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ABSTRACT
In this study, we purpose to ensure optical soliton solutions of the nonlinear Schrödinger
equation having parabolic and anti-cubic (AC) lawswith aweakly non-local nonlinearity by using
the new Kudryashov method. As far as we know this model has not been presented and stud-
ied before. Furthermore, what differs this study from other studies is, not only obtains a variety
of analytical solutions of the examined model but also substantiates the effects of the parabolic
and anti-cubic laws with a weakly non-local nonlinearity on soliton behaviour, by choosing the
particular soliton forms, which are dark, bright and W-like. Eventually, we depict some of the
derived solutions in contour, 2D and 3D diagrams selecting the appropriate values of parame-
ters by means of Matlab to demonstrate the importance of the given model. It is indicated that
parabolic and AC parameters taking into consideration the weak non-local contribution have
a very remarkable impact on the soliton structure, and the impact alters connected with the
parameters and the soliton form. Besides, enabling and retaining the critical balance between
the parameters and the soliton form and the interactive relation of the parameters with each
other comprises major challenges.
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1. Introduction

Nonlinearpartial differential equationshavewidespread
implementation in nonlinear physics branches such
as nonlinear fibre optics, plasma physics, mechanical
waves, fluid dynamics and optics; thus, it has capti-
vated much interest from research specialists in the
last two quarters [1–20]. These phenomena have been
mostly modelled utilizing different forms of the nonlin-
ear Schrödinger equation (NLSE) that defines the prop-
agation of soliton. The NLSE is a very notable equation
and it is also used in a verywide range fromwaterwaves
to optics. In [21], higher order NLSE having derivative
non-Kerr nonlinearity is investigated via the improved
modified extended tanh-function. [22] presents opti-
cal soliton solutions of NLSE with polynomial law and
quadratic–cubic law of refractive index. [23] examines
the stationary solitons of the generalized NLSE in the
presence of chromatic dispersion and polynomial of
powers having an arbitrary refractive index. In [24],
the F-expansion scheme is employed to the (1+1)-
dimensional NLSE with Kerr law nonlinearity in order to
achieve highly dispersive optical soliton solutions. The
conformable space-time fractional perturbedNLSE hav-
ing various laws of nonlinearity was examined in [25].

In [26], (3+1) dimensional NLSE with sixth and fourth-
order dispersive terms having cubic-quintic-septic non-
linearities was examined. [27–29] tackle the NLSE hav-
ing Kudryashov’s sextic power-law and optical solu-
tions. In [30], Mathanaranjan explored the soliton solu-
tion of the conformable space-time fractional cubic-
quartic NLSE with diverse laws of nonlinearity. In [31],
the semi-inverse variational principle was implemented
to the perturbedNLSEwith cubic–quintic–septic refrac-
tive index. [32] includes various optical soliton solutions
of the (3+1) -dimensional NLSE. Many kinds of laws
of nonlinearity of the Lakshmanan–Porsezian-Daniel
model were examined in detail [33–36]. [37] addresses
the cubic–quartic NLSE with quadratic–cubic nonlin-
earity. Zayed et al. perused the dimensionless structure
of the stochastic Sasa–Satsuma model in detail [38].
[39] present the cubic-quartic bright optical soliton of
perturbed Fokas Lenells equation. In addition, a num-
ber of procedures have been explored in the literature
to acquire soliton solutions to such problems. Some of
these methods are as follows: Sine–Gordon equation
scheme [20, 40], F-expansion technique [40], Ado-
mian decomposition procedure [41], Laplace–Adomian
decompositionmethod [42], Kudryashov’smethod [43],
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the modified Kudryashov’s approach [44], the scheme
of undetermined coefficients [45], nonstandard finite
difference technique [46], the trial equation scheme [47]
and many more.

The first target of this article is to generate analytical
optical soliton solutions of the (1+1)-dimensional NLSE
having parabolic lawwith aweakly non-local nonlinear-
ity given as [48]:

iϑt + ρϑxx + (
b1|ϑ |2 + b2|ϑ |4 + b3

(|ϑ |2)xx) ϑ = 0,
(1)

in which the complex-valued function ϑ(x, t) defines
the soliton profile, and x and t expresses the spatial and
temporal coordinates, respectively. The first term iϑt is
the temporal evolution whereas the second term ρϑxx

represents the group-velocity dispersion (GVD). The
next two nonlinear terms are members of parabolic law
nonlinearity [49–59] with the coefficients b1, b2. These
two nonlinear terms are conjugated for the cumula-
tive nonlinear effect that is based on these two effects.
The last nonlinear effect stands for the coefficient of
b3 that is from weakly non-local nonlinearity [60–69].
Moreover, ρ, b1, b2 and b3 are real values.

The second objective of this paper is to examine the
(1+1)-dimensional NLSE having anti-cubic law with a
weakly non-local nonlinearity introduced as:

iϑt + ρϑxx + (
b1|ϑ |−4 + b2|ϑ |2 + b3|ϑ |4

+ b4
(|ϑ |2)xx) ϑ = 0, (2)

where the three coefficients b1, b2 and b3 that are from
anti-cubic nonlinear forms [70–78].

What encourages us to do this study is that themod-
els have not been examined before in the literature.
Additionally, the non-locality of nonlinear response in
wave propagation problems is a significant determi-
nant in a variety of mathematical and physical contexts.
Impacts of non-locality are accomplishable in those
media where non-locality originates in the single con-
tinuum of nonlinearity such as parabolic and anti-cubic
law. These captivating models arise when two or more
competitive nonlinearities make a contribution to the
procedure of nonlinearity. [48, 79] examine the soliton
solutions of the dimensionless structure of the NLSE
in parabolic law with a weakly non-local nonlinearity.
[80] investigates the interactive relation of dark soli-
tons with an arbitrary degree of non-local nonlinear-
ity. [81] presents the properties of pure-quartic optical
soliton solutions in a nonlinear media with a weakly
non-locality.

The paper is configured as follows: Section 2 includes
the mathematical analysis of the equations under con-
sideration. The NKM is mathematically examined in
Section 2. NKM is performed to the examined model
which is given by Equations (1), (2), respectively in
Section 3. Diagrams of the obtained soliton solutions
are indicated graphically and the consequences thatwe

attained are interpreted in Section 4. The conclusion of
the article is referred to in Section 5.

2. Mathematical analysis

2.1. Ordinary differential equation shape of
Equation (1)

We take into account the following transformation of
Equation (1) as:

ϑ(x, t) = ϑ(ζ ) ei(−κx+ωt+θ0,), ζ = x − νt, (3)

in which ν, κ ,ω, and θ0 are real constants. Herein, ν

expresses the velocity, κ , ω and θ0 stand for the wave
number, the frequency and the phase number, respec-
tively. EmployingEquation (3) to Equation (1), anddivid-
ing the generated relation into the real and imaginary
components, we get :(

2b3ϑ2 + ρ
)
ϑ ′′ + 2b3ϑ(ϑ ′)2

− (
ω − b2ϑ

4 + ρ κ2 − ϑ2b1
)
ϑ = 0, (4)

and

(2ρκ + ν) ϑ ′ = 0. (5)

From Equation (5), the constraint condition is
acquired as:

ν = −2ρκ . (6)

Taking into account the constraint condition in Equa-
tions (6), (4) symbolizes the NLODE form of Equation (2).

2.2. Ordinary differential equation structure of
Equation (2)

In this part, employing the wave transformation given
with Equation (3), the real and imaginary parts are
derived as:(

2b4ϑ5 + ρϑ3) ϑ ′′ + 2b4ϑ4 (
ϑ ′)2 + b3ϑ

8 + b2ϑ
6

− (
κ2ρ + ω

)
ϑ4 + b1 = 0, (7)

and

(2κρ + ν) ϑ3ϑ ′ = 0. (8)

From Equation (8), the constraint condition is
acquired as:

ν = −2ρκ . (9)

To acquire closed-form solutions, we should define:

ϑ = V
1
2 (10)

which reduces Equation (7) into the followingODE form
of Equation (2):

2
(
2V2b4 + ρV

)
V ′′ − ρ

(
V ′)2 + 4b3V4 + 4b2V3

− 4
(
κ2ρ + ω

)
V2 + 4b1 = 0. (11)
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3. Application

3.1. The new Kudryashovmethod (NKM)

The following factors constitute the basis of the selec-
tion of the NKMmethod in the study conducted within
the scope of the article. The method does not require
much mathematical processing, targets and presents
certain types of solitons (bright, dark and kink), and
is a widely used reliable method. It is also so easy to
implement. The main stages of NKM [82] are stated as
follows.

The following truncated series is considered as a
solution of Equations (4) and (11):

V(ζ ) =
B∑

l=0

	l

l(ζ ), 	B �= 0, (12)

where 	l are real values. 
l(ζ ) ensures:

(
′(ζ ))2 = δ2
2(ζ )[1 − χ
2(ζ )], (13)

where χ , and δ are nonzero values to be figured out
later. The Equation (13) serves the given solution as:


(ζ) = 4k
4k2 eδη + χ e−δη

, (14)

where k is a real constant.

3.2. Application of the NKM to Equation (1)

In this section, we seek the soliton solutions of
Equation (1) via NKM. Considering the terms ϑ2ϑ ′′ and
ϑ5 in Equation (4) utilizing the homogeneous balance
relation [83, 84], we get the balance term as B = 1.
Because of B = 1, Equation (12) is expressed the follow-
ing structure:

V(ζ ) = 	0 + 	1
(ζ). (15)

Unity of Equations (15), (13), (4) generates the following
algebraic form:


0(ζ ) : 	0
(
	4

0b2 + b1	
2
0 − ρ κ2 − ω

) = 0,


(ζ) : 	1
(
5	4

0b2 + (
2b3 δ2 + 3b1

)
	2

0

+ ρ δ2 − ρ κ2 − ω
) = 0,


2(ζ ) : 	0
(
10	2

0b2 + 6b3 δ2 + 3b1
)
	2

1 = 0,


3(ζ ) : 	1
((
10	2

0b2 + 4b3 δ2 + b1
)
	2

1

− χ
(
4	2

0b3 + 2ρ
)
δ2

) = 0,


4(ζ ) : 5	0	
2
1
(−2b3χ δ2 + b2	

2
1
) = 0,


5(ζ ) : 	3
1
(−6b3χ δ2 + b2	

2
1
) = 0.

The following solution functions for the derived solu-
tion sets from this algebraic system are obtained:

Set 1:

{
b1 = 12b3

2δ2
(
κ2 − δ2

) + b2ω

3b3
(
δ2 − κ2

) , ρ = ω

δ2 − κ2 ,

	0 = 0,	1 =
√
6b2b3χ δ

b2

}
(16)

Taking into account the Equation (16) with Equa-
tions (15), (3), we extract:

ϑ1(x, t) = 4
√
6b2b3χ δk

b2

(
4k2 e

δ
(

2ωκt
δ2−κ2

+x
)

+ χ e
−δ

(
2ωκt

δ2−κ2
+x

))

× ei(−κx+ωt+θ0). (17)

Set 2:

{
b3 = b2�

6
(
2b2	2

1 + 3b1χ
)
κ2χ

,

δ =
√

�
(
2b2	2

1 + 3b1χ
)
κ	1

�
,

ρ = �

6κ2χ2 ,	0 = 0,	1 = 	1

}
, (18)

in which � = 2b2	4
1 + 3b1χ	2

1 − 6χ2ω. Considering
the Equation (18) with Equations (15), (3), we construct:

ϑ2(x, t) = 4	1k

4k2e

√
�(2b2	2

1+3b1χ) κ	1

(
�t

3κ χ2
+x

)
�

+χ e−
√

�(2b2	2
1+3b1χ) κ	1

(
�t

3κ χ2
+x

)
�

× ei(−κx+ωt+θ0). (19)

3.3. Application of the NKM to Equation (2)

In this part, we search for the soliton solutions of
Equation (2) via NKM. Taking into account the homoge-
neous balance relation [83, 84] betweenϑ ′′ϑ2 andϑ4 in
Equation (11), we derive B = 2. Therefore, Equation (12)
can be written in the following format:

v(ζ ) = 	0 + 	1
(ζ) + 	2
(ζ)2, 	2 �= 0. (20)
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Combination of Equations (15), (11), (13) yields:


0(ζ ) :
(
b3	

2
0 + b2	0 − (

κ2ρ + ω
))

	2
0 + b1 = 0,


(ζ) :
(
8	2

0b3 + 2
(
b4δ

2 + 3b2
)
	0

+ ρ
(
δ2 − 4κ2) − 4ω

)
	0	1 = 0,


2(ζ ) :
(
24	2

0b3 + (
8b4δ2 + 12b2

)
	0

+ ρ
(
δ2 − 4κ2) − 4ω

)
	2

1 + 16	3
0	2b3

+ (
4

(
4b4δ2 + 3b2

)
	0

+ 8
(
ρ

(
δ2 − κ2) − ω

))
	2	0 = 0,


3(ζ ) :
(−2b4δ2 − 4	0b3 − 2b2

)
	3

1

+ (−24	2
0b3 − 4

(
5b4δ2 + 3b2

)
	0

− ρ
(
3δ2 − 4κ2) + 4ω

)
	2	1

+ χ	0	1δ
2 (4b4	0 + 2ρ) = 0,


4(ζ ) : 4	4
1b3 + ((

24b4δ2 + 48	0b3 + 12b2
)
	2

− χ δ2 (16b4	0 + 3ρ)
)
	2

1

4	2
((
6	2

0b3 + (
8b4δ2 + 3b2

)
	0 − ρ δ2

+ κ2ρ + ω
)
	2 + χ	0δ

2 (6b4	0 + 3ρ)
) = 0,


5(ζ ) : 	1
(
2

(
χb4δ

2 − 2	2b3
)
	2

1

− (
3

(
3b4δ2 + 4	0b3 + b2

)
	2

− χ δ2 (16b4	0 + 3ρ)
)
	2

) = 0,


6(ζ ) : 	2
((
10χb4δ2 − 6	2b3

)
	2

1

+ ((−4b4δ2 − 4	0b3 − b2
)
	2

+ χ δ2 (12b4	0 + 2ρ)
)
	2

) = 0,


7(ζ ) :
(
7χb4δ2 − 2	2b37

)
	1	

2
2 = 0,


8(ζ ) : 24χ δ2	3
2b4 + 4	4

2b3 = 0.

By solving the above system, we generate the following
sets and the corresponding solutions:

Set 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = �2ρ
(
2χ δ2ρ + 8δ2	2b4 − 	2b2

)
1728χ2δ4b34	2

,

b3 = 6χb4δ2

	2
,	0 = �

12χb4δ2
,	1 = 0,	2 = 	2

ω =
8χ2δ4ρ2 − 24χ δ2κ2ρ	2b4 + 16δ4	2

2b
2
4

−2χ δ2ρ	2b2 − 	2
2b

2
2

24χb4δ2	2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(21)
where � = 2χ δ2ρ − 4δ2	2b4 − 	2b2. Unity of Equa-
tions (21), (15), (3), (10), allows extracting solution of

Equation (2):

ϑ3(x, t) =
(

�

12χb4δ2

+ 16	2a2(
4a2eδ(2ρκt+x) + χ e−δ(2ρκt+x)

)2
) 1

2

× e
i
(

−κx+ ωt
24χb4δ2	2

+θ0

)
. (22)

Set 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω =
36δ4b24

(
b24 − κ2ρb3

) + 2ρ2b23
−3b2b4(ρb3 + 3b2b4

36b24b3
,

b1 = ϒ2ρ
(
24δ2b24 + ρb3 − 3b2b4

)
1296b23b

4
4

,

	0 = − ϒ

6b3b4
,	1 = 0,	2 = 6χb4δ2

b3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

where ϒ = 12δ2b24 − ρb3 + 3b2b4. Combination of
Equation (23) with Equations (15), (3), (10) serves the
solution of Equation (2):

ϑ4(x, t) =
(

− ϒ

6b3b4

+ 96χb4δ2a2

b3
(
4a2eδ(2ρκt+x) + χ e−δ(2ρκt+x)

)2
) 1

2

× e
i
(

−κx+ ωt
36b24b3

+θ0

)
. (24)

4. Results and discussion

This part comprises various graphical representations
of Equations (17), (19), (22) and (24). Moreover, two-
dimensional graphs are added showing the effects of
someparameters in Equation (1) andEquation (2) on the
soliton dynamics for each soliton.

Figure 1 relates to the solution function in Equ-
ation (17) selecting the parameters as a = 1,ω =
−1, b2 = 1, b3 = 3, κ = 0.5, θ0 = 4, δ = 1,χ = 1. The3D
depictions of |ϑ1(x, t)|2 and Im(ϑ1(x, t)) are illustrated in
Figure 1(a,b), respectively. Figure 1(a,c) reflect a bright
soliton. Figure 1(c) is a 2D chart that indicates the wave
structure of |ϑ1(x, t)|2 as it acts to the right at t = 1, 3, 5.
The 2D illustration in 1(d) indicates the wave structures
of Im(ϑ1(x, t)) at t = 1, 3, 5.

Figure 2(a) is the 2D projection that depicts the
impact of the parameter of b2 in Equation (1) on soliton
dynamics. As seen in Figure 2(a), the amplitude of the
soliton decreases if b1 > 0 and b1 increases. Figure 2(b)
is the 2D portrayal that shows the effect of the parame-
ter of b3 in Equation (1) on soliton dynamics. As seen in
Figure 2(b), the amplitude of the soliton increases when
b3 > 0 and the value of b3 is raised. Thus, it is observed
that b2 and b3 have the inverse effect on the amplitude
of the soliton.
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Figure 1. The graphical simulations of ϑ1(x, t) in Equation (17) for a = 1,ω = −1, b2 = 1, b3 = 3, κ = 0.5, θ0 = 4, δ = 1,χ = 1.
(a) |ϑ1(x, t)|2 in 3D plot. (b) Im(ϑ1(x, t)) in 3D plot. (c) 2D views of |ϑ1(x, t)|2 and (d) 2D views of Im(ϑ1(x, t)).

Figure 2. The graphics in 2D for ϑ1(x, t) in the Equation (17) for a = 1,ω = −1, b2 = 1, b3 = 3, κ = 0.5, θ0 = 4, δ = 1,χ = 1.
(a)2D views of |ϑ1(x, t)|2 for b2 at t = 4 and (b) 2D views of |ϑ1(x, t)|2 for b3 at t = 4
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Figure 3. Diverse graphs for ϑ3(x, t) in the Equation (24) for 	2 = 0.35, a = 0.3, b2 = 2, b4 = 3.5, ρ = −0.8, δ = 0.5, θ0 =
0.5,χ = 0.2, κ = 0.2. (a) |ϑ3(x, t)|2 in 3D view. (b) |ϑ3(x, t)|2 in 2D projections. (c) The impact of b2 and (d) The impact of b4.

Figure 3 belongs to diverse graphical simulations of
ϑ3(x, t) in Equation (22). Figure 3(a) is the 3D depiction.
3D graph indicates theW-like soliton for	2 = 0.35, a =
0.3, b2 = 2, b4 = 3.5, ρ = −0.8, δ = 0.5, θ0 = 0.5,χ =
0.2, κ = 0. Figure 3(b) expresses 2D soliton profile
for t = 1, 3, 5. It is observed that the amplitude
and the W-like soliton stay during the propagation.
As the value od t is raised, the soliton also moves
towards the right. Figure 3(c) is the 2D portraiture to
depict the impact of the b2 considering the values as
−3,−2,−2, 1, 2, 3, respectively. Soliton maintains its W-
like axis, it decreases in amplitude due to the increasing
values of b2 in the middle part of the soliton, which
gives the appearance of the bright soliton, while there
is an increase in thewing parts as opening to both sides.
Figure 3(d) is the 2D graphical projection to indicate the
impact of the b4 considering the values as 1, 1.5, 2, 2.5, 3,
3.5, respectively. Soliton remains itsW-like soliton struc-
ture. While the soliton has the dark soliton structure at
b4 = 1.1, it degenerates into the W-like soliton view for
b4 > 1.1. In this context, the value of b4 = 1.1 is a criti-
cal value according to the investigated situation and the
specified parameter selection. In particular, we need to

add a few more sentences about the results acquired
in this section and the findings that can be considered
as an additional contribution to the study. The graphs
given in Figure 3, which basically reflect the W-like soli-
ton type, are unique to this form of the equation. In
other words, it is not a type of soliton directly called W-
like soliton in some studies. Because when the descrip-
tions given in Figure 3 are examined more carefully,
it is observed that this is specific to the anti-cubic law
with nonlocal form and depending on the values of the
parametersb2 andb4 coefficients (the coefficients of the
cubic and nonlocal nonlinearity terms). Again, this for-
mation does not occur directly as a W-like waveform,
but by degenerating from the dark soliton to W-like
(dark-bright-dark) soliton.

Figure 4 presents the varied simulations of ϑ4(x, t)
in Equation (24). 3D and contour projections are given
in Figure 4(a), Figure 4(b), respectively. 3D graph indi-
cates the dark soliton for a = 1, b2 = 2, b3 = 0.5, b4 =
0.5, ρ = 0.5, δ = 0.5, θ0 = 5,χ = 2, κ = −0.5. Figu-
re 4(c) is 2D soliton form for t = 1, 3, 5. When the
wave propagation of the soliton is observed, it is seen
that both the amplitude and the dark form remain
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Figure 4. Various graphs for ϑ4(x, t) in the Equation (24) for a = 1, b2 = 2, b3 = 0.5, b4 = 0.5, ρ = 0.5, δ = 0.5, θ0 = 5,χ =
2, κ = −0.5. (a) |ϑ4(x, t)|2 in 3D depiction. (b) |ϑ4(x, t)|2 in contour shape. (c) |ϑ4(x, t)|2 in 2D views. (d) The effect of b2 at t = 3. (e)
The effect of b3 at t = 3 and (f ) The effect of b4 at t = 3.

the same. But, as the value of t is raised, the soli-
ton acts to the right. Figure 4(d) shows impact of the
b2 considering the values as −2.5,−2,−1.5, 1.5, 2, 2.5,
respectively. Soliton keeps the dark soliton structure
for the values b2 > 0 but the bright soliton is obtained
for the values b2 < 0. Figure 4(e) is the 2D graphical

projection to indicate the impact of the b3 regard-
ing the values as −0.75,−0.5,−0.25, 0.25, 0.5 and 0.75,
respectively. Soliton remains its dark soliton structure
for−0.75,−0.5,−0.25, 0.25, 0.5 and 0.75. Moreover, the
soliton amplitude increases if |b3| increases. When
b3 receives the negative minimum value, the soliton
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has the original dark soliton form, while b3 gradu-
ally approaches the horizontal axis depending on its
increasing values (the dark soliton image degenerates)
and when b3 gets its maximum value (b3 = 0.75), it
has both the peak on the horizontal axis and the min-
imum amplitude. Figure 4(f) express the 2D graphical
representations indicating theeffect of theb4 taking the
values as −0.75,−0.5,−0.25, 0.25, 0.5 and 0.75 respec-
tively. Soliton keeps the dark soliton structure for the
values b4 > 0 but the bright soliton is obtained for
the values b4 < 0. In Figure 4(f), the soliton amplitude
increases as b4 increases. But, the soliton amplitude
increases as b4 decreases. In this respect, negative or
positive values of b4 result in the bright-dark transition
of the soliton.

It should be noted here that the main factors in the
selection of the above parameter are as follows. First of
all, attention was paid to ensure that there is no conflict
with the definitions and limitations of the model and
method in the selection of parameters. Oneof themwas
to note that the ϑ(ζ ) expression, which determines the
amplitude of the soliton in the transformation given by
Equation (3), must be real. In addition, various attempts
were carried out to obtain a meaningful soliton type,
and the parameter values that occurred when the pre-
sented soliton types were obtained are selected

5. Conclusion

In this work, a set of optical soliton solutions by inves-
tigating the (1+1)-dimensional NLSE having parabolic
and anti-cubic law with a weakly nonlocal nonlin-
earity have been successfully generated via the new
Kudryashov scheme. To our knowledge, the models
examined in the article have not been carried out
before. The gained results have not been reported in
the literature. In addition, unlike the studies in the lit-
erature, the effects of the parameters, which are gen-
erally included as coefficients in the model, on the
soliton dynamics were investigated and reported. For
the models utilizing NKM, diverse optical solitons have
been gained, such as bright, W-like and dark soliton
structures. We observed that NKM is an advantageous
and effective tool in deriving solitons that have a main
impact on mathematical physics. Moreover, we rely
on the results will contribute to the literature in all
these aspects. In the future, the generation of fractional,
stochastic formsof the presentedmodels andobtaining
other types of solitons through various proceduresmay
be the focus of researchers in this field.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Neslihan Ozdemir http://orcid.org/0000-0003-1649-0625

Selvi Altun http://orcid.org/0009-0005-2062-2872
Aydin Secer http://orcid.org/0000-0002-8372-2441
MuslumOzisik http://orcid.org/0000-0001-6143-5380
Mustafa Bayram http://orcid.org/0000-0002-2994-7201

References

[1] Biswas A, Milovic D, Edwards M. Mathematical theory of
dispersion-managed optical solitons. Springer Science &
Business Media; 2010.

[2] Zhao Y-H, Mathanaranjan T, Rezazadeh H, et al. New
solitary wave solutions and stability analysis for the gen-
eralized (3+ 1)-dimensional nonlinear wave equation in
liquid with gas bubbles. Res Phys. 2022;43:106083.

[3] Kivshar YS, Luther-Davies B. Dark optical solitons: physics
and applications. Phys Rep. 1998;298(2–3):81–197.

[4] Ismael HF, Younas U, Sulaiman TA, et al. Non classical
interaction aspects to a nonlinear physical model. Res
Phys. 2023;49:106520.

[5] Wu G-Z, Fang Y, Kudryashov NA, et al. Prediction of opti-
cal solitons using an improved physics-informed neural
network method with the conservation law constraint.
Chaos Solit Fractals. 2022;159:112143.

[6] AphaneM, Moshokoa SP, Alshehri HM. Quiescent optical
solitons with Kudryashov’s generalized quintuple-power
and nonlocal nonlinearity having nonlinear chromatic
dispersion: generalized temporal evolution. Ukr J Phys
Opt. 2023;24(2):105.113

[7] Zhou Q, Sonmezoglu A, Ekici M, et al. Optical solitons of
some fractional differential equations innonlinear optics.
J Mod Opt. 2017;64(21):2345–2349.

[8] Ismael HF, Sulaiman TA, Nabi HR, et al. Geometri-
cal patterns of time variable Kadomtsev–Petviashvili (i)
equation that models dynamics of waves in thin films
with high surface tension. Nonlinear Dyn. 2023;111(10):
9457–9466.

[9] Ozisik M, Secer A, Bayram M, et al. An encyclopedia
of Kudryashov’s integrability approaches applicable to
optoelectronic devices. Optik. 2022;265:169499.

[10] Zhou Q, Mirzazadeh M, Zerrad E, et al. Bright, dark, and
singular solitons in optical fibers with spatio-temporal
dispersion and spatially dependent coefficients. J Mod-
ern Opt. 2016;63(10):950–954.

[11] Ismael HF, Sulaiman TA. On the dynamics of the nonau-
tonomousmulti-soliton, multi-lumpwaves and their col-
lision phenomena to a (3+ 1)-dimensional nonlinear
model. Chaos Solit Fractals. 2023;169:113213.

[12] Ozdemir N, Esen H, Secer A, et al. Optical soliton solu-
tions to chen lee liu model by the modified extended
tanh expansion scheme. Optik. 2021;245:167643.

[13] Mathanaranjan T, Kumar D, Rezazadeh H, et al. Optical
solitons in metamaterials with third and fourth order
dispersions. Opt Quantum Electron. 2022;54(5):271.

[14] Younas U, Sulaiman T, Ismael HF, et al. The study
of nonlinear dispersive wave propagation pattern to
Sharma–Tasso–Olver–Burgers equation. Int J Mod Phys.
2023;B:2450112.

[15] Altun S, Ozisik M, Secer A, et al. Optical solitons for
Biswas–Milovic equation using the new Kudryashov’s
scheme. Optik. 2022;270:170045.

[16] Atas SS, Ismael HF, Sulaiman TA, et al. Investigation of
some nonlinear physical models: exact and approximate
solutions. Opt Quantum Electron. 2023;55(4):293.

[17] Ablowitz MJ, Biondini G, Ostrovsky LA. Optical solitons:
perspectives and applications. Chaos: Interdisc J Nonlin-
ear Sci. 2000;10(3):471–474.

http://orcid.org/0000-0003-1649-0625
http://orcid.org/0009-0005-2062-2872
http://orcid.org/0000-0002-8372-2441
http://orcid.org/0000-0001-6143-5380
http://orcid.org/0000-0002-2994-7201


JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 9

[18] Shakir AP, Sulaiman TA, Ismael HF, et al. Multiple fusion
solutions and other waves behavior to the broer-kaup-
kupershmidt system. Alex Eng J. 2023;74:559–567.

[19] Ismael HF, Nabi HR, Sulaiman TA, et al. Multiple soli-
ton and m-lump waves to a generalized b-type Kadomt-
sev–Petviashvili equation. Res Phys. 2023;48:106402.

[20] Yıldırım Y, Biswas A, Guggilla P, et al. Optical solitons in
fibre Bragg gratings with third-and fourth-order disper-
sive reflectivities. Ukr J Phys Opt. 2021;22(4):239–254.

[21] Arshad M, Seadawy AR, Lu D. Study of soliton solutions
of higher-order nonlinear Schrödinger dynamical model
with derivative non-Kerr nonlinear terms and modula-
tion instability analysis. Res Phys. 2019;13:102305.

[22] Eldidamony HA, Ahmed HM, Zaghrout AS, et al. Highly
dispersive optical solitons and other solutions in bire-
fringent fibers by using improved modified extended
tanh-function method. Optik. 2022;256:168722.

[23] Kudryashov NA. Stationary solitons of the model with
nonlinear chromatic dispersion and arbitrary refractive
index. Optik. 2022;259:168888.

[24] Biswas A, Ekici M, Sonmezoglu A, et al. Highly dispersive
optical solitonswith Kerr lawnonlinearity by f-expansion.
Optik. 2019;181:1028–1038.

[25] Mathanaranjan T, Vijayakumar D. New soliton solutions
in nano-fibers with space-time fractional derivatives.
Fractals. 2022;30(07):2250141.

[26] Elsherbeny AM, Arnous AH, Biswas A, et al. Highly dis-
persive optical solitons with four forms of self-phase
modulation. Universe. 2023;9(1):51.

[27] Ozisik M, Cinar M, Secer A, et al. Optical solitons
with Kudryashov’s sextic power-law nonlinearity. Optik.
2022;261:169202.

[28] Zayed E, Shohib R, Alngar M, et al. Optical solitons and
conservation laws associated with Kudryashov’s sextic
power-law nonlinearity of refractive index. Ukr J Phys
Opt. 22(1).

[29] Yildirim Y, Biswas A, Khan MF, et al. Highly dispersive
optical soliton perturbation with Kudryashov’s sextic-
power law of nonlinear refractive index.. Ukr J Phys Opt.
23(1);24–29.

[30] Mathanaranjan T. An effective technique for the con-
formable space-time fractional cubic-quartic nonlinear
Schrodinger equationwith different laws of nonlinearity.
Comput Methods Differ Equ. 2022;10(3):701–715.

[31] Kohl RW, Biswas A, Ekici M, et al. Highly dispersive optical
soliton perturbation with cubic–quintic–septic refrac-
tive index by semi-inverse variational principle. Optik.
2019;199:163322.

[32] Mathanaranjan T. Optical solitons and stability analysis
for the new (3+ 1)-dimensional nonlinear Schrödinger
equation. J Nonlinear Opt Phys Mater. 2023;32(02):235
0016.

[33] Adem AR, Ntsime BP, Biswas A, et al. Stationary opti-
cal solitons with nonlinear chromatic dispersion for
Lakshmanan–Porsezian–Daniel model having Kerr law
of nonlinear refractive index. Ukr J Phys Opt. 2021;22(2):
83–86.

[34] Alzahrani AK, Belic MR. Cubic-quartic optical soliton
perturbation with Lakshmanan-Porsezian-Daniel model
by semi-inverse variational principle. Ukr J Phys Opt.
2021;22:123.127

[35] Al Qarni A, Bodaqah A, Mohammed A, et al. Cubic-
quartic optical solitons for Lakshmanan-Porsezian-Daniel
equation by the improved Adomian decomposition
scheme. Ukr J Phys Opt. 2022;23(4):228–242.

[36] AA AQ, AM B, ASHF M, et al. Dark and singular
cubic–quartic optical solitons with Lakshmanan–Porse-

zian–Daniel equation by the improved Adomian decom-
position scheme.. Ukr J Phys Opt. 24(1);46–61.

[37] Yildrim Y, Biswas A, Dakova A, et al. Cubic–quartic
optical solitons having quadratic–cubic nonlinearity
by sine–Gordon equation approach.. Ukr J Phys Opt.
22(4);255–269.

[38] Zayed EM, Shohib RM, AlngarME, et al. Optical solitons in
the Sasa-Satsumamodel with multiplicative noise via itô
calculus. Ukr J Phys Opt. 2022;23(1):9–14.

[39] Biswas A, Dakova A, Khan S, et al. Cubic-quartic opti-
cal soliton perturbation with Fokas–Lenells equation by
semi-inverse variation, semicond. Phys Quantum Elec-
tron Optoelectron. 2021;24(04):431–435.

[40] YildirimY, BiswasA, KhanS, et al. Embedded solitonswith
χ (2) and χ (3) nonlinear susceptibilities, semiconductor.
PhysQuant ElectronOptoelectron. 2021;24(02):160–165.

[41] G.-G. González OG-G, Biswas AA, Yildirim Y, et al. Bright
optical solitons with polynomial law of nonlinear refrac-
tive index by Adomian decomposition scheme. Proc Est
Acad Sci. 2022;71(3):213–220.

[42] González-Gaxiola O, Biswas A, Yildirim Y, et al. Highly
dispersive optical solitons in birefringent fibres with
non) local form of nonlinear refractive index: Laplace–
Adomian decomposition. Ukr J Phys Opt. 23(2);
68–76.

[43] Kukkar A, Kumar S, Malik S, et al. Optical solitons for the
concatenation model with kurdryashov’s approaches..
Ukr J Phys Opt. 24(2);155–160.

[44] Zayed E, AlngarM, Biswas A, et al. Optical solitons in fiber
Bragg gratings with quadratic-cubic law of nonlinear
refractive index and cubic-quartic dispersive reflectivity.
Proc Est Acad Sci. 71(2);165–177.

[45] Anjan B, Jose M. V-G, Yakup Y, et al. Optical soli-
tons for the concatenation model with power-law non-
linearity: undetermined coefficients. Ukr J Phys Opt.
2023;24(3):185–192.

[46] PartohaghighiM, Yusuf A, Alshomrani AS, et al. Fractional
hyper-chaotic system with complex dynamics and high
sensitivity: applications in engineering. Int J Mod Phys.
2023;B:2450012.

[47] Yıldırım Y, Biswas A, Kara AH, et al. Optical soliton
perturbation and conservation law with Kudryashov’s
refractive index having quadrupled power-law and
dual form of generalized nonlocal nonlinearity. Optik.
2021;240:166966.

[48] Biswas A, Rezazadeh H, Mirzazadeh M, et al. Optical soli-
tons having weak non-local nonlinearity by two integra-
tion schemes. Optik. 2018;164:380–384.

[49] Triki H, Biswas A. Dark solitons for a generalized non-
linear Schrödinger equation with parabolic law and
dual-power law nonlinearities. Math Methods Appl Sci.
2011;34(8):958–962.

[50] Zhou Q, Yao D, Chen F. Analytical study of optical soli-
tons in media with Kerr and parabolic-law nonlinearities.
J Mod Opt. 2013;60(19):1652–1657.

[51] Akinyemi L, Rezazadeh H, Yao S-W, et al. Nonlinear dis-
persion in parabolic law medium and its optical solitons.
Res Phys. 2021;26:104411.

[52] Biswas A. Quasi-stationary optical solitons with parabolic
law nonlinearity. Opt Commun. 2003;216(4-6):
427–437.

[53] Biswas A, Konar S, Zerrad E. Soliton-soliton interaction
with parabolic law nonlinearity. J Electromagn Waves
Appl. 2006;20(7):927–939.

[54] ZhouQ, ZhuQ.Optical solitons inmediumwithparabolic
lawnonlinearity andhigher order dispersion.Waves Ran-
dom Complex Media. 2015;25(1):52–59.



10 N. OZDEMIR ET AL.

[55] Milović D, Biswas A. Bright and dark solitons in optical
fibers with parabolic law nonlinearity. Serb J Electr Eng.
2013;10(3):365–370.

[56] Zhou Q, Liu L, Zhang H, et al. Analytical study of
thirring optical solitons with parabolic law nonlinear-
ity and spatio-temporal dispersion. Eur Phys J Plus.
2015;130:1–6.

[57] Zhou Q, Zhu Q, Liu Y, et al. Solitons in optical metamate-
rials with parabolic law nonlinearity and spatio-temporal
dispersion. J Optoelectron Adv Mater. 2014;16(11–12):
1221–1225.

[58] Biswas A, Vega-Guzman J, Mahmood MF, et al. Optical
solitons in fiber Bragg gratings with dispersive reflec-
tivity for parabolic law nonlinearity using undetermined
coefficients. Optik. 2019;185:39–44.

[59] Seadawy AR, Ali MN, Husnine SM, et al. Conserva-
tion laws and optical solutions of the resonant nonlin-
ear Schrödinger’s equation with parabolic nonlinearity.
Optik. 2021;225:165762.

[60] Triki H, Kruglov VI. Chirped periodic and localized waves
in a weakly nonlocal media with cubic-quintic nonlinear-
ity. Chaos, Solitons & Fractals. 2021;153:111496.

[61] Zhou Q, Zhong Y, Triki H, et al. Chirped bright and kink
solitons in nonlinear optical fibers with weak nonlocal-
ity and cubic-quantic-septic nonlinearity. Chin Phys Lett.
2022;39(4):044202.

[62] HubertMB, JustinM, BetcheweG, et al. Optical solitons in
parabolic law medium with weak non-local nonlinearity
usingmodified extended direct algebraic method. optik.
2018;161:180–186.

[63] Tsoy EN. Solitons in weakly nonlocal media with
cubic-quintic nonlinearity. Phys Rev A. 2010;82(6):
063829.

[64] Yépez-Martínez H, Rezazadeh H, Souleymanou A, et al.
The extended modified method applied to optical soli-
tons solutions in birefringent fibers with weak nonlo-
cal nonlinearity and four wave mixing. Chin J Phys.
2019;58:137–150.

[65] Zanga D, Fewo SI, Tabi CB, et al. Modulational instabil-
ity in weak nonlocal nonlinear media with competing
Kerr and non-Kerr nonlinearities. Commun Nonlinear Sci
Numer Simul. 2020;80:104993.

[66] Islam W, Younis M, Rizvi STR. Optical solitons with time
fractional nonlinear Schrödinger equation and com-
peting weakly nonlocal nonlinearity. Optik. 2017;130:
562–567.

[67] Rizvi ST, Seadawy AR, Raza U. Chirped optical wave
solutions for a nonlinear model with parabolic law and
competingweakly nonlocal nonlinearities. OptQuantum
Electron. 2022;54(11):756.

[68] Messouber A, Triki H, Liu Y, et al. Chirped spatial soli-
tonsona continuous-wavebackground inweaknonlocal
media with polynomial law of nonlinearity. Phys Lett.
2023;467:128731.

[69] Chen Y-X, Xiao X. Combined soliton solutions of a (1+
1)-dimensional weakly nonlocal conformable fractional
nonlinear Schrödinger equation in the cubic–quintic
nonlinear material. Opt and Quantum Electron. 2021;53:
1–13.

[70] Biswas A, Zhou Q, Ullah MZ, et al. Perturbation theory
and optical soliton cooling with anti-cubic nonlinearity.
Optik. 2017;142:73–76.

[71] Jawad AJM, Mirzazadeh M, Zhou Q, et al. Optical soli-
tons with anti-cubic nonlinearity using three integration
schemes. Superlattices Microstruct. 2017;105:1–10.

[72] Liang J, Li J. Bifurcations and exact solutions of nonlin-
ear Schrodinger equationwith ananti-cubicnonlinearity.
System. 2018;1:6.

[73] Ekici M, Mirzazadeh M, Sonmezoglu A, et al. Optical
solitons with anti-cubic nonlinearity by extended trial
equation method. Optik. 2017;136:368–373.

[74] Krishnan E, Biswas A, Zhou Q, et al. Optical solitons
with anti-cubic nonlinearity bymappingmethods. Optik.
2018;170:520–526.

[75] Kumar S,Malik S, BiswasA, et al. Optical solitonswithgen-
eralized anti-cubic nonlinearity by lie symmetry. Optik.
2020;206:163638.

[76] Ozisik M, Secer A, Bayram M, et al. Retrieval of opti-
cal solitons with anti-cubic nonlinearity. Mathematics.
2023;11(5):1215.

[77] Zayed EM, Alngar ME, Biswas A, et al. Dark, singu-
lar and straddled optical solitons in birefringent fibers
with generalized anti–cubic nonlinearity. Phys Lett A.
2020;384(20):126417.

[78] Arnous AH, Ekici M, Biswas A, et al. Optical solitons hav-
ing anti-cubic nonlinearity with two integration architec-
tures. Chin J Phys. 2019;60:659–664.

[79] Jiang Y, Wang F, Salama SA, et al. Computational inves-
tigation on a nonlinear dispersion model with the weak
non-local nonlinearity in quantum mechanics. Res Phys.
2022;38:105583.

[80] Kong Q, Wang Q, Bang O, et al. Analytical theory for
the dark-soliton interaction in nonlocal nonlinear mate-
rials with an arbitrary degree of nonlocality. Phys Rev A.
2010;82(1):013826.

[81] Triki H, Pan A, Zhou Q. Pure-quartic solitons in presence
of weak nonlocality. Phys Lett A. 2023;459:128608.

[82] Kudryashov NA. Method for finding highly dispersive
optical solitons of nonlinear differential equations. Optik.
2020;206:163550.

[83] Sirisubtawee S, Koonprasert S, Sungnul S. New exact
solutions of the conformable space-timeSharma–Tasso–
Olver equation using two reliable methods. Symmetry.
2020;12(4):644.

[84] Zayed EM. A further improved (g′/g)-expansion method
and the extended tanh-method for finding exact solu-
tions of nonlinear pdes. WSEAS Trans Math. 2011;10(2):
56–64.


	1. Introduction
	2. Mathematical analysis
	2.1. Ordinary differential equation shape of Equation (1)
	2.2. Ordinary differential equation structure of Equation (2)

	3. Application
	3.1. The new Kudryashov method (NKM)
	3.2. Application of the NKM to Equation (1)
	3.3. Application of the NKM to Equation (2)

	4. Results and discussion
	5. Conclusion
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


