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In many situations, uncertainty and randomness concurrently occur in a sys-
tem. Thus this paper presents a new concept for uncertain random variable.
Also, a simulation algorithm based on uncertain random variables is presented
to approximate the chance distribution using pessimistic value and optimistic
value. An example is also given to illustrate how to use the presented simula-
tion algorithm.
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1. Introduction

Liu [1] introduced the uncertain random variable
for modeling complex systems. In other words;
uncertain random variable is improved to illus-
trate the phenomenon which mixes uncertainty
with randomness. If we receive historical data
from the sample, we can estimate the probabil-
ity distribution. But if we have a new product,
we can not achieve the probability distribution
of this new product owing to lack of data. In
this case, we run across both randomness and hu-
man uncertainty. Human uncertainty is investi-
gated by some scholars. As a branch of mathe-
matics based on normality, duality, subadditivity
and product axioms, uncertainty theory was in-
troduced by Liu [2] in 2007. Gao [3] presented
uncertain bimatrix game. Yang and Gao [4] stud-
ied uncertain differential game. Gao and Qin [5]
introduced the degree connectivity of uncertain
graph. Dalman [6] presented a model for the un-
certain multi-item solid transportation problem.
Dalman [7] constructed models of uncertain ran-
dom multi-item solid transportation problem. To
model uncertain random event, Liu [8] introduced

the chance theory to networks optimization prob-
lem. Some scholars derived properties of uncer-
tain random entropy [9, 10].
By employing chance theory, an uncertain ran-
dom project scheduling problem is presented by
Ke et al. [11]. They introduced an uncertain
random simulation which randomly produces the
sample points. But, this algorithm is ambivalent
due to produces different values at different time.
A simulation algorithm is presented to solve un-
certain random shortest path problem by Sheng
and Gao [12].
Therefore this paper presents an algorithm which
includes the inverse uncertainty distribution and
uniformly produces the sample points. It has
powerful performances on the reliability and sta-
bility than the algorithms in [11, 12]. The paper
is built as follows: some basic knowledge of un-
certainty theory and chance theory is presented
in section II. Section III shows some formulas for
uncertain random variables presents an uncertain
random simulation algorithm. A numerical exam-
ple is presented in Section IV. Finally, this paper
closes in Section V.
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2. Preliminaries

2.1. Uncertainty theory

Let Γ be a nonempty set, L be a σ-algebra over
Γ and M be an uncertain measure. Then (Γ, L,
M) is a measurable space. A set function M :
L→ [0, 1] is called an uncertain measure if it sat-
isfies the following four axioms:

Axiom 1. (Normality Axiom)(Liu [2]): M{Γ}
=1 for the universal set Γ.

Axiom 2. (Duality Axiom)(Liu [2]): M{Λ} +
M{Λc}=1 for any event Λ.

Axiom 3. (Subadditivity Axiom)(Liu [2]): For
every countable sequence of events Λ1,Λ2, · · · , we
have

M

{

∞
⋃

i=1

Λi

}

≤
∞
∑

i=1

M{Λi}.

Axiom 4. (Product Axiom)(Liu [13]): Let
(Γk,Lk,Mk) be uncertainty spaces for k = 1, 2,
· · · . The product uncertain measure M is an un-
certain measure satisfying

M

{

∞
∏

k=1

Λk

}

=
∞
∧

k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk

for k = 1, 2, · · · , respectively.

Definition 1. (see [2]): An uncertain variable is
a function ξ from an uncertainty space (Γ,L,M)
to the set of real numbers such that {ξ ∈ B} is an
event for any Borel set B of real numbers.

Remark 1: Note that the event {ξ ∈ B} is a sub-
set of the universal set {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈
B}.

Definition 2. (Liu [14]): An uncertainty distri-
bution Φ(x) is said to be regular if it is a contin-
uous and strictly increasing function with respect
to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

Definition 3. (Liu [14]): Let ξ be an uncer-
tain variable with regular uncertainty distribution
Φ(x). Then the inverse function Φ−1(α) is called
the inverse uncertainty distribution of ξ.

Theorem 1. (Liu [14]): Let ξ1, ξ2, · · · , ξn be in-
dependent uncertain variables with regular uncer-
tainty distributions Φ1,Φ2, . . . ,Φn, respectively.
If f(ξ1, ξ2, · · · , ξn) is strictly increasing with re-
spect to ξ1, ξ2, · · · , ξm and strictly decreasing with
respect to ξm+1, ξm+2, · · · , ξn, then

ξ = f(ξ1, ξ2, · · · , ξn) (1)

has an inverse uncertainty distribution.

Ψ−1(α) =f(Φ−1
1 (α), · · · ,Φ−1

m (α),

Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)).
(2)

2.2. Chance theory

Definition 4. (Liu [1]): Let (Γ,L,M) be an un-
certainty space and let (Ω,A,Pr) be a probability
space. Then the product (Γ,L,M) × (Ω,A,Pr) is
called a chance space

(Γ,L,M)× (Ω,A,Pr) = (Γ×Ω,L× A,M× Pr).

Definition 5. (see [1]): An uncertain random
variable is a function ξ from a chance space
(Γ,L,M) × (Ω,A,Pr) to the set of real numbers
such that {ξ ∈ B} is an event in an event in L×A

for any Borel set B of real numbers.

Theorem 2. (see [14]): Let ξ1, ξ2, · · · , ξn be
uncertain random variables on the chance space
(Γ,L,M) × (Ω,A,Pr), and let f be a measurable
function. Then

ξ = f(ξ1, ξ2, · · · , ξn)

is an uncertain random variable determined by

ξ(γ, ω) = f(ξ1(γ, ω), ξ2(γ, ω), · · · , ξn(γ, ω))

for all (γ, ω) ∈ Γ× Ω.

Theorem 3. (Liu [15]): Let η1, η2, · · · , ηm be in-
dependent random variables with probability dis-
tributions Ψ1,Ψ2, · · · ,Ψm, respectively, and let
τ1, τ2, · · · , τn be independent uncertain variables.
Assume f is a measurable function. Then the un-
certain random variable

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution

Φ(x) =

∫

ℜm

F (x; y1, y2, · · · , ym)dΨ1(y1)

dΨ2(y2) · · · dΨm(ym).

(3)

where F (x; y1, y2, · · · , ym) is the uncertainty dis-
tribution of the variable

f(y1, y2, · · · , ym, τ1, τ2, · · · , τn).

Definition 6. (Liu [1]): Let ξ be an uncertain
random variable. Then its chance distribution is
defined by

Φ(x) = Ch{ξ ≤ x} (4)

for any x ∈ ℜ.

Theorem 4. Let ξ be an uncertain random vari-
able. Then its expected value is

E[ξ] =

∫ +∞

0

Ch{ξ ≥ r}dr−

∫ 0

−∞

Ch{ξ ≤ r}dr

(5)
provided that at least one of the two integrals is
finite.
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Theorem 5. Let ξ be an uncertain random vari-
able with regular chance distribution Φ. If the ex-
pected value exists, then

E[ξ] =

∫ 1

0

Φ−1(α)dα. (6)

In order to obtain the chance distribution, we
prove following theorems and develop a simula-
tion algorithm.

3. A simulation algorithm with

uncertain random variables

In this section, by employing the above defini-
tion and theorems, the chance distribution will
be obtained. To do this, the following theorems
is proved and besides a simulation algorithm is
developed.

In fact, Formula (3) is a theoretical formula,
which is not easy to use in most cases due to
the complexity of chance distribution function.
To overcome the difficulty, an uncertain random
simulation is proposed to evaluate the chance dis-
tribution. First, we introduce the concepts of
α−pessimistic value and α−optimistic value for
an uncertain random variable. Then, we approxi-
mate the chance distribution, α−pessimistic value
and α−optimistic value by using a numerical in-
tegration method.

Definition 7. Let ξ be an uncertain random vari-
able on chance space (Γ,L,M) × (Ω,A,Pr) and
α ∈ (0, 1]. Then,

ξinf(α) = inf{r|Ch{ξ ≤ r} ≥ α} (7)

and
ξsup(α) = sup{r|Ch{ξ ≥ r} ≥ α} (8)

are called the α−pessimistic value and the
α−optimistic value of ξ, respectively.

Note that Random variables and uncertain vari-
ables are special uncertain random variables. The
α−pessimistic value and the α−optimistic value
of linear uncertain variable L(a, b) are ξinf(α) =
(1− α)a+ αb and ξsup(α) = αa+ (1− α)b.

Theorem 6. Let ξ be an ordinary uncertain ran-
dom variable and α ∈ (0, 1]. Then, we have

Ch{ξ ≤ ξinf(α)} = α. (9)

Proof. Since the chance distribution is
continuous, it follows from the defini-
tion of the α−pessimistic value for each
α ∈ (0, 1], we have Ch{ξ ≤ ξinf(α)} =
lim
n→∞

Ch{ξ ≤ ξinf(α)− 1/n} ≤ α, and

Ch{ξ ≤ ξinf(α)} = lim
n→∞

Ch{ξ ≤ ξinf(α) + 1/n} ≥

α, which imply that Ch{ξ ≤ ξinf(α)} = α holds.
The theorem is proved. �

Theorem 7. Let ξ be an ordinary uncertain ran-
dom variable and α ∈ (0, 1]. Then, we have

Ch{ξ ≥ ξsup(α)} = α. (10)

Proof. Since the continuity of chance
distribution, it follows from the defini-
tion of the α−optimistic value for each
α ∈ (0, 1] that Ch{ξ ≥ ξsup(α)} =
lim
n→∞

Ch{ξ ≥ ξsup(α)− 1/n} ≥ α and

Ch{ξ ≥ ξsup(α)} = lim
n→∞

Ch{ξ ≥ ξsup(α) + 1/n} ≤

α, which imply that Ch{ξ ≥ ξsup(α)} = α holds.
The theorem is proved. �

Theorem 8. Let ξ be an uncertain random vari-
able and α ∈ (0, 1]. Then, we have

ξinf(α) = Φ−1(α). (11)

Proof. It follows from Definition 7 immedi-
ately. �

Theorem 9. Let ξ be an uncertain random vari-
able and α ∈ (0, 1]. Then, we have

ξinf(α) = ξsup(1− α). (12)

Proof. It follows from Equation (8) that

Ch{ξ ≥ ξsup(1− α)} = 1− α.

Thus,

Ch{ξ ≤ ξsup(1− α)} = 1− Ch{ξ ≥ ξsup(1− α)}

= 1− (1− α)

= α

Thus, we have ξinf(α) = ξsup(1−α). The theorem
is proved. �

Theorem 10. Let ξ be an uncertain random vari-
able and α ∈ (0, 1]. Then, we have

ξsup(α) = Φ−1(1−α) and ξsup(1−α) = Φ−1(α).
(13)

Proof. It follows from Theorems 8 and 9. �

Theorem 11. Let ξ be an ordinary uncertain
random variable. Then, we have

E[ξ] =

∫ 1

0

ξinf(α)dα. (14)

Proof. Since Φ(x) is strictly increasing and con-
tinuous, we get

ξinf(α) = inf{r|Ch{ξ ≤ r} ≥ α}

= inf{r|Φ(r) ≤ α}

= Φ−1(α).

According to Definition (), we have E[ξ] =
∫ 1

0
ξinf(α)dα. The Theorem is proved. �
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Theorem 12. Let ξ be an ordinary uncertain
random variable. Then, we have

E[ξ] =

∫ 1

0

ξsup(α)dα. (15)

Proof. Since Φ(x) is strictly increasing and con-
tinuous, we get

ξsup(α) = sup{r|Ch{ξ ≥ r} ≥ α}

= sup{r|Φ(r) ≤ 1− α}

= Φ−1(1− α).

Thus, for all α ∈ (0, 1), we have

∫ 1

0

ξsup(α)dα =

∫ 1

0

Φ−1(1− α)dα

=

∫ 1

0

Φ−1(α)dα = E[ξ]

The theorem is proved. �

Theorem 13. Let ξ be an ordinary uncertain
random variable. Then, we have

E[ξ] =
1

2

∫ 1

0

[ξinf(α) + ξsup(α)] dα. (16)

Proof. It follows directly from Theorem 11 and
Theorem 12. �

Theorem 14. Let η1, η2, · · · , ηm be indepen-
dent random variables with probability distribu-
tions Ψ1,Ψ2, · · · ,Ψm, and let τ1, τ2, · · · , τn be in-
dependent uncertain variables with regular un-
certainty distributions Υ1,Υ2, · · · ,Υn. Assume
f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn) is strictly increas-
ing with respect to τ1, τ2, · · · , τk and strictly de-
creasing with respect to τk+1, τk+2, · · · , τn. Then

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution

Φ(x) =

∫

ℜm

F (x; y1, y2, · · · , ym)dΨ1(y1)

dΨ2(y2) · · · dΨm(ym).

(17)

where F (x; y1, y2, · · · , ym) is determined by its in-
verse uncertainty distribution

F−1(y1, y2, . . . , ym,Υ−1
1 (α), . . . ,

Υ−1
2 (α), . . . ,Υ−1

n (α)),
(18)

F−1(y1, y2, · · · , ym, (ξ1)sup(1− α), · · · ,

(ξk)sup(1− α), (ξk+1)sup(α), · · · , (ξn)sup(α)).

(19)

Proof. It follows from Theorem 1 that inverse
uncertainty distribution of F (x; y1, y2, · · · , ym) is
determined by

F−1(y1, y2, · · · , ym,Υ−1
1 (α), · · · ,Υ−1

k (α),

Υ−1
k+1(1− α), · · · ,Υ−1

n (1− α)).
(20)

According to Theorem 10, we substi-
tute Υ−1

1 (α), · · · ,Υ−1
k (α) with (ξ1)sup(1 −

α), · · · , (ξk)sup(1 − α) and Υ−1
k+1(1 −

α), · · · ,Υ−1
n (1−α) with (ξk+1)sup(α), · · · , (ξn)sup(α).

Thus, Formula (19) holds. The theorem is com-
pleted. �

Theorem 15. Let η1, η2, · · · , ηm be indepen-
dent random variables with probability distribu-
tions Ψ1,Ψ2, · · · ,Ψm, and let τ1, τ2, · · · , τn be in-
dependent uncertain variables with regular un-
certainty distributions Υ1,Υ2, · · · ,Υn. Assume
f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn) is strictly increas-
ing with respect to τ1, τ2, · · · , τk and strictly de-
creasing with respect to τk+1, τk+2, · · · , τn. Then

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution

Φ(x) =

∫

ℜm

F (x; y1, y2, · · · , ym)dΨ1(y1)

dΨ2(y2) · · · dΨm(ym).

(21)

where F (x; y1, y2, · · · , ym) is determined by its in-
verse uncertainty distribution

F−1(y1, y2, . . . , ym,Υ−1
1 (α), . . . ,

Υ−1
2 (α), . . . ,Υ−1

n (α))
(22)

F−1(y1, y2, . . . , ym, (ξ1)inf(α), · · · , (ξk)inf(α),

(ξk+1)inf(1− α), · · · , (ξn)inf(1− α)).
(23)

Proof. The proof is similar to that of Theorem
14. �

According to Theorems 1, 17, 8, 9 and 10, we
design the following uniform discretization algo-
rithm to simulate Φ(x), α-pessimistic value and
α-optimistic value. The presented algorithm is
very flexible. Because it can even simulate the
empirical distribution.

Algorithm 1 (Uniform Discretization Algo-
rithm)
Step 1. Discretize the range of the random vari-
able ηi into Ni equally spaced points.
Step 2. Discretize α into K equally spaced
points.
Step 3. Calculate F−1(α; y1, y2, · · · , ym).
Step 4. Calculate F (x; y1, y2, · · · , ym) =



















0 if x ≤ x1,

αi + (αi+1 − αi)
x− xi

xi+1 − xi
if xi ≤ x ≤ xi+1,

1 ≤ i ≤ K,
1 if x ≥ xK ,

Step 5. Apply numerical integration to compute
Φ(x), α-pessimistic value and α-optimistic value.
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The uniform discretization algorithm is illus-
trated by the following example.

4. A numerical example

Example Suppose that η1 and η2 are indepen-
dent random variables with probability distribu-
tions U(1, 2) and U(2, 4), and suppose that τ1 and
τ2 are independent uncertain variables with un-
certainty distributions L(1, 5) and L(1, 3). Then
ξ = η1 + η2 + τ1 − τ2 is an uncertain random
variable. Assume that ξ has chance distribution
Φ(x).

For the sake of simplicity, we set N1 = 10, N2 =
10,K = 10. We also can assign a large number
to N1, N2 and K. The probability distribution
function of η1 and η2 are

Ψ1(y1) =







0 if y1 ≤ 1,
y1 − 1 if 1 ≤ y1 ≤ 2, and
1 if y1 ≥ 2,

Ψ2(y2) =











0 if y2 ≤ 2,
y2 − 2

2
if 2 ≤ y2 ≤ 4,

1 if y2 ≥ 4.

Then, we can have discrete forms of Ψ1(y1) and
Ψ1(y2) in which y1 = 1+0.1 · i and y2 = 2+0.2 · j
for i = 1, 2, · · · , 10, j = 1, 2, · · · , 10. The inverse
uncertainty distribution function of τ1 and τ2 are
(τ1)inf(α) = (1 − α) · 1 + α · 5 = 1 + 4 · α and
(τ2)inf(1− α) = α · 1 + (1− α) · 3 = 3− 2 · α.

The chance distribution of ξ is

Φ(x) =
1

2

∫ 4

2

∫ 2

1

F (x; y1, y2)dy1dy2 (24)

where F (x; y1, y2) is obtained by the inverse un-
certainty distribution function F−1(α; y1, y2) =
y1+ y2+(1+4 ·α)− (3−2 ·α) for each α ∈ (0, 1].
This implies that F−1(α; y1, y2) = xk, 1 ≤ k ≤ 10
for each α ∈ (0, 1]. The value of F−1(α; y1, y2) is
listed on the Table I.

Then, according to Step 4, we obtain F (x; y1, y2).
Now, we get the chance distribution function of
ξ.

Φ(x) =
1

2

∫ 4

2

∫ 2

1

F (x; y1, y2)dy1dy2

=
1

2

10
∑

i=1

10
∑

j=1

F (x; 1 + 0.1 · i, 2 + 0.2 · j) · 0.1 · 0.2

Applying the above presented algorithm, the
chance distribution of ξ is obtained as (Figure 1):
ξinf(0.2)=3.9 and ξsup(0.2)=7.4.

Figure 1. The chance distribution of ξ.

5. Conclusion

Here, an uncertain random simulation algorithm
is presented to illustrate chance distribution. The
presented simulation method can be generally ap-
plied to uncertain random optimization by ap-
proximating chance constraints. The results ob-
tained show that the presented algorithm is the
successful for the uncertain random simulation.
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