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Abstract. In this research work, we examine the Korteweg-de Vries equation (KdV), which is utilized to
formulate the propagation of water waves and occurs in different fields such as hydrodynamics waves in cold plasma
acoustic waves in harmonic crystals. This research presents two efficient computational methods based on Legendre
wavelets to solve the Korteweg-de Vries. The three-step Taylor method is first applied to the Korteweg-de Vries
equation for time discretization. Then, the Galerkin and collocation methods are used for spatial discretization.
With these approaches, bringing the approximate solutions of the Korteweg-de Vries equation turns into getting
the solution of the algebraic equation system. The solution of this system gives the Legendre wavelet coefficients.
The approximate solution can be obtained by substituting the obtained coefficients into the Legendre wavelet series
expansion. The presented wavelet methods are tested by studying different problems at the end of this study.
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1. Introduction

In this study, we present the efficient two different numerical schemes based on Legendre wavelets for solving the
following Korteweg- de Vries (KdV) equation:

ϑt + ζϑϑx + δϑxxx = 0, t > 0, (1.1)

in which ζ and δ are real constants [14]. The term ϑϑx represents the convection effect that causes steepening of
the waveform, and the term ϑxxx means the dispersion effect that propagates the waveform [37]. The KdV equation
is usually used to model the waves on shallow water surfaces. Due to the competition of dispersion and convection
effects, a solitary wave is formed. In solitary waves, solitons are explained as localized waves propagating without
changing their shape and velocity characteristics and are stable against reciprocal collisions [8]. This equation has
enormous implementations in engineering and physical sciences. This research paper suggests two efficient numerical
methods for solving the KdV equation.
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Many analytic and numerical schemes have been studied and formulated to solve the KdV equation in the literature.
These methods can be sorted as follows; Kumar and Mehra [4] used the wavelet Galerkin method. Oruc et al.presented
the Haar wavelet method [25]. Desong et al. used a combination of finite difference and sinc collocation method [13].
A heat balance integral method was presented by Kutluay et al. [15]. Hepson and Dag [28] developed the exponential
cubic B-spline algorithm. Soliman proposed a collocation solution of the KdV equation utilizing septic B-splines [34].
The Bubnov-Galerkin method with quadratic spline finite element Gardner was described for solving the KdV equation
by Gardner et al. [10]. A Legendre–Petrov–Galerkin method was designed to solve the KdV equation by Ma and
Sun [16]. Akdi and Sedra [1] gave the Adomian decomposition method for the numerical solution of the KdV equation.
Yan and Shu presented a local discontinuous Galerkin method for solving KdV type equations [38]. A cubic B-spline
Taylor–Galerkin finite element method was employed to solve the KdV equation by Canivar et al. [5]. Dag and Dereli
used the meshless method based on the collocation with radial basis functions for solving the KdV equation [7].
Alotaibi and Ismail produced numerical schemes to examine the KdV equation via Pade approximation for space
direction, trapezoidal, and implicit mid-point rule in the time direction [2], Hafiz and Andallah discussed the numerical
solution of the KdV equation using Explicit finite difference schemes [11].

Wavelets presented by Daubechies have been utilized to get solutions to various problems associated with other
fields of engineering and applied sciences. Since the beginning of 1990s, analytical and numerical methods based on
wavelets have been applied to examine the different forms of differential equations. Because the Daubechies wavelet
family has implicit expression, it is impossible to get the exact differentiation or integration of Daubechies wavelets.
This situation is a drawback for Daubechies wavelet family. So, numerical wavelet methods based on orthogonal
polynomials have been improved to solve many problems in the literature. Up to now, a huge of papers have focused on
this topic. Some of these methods are the Gegenbauer wavelets methods [6,26,27,31], the Legendre wavelet operational
matrix method [33], the Münz wavelets collocation method [3], the Jacobi wavelets method [32], wavelet-Taylor-
Galerkin methods [4], Genocchi wavelet method [9] and the discontinuous Legendre wavelet Galerkin method [39].

This article concern with the three-step Legendre wavelet collocation method and the three-step Legendre wavelet
Galerkin method to estimate the solution the KdV equation in eq. (1.1). In fact, these schemes’ idea is based on
approximating all existed functions in the KdV equation via Legendre wavelets and using ordinary operational matrice.
Until now, these methods have been few employed to acquire the numerical solution of the nonlinear partial differential
equations. By using the presented methods, the mentioned problem in eq.(1.1) is transformed into a nonlinear system
of equations which can be solved via Galerkin and collocation methods. The system can be easily solved with the
proper numerical methods. These methods do not increase the difficulties for higher-dimensional problems and can be
easily employed to solve different high- dimensions problems. The methods are easy to implement for nonlinear partial
differential equations, and these techniques provide numerical solutions for nonlinear partial differential equations.

The rest parts of this paper are organized as follows: we present the Legendre wavelets, the function approximation
with the Legendre wavelets, and the operational matrix of derivative in Section 2. Section 3 represents the description
of the Galerkin method and the collocation method and, the application of these methods to the KdV equation. Further-
more, the produced solutions are offered in Section 4. Proper parameter values demonstrate 2D graphs in this section.
Finally, the conclusion part is given in Section 5.

2. LegendreWavelets

Wavelets form a family of functions consisting of the dilation and translation of a single function, called mother
wavelet ψ(x). Wavelets are expressed as:

ψp,r (x) =
1√
|p|
ψ

(
x − r

p

)
, p, r ∈ R, p , 0,

where p and r are the dilation and translation parameters, respectively. By limiting p and r to obtain discrete values
as:p = p−k

0 , r = nr0 p−k
0 , where p0 > 1, r0 > 0 and k, n ∈ N, we acquire the following discrete wavelets:

ψk,n(x) = (p0)
k
2 ψ

(
pk

0x − nr0

)
,

in which an orthogonal basis of L2 (R) is formed. If p0 = 2 and r0 = 1, then ψk,n forms an orthonormal basis.
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Legendre wavelets are expressed on the interval [0, 1) by:

ψn,m (x) =


√

m + 1
2 2

k
2 Lm

(
2k x − n̂

)
, n̂−1

2k ≤ x < n̂+1
2k

0, elsewhere
,

where k = 1, 2, 3, ..., is the level of resolution, n̂ = 2n − 1 for n = 1, 2, 3, ..., 2k−1 is the translation parameter, and

m = 0, 1, 2, ...,M − 1 is the order of the Legendre polynomials, M > 0. The coefficient
√

m + 1
2 is for orthonormality.

Legendre wavelets are orthogonal on [0, 1) with respect to the weight function w(x) = 1.
Here, Lm(x) are Legendre polynomials of order m. These polynomials are identified on the interval [−1, 1], and can be
calculated from the following formulas:

L0(x) = 1, L1(x) = 2x,
Ln+1(x) =

(
2n+1
n+1

)
xLn(x) −

(
n

n+1

)
Ln−1(x), n = 1, 2, 3, ...

2.1. Function Approximation. A function ϑ(x) ∈ L2 [0, 1)can be expressed in terms of Legendre wavelets as:

ϑ (x) =
∞∑

l=0

∞∑
m=0

almψlm(x), (2.1)

in which almvalues are the coefficients of wavelets, and these wavelet coefficients are computed with the inner product

alm = ⟨ϑ (x) , ψlm(x)⟩ .

If the infinite series expansion in Eq. (2.1) is truncated for an approximate solution, Eq. (2.1) can be expressed as:

ϑ (x) =
2k−1∑
l=1

M−1∑
m=0

almψlm (x) = ATΨ (x) , (2.2)

in which the matrices Ψ (x) and A are of order 2k−1M × 1. Eq. (2.2) can be rewritten as:

v(x) =
m̃∑

j=1

a jψ j (x) ,

in which m̃ =
(
2k−1M

)
, A = [a1, a2, ..., am̃]T ,Ψ (x) =

[
ψ1 (x) , ..., ψm̃ (x)

]T , and the index j can be calculated by the aid
of the relation j = M (n − 1) + m + 1.

2.2. Operational Matrix of Derivatives.

Theorem 2.1. Let Ψ(x) be the Legendre wavelets vector. The derivative of Ψ(x) satisfies the following equation:

d
dx
Ψ (x) = DΨ (x) ,

where D is an operational matrix of derivative having order 2k−1M. D is defined as

D =



θ 0 0 · · · 0
0 θ 0 · · · 0
0 0 θ · · · 0
...
0

...
0

...
0

. . .
...

· · · θ


,

in which θ is a matrix consisting of qi, j elements expressed as follows:

qi, j =


2k+1( j+γ−1)√

( j−1+γ)Γ( j)Γ(i−1+2γ)
(i−1+γ)Γ(i)Γ( j−1+2γ)

, j = 1, 2, . . . , i − 1 , i = 2, 3, . . . ,M , and (i + j) odd

0, otherwise,

where γ = 1
2 [36].
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The operational Matrix of nth order derivative can be expressed as:
dn

dxnΨ(x) = DnΨ (x) . (2.3)

3. Description of the Numerical Schemes

In this method, we first examine the nonlinear partial differential equation (NPDE) of the following form

ϑt = Lϑ + N f (ϑ), (3.1)

with the initial condition
ϑ(x, 0) = ϑ0(x),

in which Lϑ is the linear part of Eq. (3.1), and N f (ϑ) that f (ϑ) is a nonlinear function is the nonlinear part of Eq. (3.1).
When ϑ(t) is applied a Taylor series expansion in time, we obtain

ϑ(t + ∆t) = ϑ(t) + ∆t
∂ϑ(t)
∂t
+
∆t2

2
∂2ϑ(t)
∂t2 +

∆t3

6
∂2ϑ(t)
∂t2 + O(∆t4). (3.2)

Using the equation (3.2) as an approximation to third-order accuracy, the three-step method is expressed as [35]:

ϑ
(
t + ∆t

3

)
= ϑ(t) + ∆t

3
∂ϑ(t)
∂t ,

ϑ
(
t + ∆t

2

)
= ϑ(t) + ∆t

2
∂ϑ(t+ ∆t

3 )
∂t ,

ϑ(t,∆t) = ϑ(t) + ∆t ∂ϑ(t+ ∆t
2 )

∂t .

(3.3)

In numerical schemes, we apply the Legendre wavelet Galerkin method and the Legendre wavelet collocation method
for spatial discretization of equation (3.3).

3.1. Time Discretization. Consider the KdV equation with initial condition

ϑ(x, 0) = ϑ0(x).

Assume that r ≥ 0, ∆t is defined the time step such that tr = r∆t, r = 0, 1, ...,Rt and ϑ(x, tr) = ϑr. We initiate the
numerical methods with the discretization of the time employing the three-step method presented in Eq. (3.3),

ϑr+1/3 = ϑr + ∆t
3

(
−ζϑrϑr

x − δϑ
r
xxx

)
,

ϑr+1/2 = ϑr + ∆t
2

(
−ζϑr+1/3ϑr+1/3

x − δϑr+1/3
xxx

)
,

ϑr+1 = ϑr + ∆t
(
−ζϑr+1/2ϑr+1/2

x − δϑr+1/2
xxx

)
.

(3.4)

Here, ϑr+1/3, ϑr+1/2 and ϑr+1 are the obtained solutions at time level
(
tr + ∆t

3

)
,
(
tr + ∆t

2

)
and (tr + ∆t), respectively.

3.2. Spatial Discretization for Legendre Wavelet Galerkin Method (LWGM). In this section, Legendre wavelets
are used to the spatial derivatives of ϑ(x, t), then the Galerkin method is employed.
The unknown solution ϑ (x, t) can be expressed by Legendre wavelets as:

ϑ(x, tr) ≈ ϑr =

2k−1∑
l=0

M∑
m=0

cr
lmψlm =

⌢
m∑

j=1

cr
jψ j(x) = (Cr)T

Ψ(x). (3.5)

Here, the coefficient vector Cris calculated at the time tr. Thus, the numerical solution at the time tr+1/3 is as follows:

ϑr+ 1
3 =

⌢
m∑

j=1

cr+1/3
j ψ j(x) =

(
Cr+ 1

3

)T
Ψ(x). (3.6)

By substituting Eq. (3.6) into the first equation of Eq. (3.4), we get

ϑr+ 1
3 = ϑr +

∆t
3

(
−ζ (ϑ)r

(
∂ϑ

∂x

)r

− δ

(
∂3ϑ

∂x3

)r)
. (3.7)

Applying the operational Matrix of derivative for ϑx =
∂ϑ
∂x ,ϑxxx =

∂3ϑ
∂x3 and Eq. (2.3), we get the following equations.

∂ϑ

∂x
(x, tr) =

2k−1∑
l=0

M∑
m=0

cr
lm
∂ψlm(x)
∂x

= (Cr)T DΨ(x) (3.8)
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and
∂3ϑ

∂x3 (x, tr) =
2k−1∑
l=0

M∑
m=0

cr
lm
∂3ψlm(x)
∂x3 = (Cr)T D3Ψ(x). (3.9)

By putting Equations (3.5), (3.6), (3.8) and (3.9) into Eq. (3.7) , we get(
Cr+ 1

3

)T
Ψ(x) = (Cr)T

Ψ(x) +
∆t
3

(
−ζ

(
(Cr)T

Ψ(x)
)
.
(
(Cr)T DΨ(x)

)
− δ (Cr)T D3Ψ(x)

)
. (3.10)

When we take the initial condition firstly, we obtain

ϑ0(x) = ϑ(x, t0) = ϑ0 =
(
C0

)T
Ψ(x).

When we perform the inner product from both sides of Eq. (3.10) with
{
ψ j

}⌢m
j=1

as in the Galerkin method, we acquire

a system of nonlinear algebraic equations with 2k−1M unknown variables, c
r+ 1

3
j . Solving this system, we obtain Cr+( 1

3 ).

To get the vectors Cr+( 1
2 ) and Cr+1, the resembling procedure is employed to the other equations in Eq. (3.4). The Cr+1

is the vector coefficient in the numerical solution of ϑ(x, tr) each step for r = 0, 1, 2, 3, . . ..

3.3. Spatial Discretization for the Legendre Wavelet Collocation Method (LWCM). In this section, Legendre
wavelets are used to the spatial derivatives of ϑ(x, t), then the collocation method is employed.
The unknown solution can be expanded by Legendre waveletes as:

ϑ(x, tr) ≈ ϑr =

2k−1∑
l=0

M∑
m=0

cr
lmψlm =

⌢
m∑

j=1

cr
jψ j(x) = (Cr)T

Ψ(x). (3.11)

Here, the coefficient vector Cris calculated at time tr. Thus, the numerical solution at time tr+1/3 is as follows:

ϑr+ 1
3 =

⌢
m∑

j=1

cr+1/3
j ψ j(x) =

(
Cr+ 1

3

)T
Ψ(x). (3.12)

By substituting Eq. (3.12) into the first equation of Eq. (3.4), we get

ϑr+ 1
3 = ϑr +

∆t
3

(
−ζ (ϑ)r

(
∂ϑ

∂x

)r

− δ

(
∂3ϑ

∂x3

)r)
. (3.13)

Applying the operational Matrix of derivative for ϑx =
∂ϑ
∂x , ϑxxx =

∂3ϑ
∂x3 and Eq. (2.3), we get

∂ϑ

∂x
(x, tr) =

2k−1∑
l=0

M∑
m=0

cr
lm
∂ψlm(x)
∂x

= (Cr)T DΨ(x) (3.14)

and
∂3ϑ

∂x3 (x, tr) =
2k−1∑
l=0

M∑
m=0

cr
lm
∂3ψlm(x)
∂x3 = (Cr)T D3Ψ(x). (3.15)

By putting Equations (3.11), (3.12), (3.14) and (3.15) into Eq. (3.13) , we get(
Cr+ 1

3

)T
Ψ(x) = (Cr)T

Ψ(x) +
∆t
3

(
−ζ

(
(Cr)T

Ψ(x)
)
.
(
(Cr)T DΨ(x)

)
− δ (Cr)T D3Ψ(x)

)
. (3.16)

When we take the initial condition firstly, we obtain

ϑ0(x) = ϑ(x, t0) = ϑ0 =
(
C0

)T
Ψ(x).

By taking the collocation points as:

x j =
2 j − 1

2
⌢
m

, j = 1, 2, ...,
⌢
m,

and by putting the collocation points into Eq. (3.16), we acquire a system of algebraic equations with 2k−1M unknown

variables, c
r+ 1

3
j . Solving this system, the vector coefficient Cr+( 1

3 )is acquired. To find the vectors Cr+( 1
2 ) and Cr+1, the



N. Ozdemir, A. Secer, Turk. J. Math. Comput. Sci., 14(1)(2022), 44–55 49

resembling procedure is employed for the other equations in Eq. (3.4), respectively. The solution Cr+1 is the vector
coefficient for v(x, tr) in each step for r = 0, 1, 2, 3, . . ..

4. Illustrative Test Problems

In the present section, the numerical results on two examples are reported to confirm theapplicability, accuracy and
efficiency of the presented methods. The precision of the presented methods are checked by the L∞-error [17–24, 29,
30].

Example 4.1. As a first case, Eq. (1.1) is considered for ζ = −6 and δ = 1. The exact solution of the problem is [9]

ϑ (x, t) =
1
6

(
x − 1
1 − t

)
.

We have computed the algorithms with parameters k = 2 and M = 3. Comparisons between the exact and numerical
solutions at some points are tabulated in Tab. 1 for different values ∆t.

Table 1. Comparison of absolute errors for Example 1
∆t Time t LWGM LWCM

0.1 4.9800 × 10−8 4.7700 × 10−8

0.005 0.3 3.1790 × 10−7 3.0710 × 10−7

0.5 1.4531 × 10−6 1.4094 × 10−6

0.1 1.9840 × 10−7 1.9790 × 10−7

0.01 0.3 1.2710 × 10−6 1.2611 × 10−6

0.5 5.8629 × 10−6 5.8336 × 10−6

Figure 1. The exact and numerical solutions of Example 1 at t = 0.1 for ∆t = 0.001, k = 2and M = 9.
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Figure 2. The exact and numerical solutions of Example 1 at t = 0.1 for ∆t = 0.001, k = 2and M = 9.

Figure 3. Numerical illustrations with LWGM for ∆t = 0.001

Example 4.2. In this example, we take into account Eq. (1.1) with ζ = 1 and δ = 0.0013020833. The exact solution
is [39]

ϑ (x, t) = 3c sec h2
(√

c
4δ

(x − ct)
)
.
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We have computed the algorithm with parameters k = 2 and M = 5. Tab. 2 and Tab.3 show comparison of the exact
and numerical solutions at some points for different values ∆t.

Table 2. The absolute errors for Example 2
∆t c t LWGM

0.02 2.3832858 × 10−3

0.04 3.81444275 × 10−3

0.005 1
9 0.06 4.98929151 × 10−3

0.08 6.18301202 × 10−3

0.1 7.39568769 × 10−3

0.02 2.92528788 × 10−2

0.04 3.44036171 × 10−2

0.005 1
5 0.06 4.01002000 × 10−2

0.08 4.63078563 × 10−2

0.1 5.29861363 × 10−2

Table 3. The absolute errors for Example 2
∆t c t LWGM

0.02 6.78696573 × 10−3

0.04 3.81443942 × 10−3

0.001 1
9 0.06 4.98928615 × 10−3

0.08 6.18300455 × 10−3

0.1 7.39567695 × 10−3

0.02 2.92528622 × 10−2

0.04 3.44035845 × 10−2

0.001 1
5 0.06 4.01001489 × 10−2

0.08 4.63077843 × 10−2

0.1 5.29861820 × 10−2

Figure 4. The exact and numerical solutions of Example 2 at t = 0.5 for ∆t = 0.005and c = 1
9
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Figure 5. Numerical illustrations with LWGM for c = 1
9 and ∆t = 0.005

Figure 6. The exact and numerical solutions of Example 2 at t = 0.1 for k = 2,M = 9,∆t = 0.001and
c = 1

5
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Figure 7. Numerical illustrations with LWGM for c = 1
5 and ∆t = 0.001

For diverse values of c and ∆t, the physical behaviors of exact and numerical solutions obtained using the presented
numerical algorithms at different times are depicted in fig. 4, fig.5, fig. 6 and fig. 7, respectively.

5. Conclusion

In this paper, the Kdv equation was numerically solved by using the presented Legendre wavelet methods. The time
discretization is employed in the solution procedures before the spatial discretization. Then, the spatial discretization
is performed by Legendre wavelets. Therefore, a fully discrete scheme is acquired. Solving by the obtained discrete
scheme, an approximate solution is obtained. To exhibit the accuracy and efficienct of the presented methods, two test
problems were examined. It is seen that the numerical results are in good agreement with the exact solutions. All of
the calculations of the presented methods were executed successfully by MAPLE. Consequently, it is manifestly seen
that the LWCM is more fast and effective method than the LWGM and, the presented methods construct the acceptable
results for the numerical solution of the KdV equation. As the next step, the presented methods can be employed
to acquire the approximation solution of a partial differential equation with different nonlinearity, partial differential
equations, and fractional partial differential equations.
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