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Abstract. In this study, firstly, we will present some properties of hyperbolic numbers. Then, we will intro-
duce hyperbolic matrices, which are matrices with hyperbolic number entries. Additionally, we will examine the
algebraic properties of these matrices and reveal its difference from other matrix structures such as real, dual, and
complex matrices. As a result of comparing the results found in this work with real, dual, and complex matrices, it
will be revealed that there are similarities in additive properties and differences in some multiplicative properties.
Finally, we will define some special hyperbolic matrices and give their properties and relations with real matrices.
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1. Introduction

Hyperbolic numbers are an extension of real numbers which can be defined as

H = R[h] = {x0 + x1h : x0, x1 ∈ R,h2 = 1,h < R}.

In the literature, these numbers are also called split-complex numbers, double numbers, or perplex numbers. Hy-
perbolic numbers are being studied at increasing popularity by many researchers because of their substantial algebraic
structures and properties [2, 6, 8]. Beauregard and Suryanarayan examined the Pythagorean triples in terms of hyper-
bolic numbers [3]. Gutin has studied the matrix decomposition over hyperbolic numbers [7]. Motter and Rosa studied
Calculus on hyperbolic numbers [9]. Studies on matrices, which have been examined with different number systems
in the literature, can be seen in [1, 4, 5, 10, 12].

For every h1 = x0 + x1h and h2 = y0 + y1h hyperbolic numbers, equality, addition and multiplication are defined by

h1 = h2 iff x0 = y0 and x1 = y1,

h1 + h2 = (x0 + y0) + (x1 + y1)h,
h1h2 = (x0y0 + x1y1) + (x0y1 + x1y0)h,
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respectively. The hyperbolic conjugation of a hyperbolic number h = x0 + x1h is defined by h = x0 − x1h. The set of
hyperbolic numbers is a commutative, associative ring, and two-dimensional vector space over the real numbers. The
set of these numbers also corresponds to R1,0 Clifford algebra [9, 11].

Hyperbolic number can be written as h = x0 + x1h by using the standard base {1, h}. Moreover, there is another
base {h+,h−} which is called idempotent base regarding with isotropic line which separates the hyperbolic plane. Let
h+ = 1

2 (1 + h), h− = 1
2 (1 − h), and x+ = x0 + x1, x− = x0 − x1, then every hyperbolic number h can be expressed with

the help of idempotent base as h = x+h+ + x−h−. Moreover, the following statements satisfy;

(1) h2
+ = h+, h2

− = h−,
(2) h+h− = 0,
(3) hh+ = x+h+,
(4) hh− = x+h− , [11].

The powers of hyperbolic numbers can be calculated easily using idempotent bases. Indeed, for every h ∈ H and
k ∈ R, we have

hk = (h+x+ + h−x−)k = (h+)k(x+)k + (h−)k(x−)k = (h+)k x+ + (h−)k x−.

Furthermore, it can be defined as a function f (h) = f (h+)x+ f (h−)x− , [11].

Example 1.1. Let f (h) = sin(h) and h = x0 + x1h, then

f (h) = sin(h) = sin(x0 + x1h)

= sin(x0 + x1)
1
2

(1 + h) + sin(x0 − x1)
1
2

(1 − h)

= sin(x0)cos(x1) + sin(x1)cos(x0)h.

Moreover, hyperbolic numbers provide the following expression√
x0 + x1h =

1
2

[(
√

x0 + x1 +
√

x0 − x1) + (
√

x0 + x1 −
√

x0 − x1)h]

which was given by G. Sobczyk [11]. For further information about hyperbolic numbers and related works, we can
refer to reader [11, 13].

The presentation of the rest of this study is planned as follows. In section 2, we will define hyperbolic matrices
using the hyperbolic numbers, and their fundamental properties such as matrix operations, the inverse of hyperbolic
matrices, and the transpose of these matrices. In section 3, some special hyperbolic matrices will be introduced with
their properties. In the final section, some regarding comments are presented.

2. HyperbolicMatrices

Let Rm
n be the set of all m × n real matrices. It is well known that Rm

n is a vector space with ordinary matrix addition
and the matrix multiplication by a scalar over R. Let Hm

n be the set of m × n matrices with hyperbolic number entries.
A hyperbolic matrix can be shown as follows:

Â =


a11 + ha∗11 a12 + ha∗12 . . . a1n + ha∗1n
a21 + ha∗21 a22 + ha∗22 . . . a2n + ha∗2n
...

...
. . .

...
am1 + ha∗m1 am2 + ha∗m2 . . . amn + ha∗mn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 + h


a∗11 a∗12 . . . a∗1n
a∗21 a∗22 . . . a∗2n
...

...
. . .

...
a∗m1 a∗m2 . . . a∗mn


= A + hA∗,

where A and A∗ are m × n real matrices. Note that every hyperbolic matrix can be written as a combination of two real
matrices. Thus, the set of hyperbolic matrices can be given

H = {Â = A + hA∗ : A, A∗ ∈ Rm
n ,h

2 = 1,h < R}.

For instance,

Â =
[

1 + h 2 − h −7h
h 5 + 2h 4 − h

]
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is a hyperbolic matrix and it can be written as

Â =
[

1 2 0
0 5 4

]
+ h
[

1 −1 −7
1 2 −1

]
.

Definition 2.1. Some special types of matrices can be given as follows:
(1) Matrices that include just one column(line) are called column(line) hyperbolic matrices.
(2) If all entries of the matrix are 0, then it is called as zero hyperbolic matrix and it is shown as 0H.
(3) If the number of line equals the number of columns of a hyperbolic matrix, that is n × n type, then the matrix

is called square hyperbolic matrix.
(4) For square hyperbolic matrices in which all the entries on the diagonal are equals to 1 and others are 0 called

unit hyperbolic matrices and denoted by IH. It can be easily seen the unit hyperbolic matrix and the unit real
matrix are equal. Moreover, for all Â ∈ Hn

n, IH · Â = Â · IH = Â.

Example 2.2. Â = [1 + 3h 5 − 2h 7 + h] is a 1 × 3 line matrix.

Definition 2.3. Equality, addition, and multiplication by a scalar are defined as follows. Let Â = [ai j + ha∗i j] and
B̂ = [bi j + hb∗i j] be two m × n hyperbolic matrices and λ ∈ H be a scalar.

(1) If ai j + ha∗i j = bi j + hb∗i j for all i and j, then these hyperbolic matrices are equal.
(2) The sum of Â and B̂ is

Â + B̂ = [(ai j + bi j) + h(a∗i j + b∗i j)] = [ai j + bi j] + h[a∗i j + b∗i j].

(3) The product of a matrix by a scalar is

λÂ = [λ(ai j + ha∗i j)] = [λai j + hλa∗i j].

Example 2.4. For the following matrices Â and B̂,

Â =

 5 − h 2 − h −7h
h 1 − 2h 8 − h

3 − h −3h 9 + 2h

 , B̂ =

 3 + 4h h 2 − 3h
3 4 + 3h 3 + 2h

1 + h 5 + h 4h


the sum of these matrices is

Â + B̂ =

 8 + 3h 2 2 − 10h
3 + h 5 + h 11 + h

4 5 − 2h 9 + 6h

 .
Theorem 2.5. Let Â, B̂, Ĉ ∈ Hm

n be hyperbolic matrices and λ1, λ2 ∈ H be hyperbolic numbers, then the following
properties are satisfied:

(1) Â + B̂ = B̂ + Â,
(2) Â + (B̂ + Ĉ) = (Â + B̂) + Ĉ,
(3) Â + 0H = Â,
(4) λ1(Â + B̂) = λ1Â + λ1B̂,
(5) (λ1 + λ2)Â = λ1Â + λ2Â,
(6) (λ1.λ2)Â = λ1(λ2Â),
(7) The additive inverse of Â = A + hA∗ is −Â = −A − hA∗.

Proof. Let Â = A + hA∗, B̂ = B + hB∗, and Ĉ = C + hC∗.
(1) Â + B̂ = A + hA∗ + B + hB∗ = (A + B) + h(A∗ + B∗) = (B + A) + h(B∗ + A∗) = B + hB∗ + A + hA∗ = B̂ + Â.
(2) Â + (B̂ + Ĉ) = A + hA∗ + (B + hB∗ +C + hC∗) = (A + hA∗ + B + hB∗) +C + hC∗ = (Â + B̂) + Ĉ.
(3) Â + 0H = A + hA∗ + 0 + h0 = (A + 0) + h(A∗ + 0) = A + hA∗ = Â.
(4) λ1(Â + B̂) = λ1(A + hA∗ + B + hB∗) = λ1(A + hA∗) + λ1(B + hB∗) = λ1Â + λ1B̂.
(5) (λ1 + λ2)Â = (λ1 + λ2)(A + hA∗) = λ1(A + hA∗) + λ2(A + hA∗) = λ1Â + λ2Â.
(6) (λ1.λ2)Â = (λ1.λ2)(A + hA∗) = λ1.(λ2(A + hA∗)) = λ1(λ2Â).
(7) (A + hA∗) + (−A − hA∗) = (A − A) + h(A∗ − A∗) = 0H.

□
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Definition 2.6. Let Â = [ai j + ha∗i j] ∈ H
m
p , B̂ = [bi j + hb∗i j] ∈ H

p
n be two hyperbolic matrices, then multiplication of

these matrices is

Â.B̂ =

ci j =

p∑
k=1

(aik + ha∗ik)(bk j + hb∗k j)


m×n

=

ci j =

p∑
k=1

(aikbk j + a∗ikb∗k j + h(aikb∗k j + a∗ikbk j)


m×n

.

If we represent these matrices as a combination of two real matrices Â = A+ hA∗ and B̂ = B+ hB∗, then we can obtain
the multiplication Â.B̂ in the following form

Â.B̂ = (A.B + A∗B∗) + h(A.B∗ + A∗B).

Example 2.7. For the following matrices Â and B̂,

Â =
[

3 + h 2 + 5h
3 − h 6 + h

]
, B̂ =

[
−1 + 5h 3
4 − 2h 3 − 4h

]
the multiplication of these matrices is

ÂB̂ =
[

30h −5 + 10h
14 + 8h 23 − 24h

]
.

Theorem 2.8. The following properties are provided:
(1) If Â ∈ Hm

p , B̂ ∈ Hp
n , Ĉ ∈ Hn

r , then Â(B̂Ĉ) = (ÂB̂)Ĉ.
(2) If Â ∈ Hm

p , B̂, Ĉ ∈ Hp
n , then Â(B̂ + Ĉ) = ÂB̂ + ÂĈ.

(3) If Â, B̂ ∈ Hm
p , Ĉ ∈ Hp

n , then (Â + B̂)Ĉ = ÂĈ + B̂Ĉ.
(4) If λ ∈ R, Â, ∈ Hm

p , B̂ ∈ Hp
n , then λ(ÂB̂) = (λÂ)B̂ = Â(λB̂).

Proof. Straightforward. □

Corollary 2.9. The set of Hn
n is a ring with matrix addition and matrix multiplication.

Definition 2.10. If there is a hyperbolic matrix Ĉ satisfying the equation ÂĈ = ĈÂ = I, then Ĉ is called the inverse of
Â, and additionally Â is called an invertible hyperbolic matrix.

Theorem 2.11. If A and A∗ are two real n × n invertible matrices, then inverse of the matrix Â = A + hA∗ is

Â−1 = (A − A∗A−1A∗)−1 + h(A∗ − A(A∗)−1A)−1.

Proof. Since the multiplication of matrices is not commutative, the equation must be provided from both the right and
the left sides. Let C + hC∗ be the inverse of the matrix Â = A + hA∗, then

(A + hA∗)(C + hC∗) = I,
(AC + A∗C∗) + h(AC∗ + A∗C) = I + h0

in order to obtain this equality, AC + A∗C∗ = I and AC∗ + A∗C = 0 equations must be provided. Thus, it can be seen
that C = A−1 − A−1A∗C∗ and C = −(A∗)−1AC∗. From last two equation, we have

A−1 − A−1A∗C∗ = −(A∗)−1AC∗

A−1A∗C∗ − (A∗)−1AC∗ = A−1

(A−1A∗ − (A∗)−1A)C∗ = A−1

C∗ = (A∗ − A(A∗)−1A)−1.

Similarly, from equations AC+A∗C∗ = I and AC∗+A∗C = 0, we can obtain C∗ = (A∗)−1−(A∗)−1AC and C∗ = −A−1A∗C.
Then, we get

(A∗)−1 − (A∗)−1AC = −A−1A∗C

(A∗)−1AC − A−1A∗C = (A∗)−1

((A∗)−1A − A−1A∗)C = (A∗)−1

C = (A − A∗A−1A∗)−1.
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When we apply similar steps from the equation (C + hC∗)(A + hA∗) = I, we get same C and C∗. □

Definition 2.12. The sum of diagonal elements of a square hyperbolic matrix Â is called the trace of Â and denoted by
trÂ. Let Â = A + hA∗, then

trÂ =
n∑

i=1

(aii + ha∗ii) = tr(A) + htr(A∗).

Theorem 2.13. The following properties are satisfied;
(1) Let Â, B̂ ∈ Hn

n be hyperbolic matrices, then tr(Â + B̂) = tr(Â) + tr(B̂).
(2) Let Â ∈ Hn

n be a hyperbolic matrix and λ ∈ H be a hyperbolic number, then tr(λÂ) = λtr(Â).
(3) Let Â, B̂ ∈ Hn

n, then tr(ÂB̂) = tr(B̂Â).

Proof. Let Â = [ai j + ha∗i j], B̂ = [bi j + hb∗i j] and λ ∈ H.

(1) tr(Â + B̂) =
n∑

i=1

(aii + ha∗ii + bii + hb∗ii) =
n∑

i=1

(aii + ha∗ii) +
n∑

i=1

(bii + hb∗ii) = tr(Â) + tr(B̂).

(2) tr(λÂ) =
n∑

i=1

(λ(aii + ha∗ii)) = λ
n∑

i=1

(aii + ha∗ii) = λtr(Â).

(3) For A,C ∈ Rn
n, it is well known that tr(AC) = tr(CA). With this feature, the desired equality can be obtained

by using the properties of hyperbolic matrices.
□

Theorem 2.14. Let Â ∈ Hm
p , Ĉ ∈ Hp

n , then
(
Â.Ĉ
)T
= ĈT .ÂT .

Proof. Let Â = A + hA∗, Ĉ = C + hC∗. We know that (AC)T = CT AT for A,C ∈ Rn
n.(

Â.Ĉ
)T
= (AC + h(AC∗ + A∗C))T

= (AC)T + h(AC∗ + A∗C)T

= (AC)T + h((AC∗)T + (A∗C)T )

= CT AT + h((C∗)T AT +CT (A∗)T ) = ĈT .ÂT .

□

3. Some Special HyperbolicMatrices

In this section, we define special types of hyperbolic matrices. They are periodic hyperbolic matrices, symmetric
hyperbolic matrices, skew-symmetric hyperbolic matrices, idempotent hyperbolic matrices, Hermitian hyperbolic ma-
trices, skew Hermitian hyperbolic matrices, and unitary hyperbolic matrices. Thus, the difference between hyperbolic
matrices and other matrix structures is clearly observed.

Definition 3.1. Let Â be a square hyperbolic matrix. If Â2 = Â, then Â is called idempotent hyperbolic matrix.

Theorem 3.2. If Â = A + hA∗ is an idempotent hyperbolic matrix, then A + A∗ is a real idempotent matrix.

Proof. Let Â be an idempotent hyperbolic matrix, then

(A2 + (A∗)2) + h(AA∗ + A∗A) = A + hA∗

From last equation, we have A2 + (A∗)2 = A and AA∗ + A∗A = A∗. If we add these two equations side by side, then

A2 + AA∗ + (A∗)2 + A∗A = A + A∗

A(A + A∗) + A∗(A∗ + A) = A + A∗

(A + A∗)2 = A + A∗.

□

Definition 3.3. A square hyperbolic matrix Â is called a periodic hyperbolic matrix if Âp+1 = Â. Also, p is called
period of the matrix.
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Definition 3.4. A square hyperbolic matrix Â is called a nilpotent hyperbolic matrix if Âq = 0. Also, q is called index
of the matrix.

Definition 3.5. A square hyperbolic matrix Â is called a symmetric hyperbolic matrix if ÂT = Â.

Theorem 3.6. Â = A + hA∗ is a symmetric hyperbolic matrix iff A and A∗ are real symmetric matrices.

Proof. If Â is a symmetric matrix, then

ÂT = Â ⇐⇒ (A + hA∗)T = A + hA∗

⇐⇒ AT + h(A∗)T = A + hA∗

⇐⇒ AT = A and (A∗)T = A∗.

□

Definition 3.7. A square hyperbolic matrix Â is called a skew symmetric hyperbolic matrix if ÂT = −Â.

Theorem 3.8. Â = A + hA∗ is a skew symmetric hyperbolic matrix iff A and A∗ are real skew symmetric matrices.

Proof. If Â is a skew symmetric matrix, then

ÂT = −Â ⇐⇒ (A + hA∗)T = −A − hA∗

⇐⇒ AT + h(A∗)T = −A − hA∗

⇐⇒ AT = −A and (A∗)T = −A∗.

□

Example 3.9. Â =
[

0 −2 + h
2 − h 0

]
is a skew symmetric hyperbolic matrix. Indeed, it can be obviously seen that

ÂT = −Â.

Definition 3.10. A square hyperbolic matrix Â is called a Hermitian hyperbolic matrix if (ÂT ) = Â, where Â = A−hA∗

is the conjugate of Â.

Theorem 3.11. Â = A + hA∗ is a Hermitian hyperbolic matrix iff A is a real symmetric hyperbolic matrix and A∗ is
real skew symmetric matrix.

Proof. If Â is a Hermitian hyperbolic matrix, then

(ÂT ) = Â ⇐⇒ (A + hA∗)T = A + hA∗

⇐⇒ AT + h(A∗)T = A + hA∗

⇐⇒ AT − h(A∗)T = A + hA∗

⇐⇒ AT = A and (A∗)T = −A∗.

□

Definition 3.12. A square hyperbolic matrix Â is called a skew Hermitian hyperbolic matrix if (ÂT ) = −Â.

Theorem 3.13. Â = A + hA∗ is a skew Hermitian hyperbolic matrix iff A is a real skew symmetric hyperbolic matrix
and A∗ is real symmetric matrix.

Proof. If Â is a skew Hermitian hyperbolic matrix, then

(ÂT ) = −Â ⇐⇒ (A + hA∗)T = −A − hA∗

⇐⇒ AT + h(A∗)T = −A − hA∗

⇐⇒ AT − h(A∗)T = −A − hA∗

⇐⇒ AT = −A and (A∗)T = A∗.

□
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Definition 3.14. A square hyperbolic matrix Â is called an involute hyperbolic matrix if Â2 = I.

Theorem 3.15. If Â = A+ hA∗ is an involute hyperbolic matrix, then A2 + (A∗)2 = I and (A∗)n = (−1)nA−1(−A∗)nA for
n ∈ Z+.

Proof. Let Â be an involute hyperbolic matrix, then from the equation (A + hA∗)2 = I we get,

(A2 + (A∗)2) + h(AA∗ + A∗A) = I + h0

A2 + (A∗)2 = I and AA∗ + A∗A = 0.

Since AA∗ + A∗A = 0, it is clear to see that AA∗ = −A∗A. Thus, from the last equation desiring result is obtained as
follows:

A∗ = −A−1A∗A

(A∗)2 = A−1(A∗)2A

(A∗)3 = −A−1(A∗)3A

...

(A∗)n = (−1)nA−1(−A∗)nA.

□

Definition 3.16. Let B̂ = B+hB∗ and Ĉ = C +hC∗ be two n× n hyperbolic matrices. If B̂Ĉ = ĈB̂, then these matrices
are called commutative hyperbolic matrices.

Theorem 3.17. If B̂ and Ĉ are commutative, then B + B∗ and C +C∗ matrices are real commutative matrices.

Proof. Let B̂Ĉ = ĈB̂, then

(BC + B∗C∗) + h(BC∗ + B∗C) = (CB +C∗B∗) + h(CB∗ +C∗B).

We obtain equalities BC + B∗C∗ = CB + C∗B∗ and BC∗ + B∗C = CB∗ + C∗B. If we add these two equations side by
side, then

B(C +C∗) + B∗(C +C∗) = (C +C∗)B + (C +C∗)B∗

(B + B∗)(C +C∗) = (C +C∗)(B + B∗).

□

Definition 3.18. Let Â = A+hA∗ be a square hyperbolic matrix. If ÂT Â = ÂÂT = I, then Â = A+hA∗ is called unitary
hyperbolic matrix.

Theorem 3.19. Let Â = A + hA∗ be a unitary hyperbolic matrix. Then, A + A∗ is a real unitary matrix.

Proof. If ÂT Â = I, then

(AT − h(A∗)T )(A + hA∗) = I + h0

(AT A − (A∗)T A∗) + h(AT A∗ − (A∗)T A) = I + h0.

From the last equation, it can be easily seen that AT A − (A∗)T A∗ = I and AT A∗ − (A∗)T A = 0. Thus, if we add these
equations side by side, then we get

AT (A + A∗) − (A∗)T (A + A∗) = I

(AT − (A∗)T )(A + A∗) = I.

Also, if ÂÂT = I, then

(A + hA∗)(AT − h(A∗)T ) = I + h0

(AAT − A∗(A∗)T ) + h(A∗AT − A(A∗)T ) = I + h0.
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From the last equation, we obtain AAT − A∗(A∗)T = I and A∗AT − A(A∗)T = 0. Therefore, if we sum these equations
up side by side, then

(A + A∗)AT − (A + A∗)(A∗)T = I

(A + A∗)(AT − (A∗)T ) = I.

□

4. Conclusion

In this study, we examined the properties of hyperbolic matrices. Using these properties, we have defined special
hyperbolic matrices and revealed some of the properties they provide. Thus, the difference between these matrices
and other matrix structures is regularly considered. Thus, it is aimed to form a basis for further studies on hyperbolic
numbers and matrices.
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[1] Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Mathematical Notes, 13(2)(2012), 223–232.
[2] Assis, A.K.T., Perplex numbers and quaternions, International Journal of Mathematical Education in Science and Technology, 22(4)(1991),

555–562.
[3] Beauregard, R.A., Suryanarayan E.R., Pythagorean triples: the hyperbolic view, The College Mathematics Journal, 27(3)(1996), 170–181.
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