 6.3451 6.3266 6.2690 6.2537 6.2002

Timoshenko [30] 0.4 5.1982 5.1943 5.1845 5.1669 5.1435 5.1123 6.3564 6.3486 6.3310 6.2998 6.2587 6.2060
RBT 2 terms 5.3741 5.3699 5.3573 5.3365 5.3077 5.2711 6.4133 6.4071 6.3883 6.3573 6.3145 6.2603

4 terms 5.2814 5.2773 5.2652 5.2450 5.2170 5.1816 6.3642 6.3580 6.3394 6.3087 6.2662 6.2125
6 terms 5.2530 5.2489 5.2369 5.2170 5.1894 5.1544 6.3605 6.3543 6.3357 6.3051 6.2627 6.2090
8 terms 5.2418 5.2377 5.2256 5.2059 5.1782 5.1431 6.3589 6.3526 6.3341 6.3034 6.2611 6.2075
10 terms 5.2373 5.2333 5.2213 5.2016 5.1743 5.1396 6.3580 6.3518 6.3332 6.3026 6.2602 6.2067
12 terms 5.2356 5.2316 5.2197 5.2000 5.1727 5.1381 6.3575 6.3513 6.3327 6.3021 6.2597 6.2062

Timoshenko [30] 1 5.2197 5.2177 5.2060 5.1884 5.1650 5.1337 6.3876 6.3818 6.3623 6.3330 6.2900 6.2373
RBT 2 terms 5.4549 5.4507 5.4380 5.4170 5.3879 5.3510 6.5533 6.5469 6.5277 6.4961 6.4523 6.3970

4 terms 5.3062 5.3021 5.2898 5.2696 5.2415 5.2059 6.3973 6.3910 6.3723 6.3415 6.2988 6.2449
6 terms 5.2761 5.2720 5.2599 5.2400 5.2123 5.1771 6.3930 6.3867 6.3681 6.3372 6.2946 6.2408
8 terms 5.2644 5.2604 5.2484 5.2285 5.2010 5.1661 6.3913 6.3850 6.3664 6.3356 6.2930 6.2392
10 terms 5.2597 5.2557 5.2437 5.2239 5.1965 5.1617 6.3903 6.3841 6.3655 6.3347 6.2921 6.2383
12 terms 5.2580 5.2540 5.2421 5.2223 5.1949 5.1601 6.3896 6.3832 6.3646 6.3338 6.2912 6.2374

A. Karamanlı Composite Structures 189 (2018) 127–136

129



∫ ⎜ ⎟= ⎡

⎣
⎢

⎧
⎨⎩

⎛
⎝

∂
∂

⎞
⎠

+ − + ⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

+ − ∂
∂

∂
∂

− ∂
∂

+ −
∂
∂

⎫
⎬⎭

+ ⎧
⎨⎩

− + + − + ⎛
⎝

∂
∂

⎞
⎠

+ − + ∂
∂

⎫
⎬⎭

⎤

⎦
⎥

U E x z u
x

z αz α z
ϕ
x

α z w
x

z αz u
x

ϕ
x

αz u
x

d w
dx

α z αz
ϕ
x

d w
dx

G x z βz β z ϕ βz β z w
x

βz β z ϕ w
x

dV

1
2

( , ) ( 2 )

2( ) 2 2( )

( , ) (1 2 ) (1 2 )

2(1 2 )

V

2
2 4 2 6

2
2 6

2

2

2

3 3
2

2
2 6 4

2

2

2 2 4 2 2 2 4
2

2 2 4

(6)

The stiffness coefficients can be introduced as follows
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By using Eqs. (6)–(8), the strain energy can be rewritten as
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With the similar procedure, the kinetic energy of the beam can be
obtained as

Table 6
The first three dimensionless frequencies of SS two directional FGBs with respect to gradient index and aspect ratio change.

λ px L/h= 5 L/h=20
pz pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

λ1 0 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
0.2 2.6760 2.6733 2.6652 2.6518 2.6333 2.6099 2.8360 2.8332 2.8247 2.8107 2.7914 2.7669
0.4 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
0.6 2.6657 2.6630 2.6548 2.6414 2.6228 2.5994 2.8270 2.8241 2.8157 2.8017 2.7824 2.7581
0.8 2.6567 2.6540 2.6458 2.6324 2.6138 2.5903 2.8191 2.8162 2.8078 2.7939 2.7747 2.7503
1 2.6452 2.6424 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7838 2.7647 2.7404

λ2 0 7.8540 7.8478 7.8294 7.7988 7.7561 7.7015 11.2095 11.1982 11.1646 11.1091 11.0324 10.9354
0.2 7.5387 7.5333 7.5172 7.4904 7.4528 7.4046 11.2105 11.1992 11.1655 11.1098 11.0329 10.9357
0.4 7.2297 7.2248 7.2104 7.1863 7.1525 7.1091 11.2134 11.2021 11.1683 11.1125 11.0354 10.9379
0.6 6.9270 6.9226 6.9094 6.8874 6.8566 6.8170 11.2184 11.2070 11.1731 11.1171 11.0397 10.9419
0.8 6.6308 6.6268 6.6146 6.5943 6.5660 6.5295 11.2254 11.2140 11.1799 11.1236 11.0459 10.9477
1 6.3414 6.3376 6.3263 6.3075 6.2812 6.2473 11.2344 11.2229 11.1887 11.1321 11.0540 10.9553

λ3 0 9.2909 9.2876 9.2774 9.2606 9.2374 9.2082 24.7346 24.7081 24.6289 24.4984 24.3188 24.0930
0.2 9.2914 9.2874 9.2752 9.2551 9.2274 9.1927 24.7365 24.7091 24.6276 24.4935 24.3094 24.0784
0.4 9.2927 9.2882 9.2747 9.2524 9.2216 9.1829 24.7420 24.7133 24.6281 24.4885 24.2976 24.0592
0.6 9.2950 9.2902 9.2756 9.2517 9.2186 9.1770 24.7511 24.7202 24.6285 24.4794 24.2774 24.0279
0.8 9.2982 9.2931 9.2778 9.2527 9.2179 9.1741 24.7638 24.7276 24.6217 24.4537 24.2322 23.9650
1 9.3023 9.2970 9.2812 9.2551 9.2190 9.1735 24.7801 24.7198 24.5660 24.3539 24.1002 23.8118

Table 7
The first three dimensionless frequencies of CS two directional FGBs with respect to gradient index and aspect ratio change.

λ px L/h=5 L/h=20
pz pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

λ1 0 3.8916 3.8883 3.8786 3.8626 3.8404 3.8122 4.4075 4.4031 4.3902 4.3687 4.3391 4.3017
0.2 3.8371 3.8339 3.8244 3.8086 3.7867 3.7589 4.3472 4.3429 4.3301 4.3090 4.2798 4.2428
0.4 3.7825 3.7793 3.7699 3.7544 3.7328 3.7055 4.2874 4.2831 4.2705 4.2497 4.2209 4.1844
0.6 3.7276 3.7245 3.7152 3.6999 3.6787 3.6518 4.2278 4.2237 4.2112 4.1907 4.1622 4.1263
0.8 3.6722 3.6692 3.6601 3.6450 3.6242 3.5977 4.1685 4.1644 4.1521 4.1318 4.1038 4.0684
1 3.6165 3.6135 3.6045 3.5897 3.5692 3.5432 4.1092 4.1051 4.0931 4.0731 4.0455 4.0106

λ2 0 7.8540 7.8540 7.8540 7.8540 7.8540 7.8540 14.0499 14.0363 13.9959 13.9292 13.8369 13.7201
0.2 7.5387 7.5387 7.5387 7.5387 7.5387 7.5387 13.9955 13.9820 13.9418 13.8753 13.7833 13.6670
0.4 7.2297 7.2297 7.2297 7.2297 7.2297 7.2297 13.9441 13.9307 13.8906 13.8244 13.7328 13.6169
0.6 6.9270 6.9270 6.9270 6.9270 6.9270 6.9270 13.8958 13.8824 13.8425 13.7765 13.6852 13.5697
0.8 6.6308 6.6308 6.6308 6.6308 6.6308 6.6308 13.8505 13.8372 13.7973 13.7315 13.6405 13.5255
1 6.3414 6.3414 6.3414 6.3414 6.3414 6.3414 13.8082 13.7949 13.7552 13.6896 13.5989 13.4842

λ3 0 10.7346 10.7272 10.7051 10.6686 10.6178 10.5535 28.6433 28.6167 28.5369 28.4052 28.2229 27.9922
0.2 10.6954 10.6881 10.6661 10.6296 10.5791 10.5149 28.5909 28.5642 28.4847 28.3531 28.1712 27.9409
0.4 10.6580 10.6507 10.6287 10.5924 10.5421 10.4781 28.5420 28.5154 28.4360 28.3047 28.1230 27.8932
0.6 10.6223 10.6150 10.5931 10.5569 10.5067 10.4430 27.7079 27.7079 27.7079 27.7079 27.7079 27.7079
0.8 10.5884 10.5811 10.5593 10.5232 10.4731 10.4096 26.5233 26.5233 26.5233 26.5233 26.5233 26.5233
1 10.5562 10.5489 10.5272 10.4912 10.4413 10.3780 25.3656 25.3656 25.3656 25.3656 25.3656 25.3656
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Here t is the time, and the inertial coefficients can be presented by

∫=
−

+ +( )I I I J J K b ρ e z z z z z dz( , , , , , ) (1, , , , , )
h

h
m

p z
h0 1 2 1 2 1 /2

/2 1
2 2 3 4 6z

(11)

It is known that Hamilton’s principle can be expressed as Lagrange
equations when the functions of infinite dimensions can be expressed in
terms of generalized coordinates. Therefore, the displacement functions
u x t( , ), w x t( , ) and the rotation function ϕ x t( , ) are presented by the
following polynomial series which are satisfy the kinematic boundary
conditions given in Table 1.
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where Aj, Bj and Cj are unknown coefficients to be determined, ω is the
natural frequency of the beam, = −i 1 is the complex number, θ x( )j ,
φ x( )j and ψ x( )j are the shape functions which are proposed for the
boundary conditions (BC) to be studied within this paper, pξ and qξ
( =ξ u w ϕ, , ) are the boundary exponents given in Table 2, and assigned
regarding to the studied boundary condtion. It has to be mentioned that
the shape functions which do not satisfy the boundary conditions may
cause slow convergence rates and numerical instabilities.

Table 8
The first three dimensionless frequencies of CC two directional FGBs with respect to gradient index and aspect ratio change.

λ px L/h=5 L/h=20
pz pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

λ1 0 5.2330 5.2290 5.2171 5.1974 5.1701 5.1354 6.3518 6.3456 6.3271 6.2965 6.2542 6.2007
0.2 5.2341 5.2301 5.2182 5.1984 5.1711 5.1364 6.3534 6.3472 6.3286 6.2980 6.2557 6.2022
0.4 5.2373 5.2333 5.2213 5.2016 5.1743 5.1396 6.3580 6.3518 6.3332 6.3026 6.2602 6.2067
0.6 5.2426 5.2386 5.2266 5.2069 5.1795 5.1448 6.3656 6.3594 6.3409 6.3102 6.2678 6.2142
0.8 5.2500 5.2460 5.2341 5.2143 5.1869 5.1522 6.3764 6.3702 6.3516 6.3209 6.2784 6.2247
1 5.2597 5.2557 5.2438 5.2239 5.1965 5.1617 6.3903 6.3841 6.3655 6.3347 6.2921 6.2383

λ2 0 12.0849 12.0775 12.0552 12.0182 11.9669 11.9018 17.1470 17.1308 17.0822 17.0019 16.8909 16.7505
0.2 12.0862 12.0788 12.0565 12.0195 11.9682 11.9031 17.1490 17.1328 17.0842 17.0039 16.8929 16.7524
0.4 12.0902 12.0828 12.0604 12.0235 11.9722 11.9070 17.1551 17.1388 17.0902 17.0099 16.8989 16.7584
0.6 12.0969 12.0894 12.0671 12.0301 11.9787 11.9135 17.1652 17.1489 17.1003 17.0199 16.9088 16.7682
0.8 12.1061 12.0987 12.0763 12.0393 11.9879 11.9226 17.1793 17.1630 17.1144 17.0340 16.9227 16.7820
1 12.1181 12.1106 12.0882 12.0512 11.9997 11.9344 17.1975 17.1812 17.1325 17.0520 16.9406 16.7998

λ3 0 15.7080 15.7080 15.7080 15.7080 15.7080 15.7080 32.7454 32.7154 32.6260 32.4781 32.2734 32.0144
0.2 15.7159 15.7159 15.7159 15.7159 15.7159 15.7159 32.7475 32.7176 32.6281 32.4802 32.2755 32.0164
0.4 15.7398 15.7398 15.7398 15.7398 15.7398 15.7398 32.7538 32.7239 32.6344 32.4865 32.2817 32.0227
0.6 15.7794 15.7794 15.7794 15.7794 15.7794 15.7794 32.7644 32.7345 32.6450 32.4970 32.2922 32.0330
0.8 15.8348 15.8348 15.8348 15.8348 15.8348 15.8348 32.7792 32.7493 32.6597 32.5117 32.3068 32.0475
1 15.9057 15.9057 15.9057 15.9057 15.9057 15.9057 32.7983 32.7683 32.6787 32.5306 32.3256 32.0662

Table 9
The first three dimensionless frequencies of CF two directional FGBs with respect to gradient index and aspect ratio change.

λ px L/h= 5 L/h=20
pz pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

λ1 0 0.9848 0.9839 0.9810 0.9764 0.9700 0.9618 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884
0.2 0.9270 0.9261 0.9235 0.9191 0.9131 0.9054 0.9525 0.9515 0.9487 0.9440 0.9376 0.9294
0.4 0.8720 0.8712 0.8687 0.8645 0.8588 0.8516 0.8950 0.8941 0.8914 0.8870 0.8809 0.8733
0.6 0.8196 0.8188 0.8165 0.8126 0.8072 0.8004 0.8404 0.8395 0.8370 0.8329 0.8272 0.8200
0.8 0.7698 0.7691 0.7668 0.7632 0.7581 0.7517 0.7885 0.7877 0.7854 0.7815 0.7761 0.7694
1 0.7225 0.7218 0.7197 0.7163 0.7115 0.7055 0.7394 0.7386 0.7364 0.7328 0.7278 0.7214

λ2 0 5.3263 5.3222 5.3098 5.2894 5.2611 5.2252 6.2758 6.2697 6.2513 6.2210 6.1790 6.1260
0.2 5.2236 5.2195 5.2075 5.1875 5.1597 5.1246 6.1584 6.1524 6.1344 6.1046 6.0635 6.0114
0.4 5.1217 5.1178 5.1060 5.0864 5.0593 5.0248 6.0428 6.0369 6.0192 5.9900 5.9496 5.8986
0.6 5.0207 5.0168 5.0052 4.9861 4.9596 4.9259 5.9289 5.9231 5.9057 5.8771 5.8375 5.7874
0.8 4.9204 4.9166 4.9053 4.8866 4.8606 4.8277 5.8165 5.8108 5.7938 5.7657 5.7269 5.6777
1 4.8207 4.8171 4.8060 4.7877 4.7624 4.7302 5.7057 5.7001 5.6834 5.6558 5.6177 5.5696

λ3 0 7.8540 7.8540 7.8540 7.8540 7.8540 7.8540 17.2627 17.2462 17.1970 17.1157 17.0032 16.8610
0.2 7.5387 7.5387 7.5387 7.5387 7.5387 7.5387 17.1531 17.1368 17.0879 17.0071 16.8953 16.7539
0.4 7.2297 7.2297 7.2297 7.2297 7.2297 7.2297 17.0472 17.0310 16.9824 16.9021 16.7910 16.6505
0.6 6.9270 6.9270 6.9270 6.9270 6.9270 6.9270 16.9450 16.9288 16.8805 16.8007 16.6903 16.5507
0.8 6.6308 6.6308 6.6308 6.6308 6.6308 6.6308 16.8464 16.8304 16.7824 16.7030 16.5932 16.4544
1 6.3414 6.3414 6.3414 6.3414 6.3414 6.3414 16.7516 16.7356 16.6879 16.6090 16.4999 16.3618
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The governing equations of motion can be obtained by substituting
Eq. (12) into Eqs. (9) and (10) and then using Lagrange equations
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where K[ ]kl are the stiffness matrices and M[ ]kl are the mass matrices. It
should be noted that the stiffness and mass matrices are symmetric and
in size mxm. The components of the stiffness and mass matrices are
given by:
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3. Numerical results

This section is dedicated to discuss the effects of gradient indexes
(or material composition), aspect ratios and boundary conditions on the
free vibration behavior of the two directional FGBs. The material and
geometrical properties of the beam are defined as

= = = = =E GPa ν ρ
kg
m

h m b m210 , 0.3, 7850 , 1 , 0.5m m m 3

The length of the beam is varied to examine the effect of the shear
deformation. Four different boundary conditions, namely simply sup-
ported (SS), clamped-simply supported (CS), clamped–clamped (CC)
and clamped-free (CF) are considered. The following dimensionless
frequency (λ) parameter is used for the representation of the results;

=λ ωL
h

ρ
E

m

m

2

(16)

3.1. Verification and convergence studies

The convergence and verification studies are performed by em-
ploying different number of terms in the polynomial series expansions.
The computed results are presented in terms of dimensionless fre-
quencies considering various gradient indexes in both directions, aspect
ratios and boundary conditions, namely SS and CF. The results from the
previous study [30] in terms of dimensionless fundamental frequencies
(λ )1 are used for comparison purposes. The present results agree well
with those from the previous study [30]. It is clear that for the free
vibration analysis of SS beams, the responses converge quickly, when
the number of terms in polynomial expansion is set to 6 as it is seen
from Table 3. However, the agreed results are obtained for CF and CC
boundary conditions by employing 8 terms in polynomial expansion as
given in Tables 4 and 5. For the sake of accuracy, 10 terms in the
polynomial expansion is employed for the extensive free vibration
analysis of two directional FGBs.

3.2. Free vibration responses of two directional FGBs

In Tables 6–9, the first three dimensionless frequencies of the two
directional FGBs with SS, CS, CC and CF boundary conditions are pre-
sented for two different aspect ratios (L/h=5 and L/h=20) and
various gradient indexes in both directions (pz and px). It is clear from

Fig. 2. Variation of the fundamental frequencies with re-
spect to gradient index (px) and aspect ratio for two direc-
tional FG SS beams. (pz= 1).
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the results that the first three dimensionless natural frequencies de-
crease for SS, CS and CF end conditions while the gradient indexes
increase. On the other hand, the free vibration behavior of the CC 2D-
FGBs is affected in different ways according to variation of the gradient

indexes. The natural frequencies of the CC 2D-FGBs increase as the
gradient index in the x-direction increase. However, they are decreasing
with an increment of the gradient indexes in the z-direction.

One may expect that the frequencies have to increase since the
Young’s modulus, ultimately the rigidity of the beam increases with the

Fig. 3. First four mode shapes of SS two directional FGBs (L/h= 5, pz= 1and px= 1).

Fig. 4. First four mode shapes of CS two directional FGBs (L/h= 5, pz= 1and px= 1).
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increase of the gradient indexes. However, the mass is not constant and
increased by the material gradient indexes. It is very well known in
vibration theory and should be noted that the frequency is inversely
proportional with the mass of the beam. It is found that the effect of the

mass on the fundamental frequencies of the beams is a bit more
dominant than the effect of the Young’s modulus.

It is observed that the gradient indexes have different effects on the
vibration responses of the two directional FGBs depending on the

Fig. 5. First four mode shapes of CC two directional FGBs (L/h= 5, pz= 1and px= 1).
Fig. 6. First four mode shapes of CF two directional FGBs (L/h= 5, pz= 1and px= 1).
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boundary conditions. It is observed that for the fundamental fre-
quencies of the SS and CF 2D-FGBs the gradient index px is more ef-
fective than the pz. However, for second and third natural frequencies
the gradient index pz is a bit more dominant than px. The gradient index
in the z-direction is more effective on the vibration responses of CC
beams than the gradient index in the x-direction for all aspect ratios and
mode number. However, the effects of the gradient indexes on the
natural frequencies on the CS 2D-FGBS depend on the aspect ratio and
mode number. When the aspect ratio (L/h) is set to 5, the px has a bit
more effective than pz for first and second natural frequencies. On the
other hand, for the third mode they have almost the same effect. Based
on the results obtained for L/h=20, the px is more effective on the first
and third natural frequencies of CS 2D-FGBs than the pz. And finally,
the most important and interesting output of the study is that the
second natural frequencies of CS 2D-FGBs with L/h=5, the third

natural frequencies of CS 2D-FGBs with L/h= 20, the third natural
frequencies of CC 2D-FGBs with L/h= 5 and the third natural fre-
quencies of CF 2D-FGBs with L/h=5 are not affected by the variation
of the gradient index in the z-direction for all values of px . They remain
constant while the pz increases.

To illustrate the effect of gradient index – px and the aspect ratio (L/
h) on the free vibration response of two directional FGBs, the variation
of the fundamental frequencies (λ )1 is plotted in Fig. 2. It is observed
that the maximum dimensionless fundamental frequency is obtained
when the px is set to zero. Except the aspect ratios L/h=2 and L/h=5,
the curves obtained for the fundamental frequencies based on the
various aspect ratios are almost symmetrical according to the axis lo-
cated at px= 0. It can be concluded for positive values of px that the
effect of the mass on the fundamental frequencies of the thick beams is
a bit more dominant than the effect of the Young’s modulus. On the

Fig. 7. First six mode shapes (w) of SS two directional FGBs with respect to variation of the gradient index px (L/h= 5 and pz= 1).
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other hand, for negative values of px it is clear that the Young’s modulus
is more effective than the mass of the beam on the free vibration of the
SS two directional FGBs. It is seen that for moderately thick and thin
beams, they have the same effect on the vibration response. The first
four mode shapes of SS, CS, CC and CF two directional FGBs with the
gradient indexes, pz= 1 and px= 1, are illustrated in Figs. 3–6. It is
clear that the resulting mode shape is referred as triply coupled mode,
which are substantial involving axial, shear and flexure deformation for
all types of end conditions.

The effect of the gradient index px on the flexural vibration mode
shapes of the CF two directional FGBs are presented in Fig. 7. It is clear
that the flexural displacement increases while the gradient index px
decreases. With an increment on the px, the effects of the propagating
components of bending waves gradually become smaller and smaller.

4. Conclusion

The free vibration behavior of the two directional functionally
graded beams having different boundary conditions is presented. By
employing various gradient indexes in both axial and thickness direc-
tions, the material properties of the beam are changed. The governing
equations of motion are obtained via Lagrange equations in conjunction
with polynomials added auxiliary functions which are necessary to
satisfy the boundary conditions. Various gradient indexes, aspect ratios
and boundary conditions are considered. The computed results in terms
of dimensionless fundamental frequencies are compared with the re-
sults from a previous study. It is found that computed results show
excellent agreement with previous one. Extensive analysis is performed
to understand the influence of the material gradation, aspect ratio and
the boundary conditions on the dynamic response of the two directional
FGBs.

It is found that the dimensionless fundamental frequency decreases
as the material gradient index pz or px increases for all type of boundary
conditions except CC boundary condition. The natural frequencies of
the CC 2D-FGBs decrease as the gradient index in the z-direction in-
crease. However, they are increasing with an increment of the gradient
indexes in the x-direction. The beam theory employed within this paper
for the solution of the free vibration responses of the two directional
FGBs satisfies the zero traction boundary conditions on the top and
bottom surfaces of the beam, thus a shear correction factor is not re-
quired. It allows having a better prediction of free vibrations response
for the two directional FGBs. For thick beams, the shear effect is very
important and higher order shear deformation beam theories are ne-
cessary. Free vibration behavior of the two directional FGBs can be
controlled and optimized to meet the desired goals by choosing suitable
gradient index.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.compstruct.2018.01.
060.
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