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Abstract: Precast corbels are commonly preferred structural members in industrial buildings. In this study, a 

novel application of support vector machines (SVM) is employed for the prediction of ultimate shear strength 

of fiber reinforced corbels, for the first time in literature. SVM models are developed and analyzed using a 

database of available test results in literature. Predictions of the selected model are compared against the test 

results and those of available model proposed by Fattuhi (1994). Proposed model has the capability to predict 

the shear strength of both steel fiber reinforced concrete (SFRC) and glass fiber reinforced concrete (GFRC) 

corbels. Additionally, a parametric study with a wide range of variables is carried out to test the effect of each 

parameter on the shear strength. The results confirm the high prediction capacity of proposed model. 

Keywords: Support vector machines, reinforced concrete corbel, fiber reinforced concrete, steel fiber, glass 

fiber, shear strength. 

Lifli Betonarme Kısa Konsolların Kesme Dayanımının Destek Vektör 

Makineleri ile Tahmini 

Özet: Prefabrik kısa konsollar, özellikle sanayi yapılarında sıkça tercih edilen yapı elemanlarıdır. Bu çalışmada, 

lifli betonarme kısa konsolların kesme dayanımı, literatürde ilk defa, destek vektör makineleri (DVM) ile tahmin 

edilmiştir. Mevcut deneysel veriler kullanılarak DVM modelleri oluşturulmuş ve tahmin performansları analiz 

edilmiştir. Seçilen modelin tahminleri, deney sonuçları ve literatürde mevcut olan modelin (Fattuhi, 1994) 

tahminleri ile karşılaştırılmıştır. Model, çelik lifli kısa konsolların yanı sıra cam lifli konsolların taşıma 

kapasitelerini de tahmin edebilmektedir. Ayrıca model, her bir girdi parametresinin etkisini incelemek amacıyla, 

parametrik analize tabi tutulmuştur. Sonuçlar, önerilen modelin yüksek tahmin kapasitesine sahip olduğunu 

göstermektedir. 

Anahtar Kelimeler: Destek vektör makineleri, betonarme kısa konsol, lifli betonarme, çelik lif, cam lif, kesme 

dayanımı. 

 

1. INTRODUCTION 

Precast concrete elements are commonly 

preferred by designers in building and bridge 

construction. Precast corbels, an example of 

such elements, transfer the loads from slabs and 

beams to columns or walls.  In general, a corbel 

is either project out from a column or structural 

wall or is designed as the overhanging portion of 

a beam. (Fig. 1). Corbels can be provided to 

support rails which transfer heavy loads from 

moving cranes in heavy–duty factory 

workshops. Corbels are also provided at the 

cantilevered end of the girders in double 

cantilever balanced reinforced concrete bridges 

to support the end spans of the bridge. The span-

to-depth ratio of a corbel is usually equal to one 

or smaller than one ( 1/ da ).  
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In order to improve the properties of concrete, 

various type of fibers are added to form fiber 

reinforced concrete (FRC). Although the 

structural behavior of FRC elements depends on 

the mechanical properties of the composite, 

fibers can be considered as reinforcement spread 

out all over the depth of a member. The addition 

of steel fibers to the concrete allows for a 

substantial increase of the shear strength. The 

effectiveness of fiber reinforcement to increase 

shear resistance, is dependent on several factors, 

including matrix properties, fiber properties 

(material properties, aspect ratio, and shape), 

fiber content, and bond stress versus slip 

response of fibers. Fiber contents are generally 

within the range of 0.5% - 2% by the weight of 

fiber. Main disadvantage of using fibers in 

concrete is that it reduces the workability of 

concrete. However, additives are used to 

overcome this problem.  

Hydraulic cement with aggregate (fine or 

course) and discrete steel fibers, as shown in Fig. 

2a, are used to produce steel fiber reinforced 

concrete (SFRC). Steel fibers for SFRC are 

manufactured as short, discrete lengths of steel 

with an aspect ratio (length-to-diameter ratio) 

varying between 20 and 100. Steel fibers are 

small enough to be dispersed in fresh concrete 

mix, randomly [1].   

 

Figure 1. Corbels in an industrial building. 

 

The addition of steel fiber in concrete leads to a 

number of enhancements in the behaviour of 

structural member. In compression, steel fibers 

do not significantly affect the ascending curve of 

the compressive stress-strain response. 

However, they cause the descending post-peak 

response curve to decline in a shallower fashion 

than the curve of plain concrete, resulting in an 

increased ductility and toughness [2]. The 

researchers observed an enhancement of only 

15% in compression. However, the peak strain 

increases significantly with the provision of steel 

fibers [1-3].  

On the other hand, the addition of steel fibers 

induces a much more noticeable effect on the 

tensile behavior. The strain softening behavior is 

observed in the concrete with typical fiber 

volume content. This results in the composite 

having greater ductility and energy absorption 

capabilities than the plain concrete. In addition, 

because the fibers bridge the cracks in the 

composite and aid in the transfer of forces across 

the cracks, crack widths are less than those in 

plain concrete. If the reinforcing bars are present, 

multiple cracks can form even for a strain-

softening material. As compared to the plain 

concrete, there will be more cracks at shorter 

spacing and with smaller widths [4].  

Various universal products are manufactured 

using alkali resistant glass fibers. The provision 

of glass fibers in concrete lead to various 

behavioral advantages such as high flexural 

strength, ability to reproduce, low maintenance 

requirements, and environmental friendliness. 

As depicted in Fig. 2b, glass fibers are 

unorganized and are easily dispersed in fresh 

concrete thanks to their thin and soft nature. The 

diameter of thin glass fiber or filament ranges 

from approximately 3 to 24 µm. The 17 µm fiber 

diameter is most commonly used for FRC 

products for structural engineering [1]. 
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(a) 

 
(b) 

Figure 2. (a) Steel fibers (b) Glass fibers. 

 

2. FIBER REINFORCED CONCRETE 

(FRC) CORBELS 

In FRC, fibers can be considered as tiny 

reinforcements spread out in the concrete 

member. The effect of fiber addition is 

dependent upon several factors such as matrix 

properties, fiber properties (material properties, 

aspect ratio, and shape), fiber content, and bond 

stress versus slip response of fibers.   

 

2.1 Steel Fiber Reinforced Concrete (SFRC) 

Corbels 

Fattuhi ve Hughes [5-9] conducted a series of 

experiments on the load carrying capacities of 

SFRC corbels produced with normal strength 

concrete. They investigated several factors 

(tensile and compressive strength of concrete, 

steel fiber volume fraction, shear span, fiber 

aspect ratio, effective depth, reinforcement ratio) 

and observed the mechanical response of SFRC 

corbels. Fattuhi (1994) also studied the 

mechanical behavior of normal strength SFRC 

corbels with trapezoidal shape [7].  

Flexural behavior of fibrous reinforced concrete 

corbels are investigated experimentally by 

Campione et al. (2007). The authors also 

proposed simple analytical expressions for 

bearing capacity by considering the shear 

contribution due to steel reinforcements and 

fibers [10]. Also, the combined effect of 

horizontal and vertical loading is investigated 

[11].  

Fattuhi (1994) proposed a practical empirical 

formulation based on experimental results, 

which predicts the ultimate load capacity of 

SFRC corbels by considering some parameters 

which influence the mechanical behavior [7].  

The expression of the formula is: 

65432 )()()()()(11,
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where k1 = 57.292, k2 = 0.315 k3 = -0.812, k4 = -

0.049, k5 = 0.678, k6 = 0.626, b is the total width 

of rectangular section in mm, h is the overall 

depth of corbel in mm, d is effective depth of 

main bars in mm, fct is average splitting tensile 

strength in MPa, fy is the yield strength of main 

bars in MPa, fcu is average cube compressive 

strength of concrete in MPa. 
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Fattuhi (1994) also proposed two more models 

namely as “Flexural Model” and “Truss Model” 

for the load carrying capacities of steel fiber  

 

 

reinforced concrete corbels [7]. Basic formulas 

for these models are: 
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In the equations, b and h are width and height of 

the corbel in mm, respectively, fct is the splitting 

tensile strength of fibrous concrete in MPa, d/a 

is the reciprocal of the shear span-to-depth ratio 

and As is sectional area of main reinforcement. 

Other parameters are explained in Fig. 3a. 

Ultimate load carrying capacity of SFRC corbel 

is in Newtons. 

High strength concrete SFRC corbels were also 

studied by various researchers. Muhammed 

(1998) investigated the performance of SFRC 

high strength corbels with trapezoidal form 

under monotonic and cyclic loading [12]. Yang 

et al. (2011) studied the effect of steel fibers on 

the serviceability of reinforced concrete corbels 

[13].  
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(a) Geometry and reinforcement configuration of corbels 

 

(b) Preparation of formworks prior to casting 

 

  
(c) Specimens after casting (d) Curing of test samples 

Figure 3. Preparation of corbel specimens [14]. 

 

Kurtoglu et al. (2017) carried out an 

investigation on shear strength of SFRC corbels 

whose test configuration is shown in Fig. 3a [14]. 

A total of twenty-four specimens were prepared 

for experiments, sixteen of which were prepared 

with SFRC while the remaining six specimens 

contained plain concrete. Six 10mm x 20mm 

cylinder sample and three 10mm x 10mm cube 

samples were prepared for two corbels (Fig. 3c). 

Three of the cylinders were used to measure the 

splitting tensile strength of the concrete; other 

three cylinders were used to measure the 

compressive strength of the concrete. Three cube 

samples were prepared to measure the cubic 

compressive strength of the concrete. Six 

cylinder and three cube samples and two corbel 

specimens were produced as a result of one 

concreting batch. The formworks were removed 

one day after the concreting process and the 

corbels were covered with a special textile for 

curing process. Corbels and corresponding 

samples were watered during 28 days to reach 

the target strength (Fig. 3d). The corbels and 

samples were tested in a loading frame after 28 

days. Corbels were tested using a 500 kN 

capacity loading frame. Corresponding samples 

were also tested to measure the compressive 

strength and tensile strength. Compressive 

strength and tensile strengths were tested in a 

2000 kN capacity concrete press machine.  

Fig. 4a depicts an example test specimen and 

Fig. 4b shows the crack pattern on a random 

specimen after the experiment. As concluded by 

the authors, provision of steel fibers yields an 

increase in ductility and ultimate strength of 
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corbels. It is also highlighted that steel fibers can 

be an alternative to stirrups as a secondary 

reinforcement. To increase the ductility, 

however, provision of steel fibers cannot be 

solely adequate and, the other factors such as 

proper selection of concrete class, reinforcement 

diameter, span and fiber ratio are also 

significantly effective [14].  

 

  
(a) (b) 

Figure 4. (a) Test setup (b) Crack pattern [14]. 

 

2.2 Glass Fiber Reinforced Concrete (GFRC) 

Corbels 

So far, literature does not provide any prominent 

information regarding the strength of GFRC 

corbels as opposed to the research on corbels 

with SFRC. The only research was provided by 

Kurtoglu et al. (2017), in which nine normal 

strength and nine high strength GFRC corbel 

samples were investigated experimentally [14].  

For testing, a universal testing machine with 500 

kN capacity was utilized and the samples were 

loaded concentrically. Fig. 4a and Fig. 4b show 

the test setup prior to testing and crack pattern, 

respectively. Table A.1. lists the material and 

geometry properties as well as the test results 

(ultimate shear strength, Vke). Consequently, 

provision of glass fibers in corbels yielded an 

increase in post cracking load and ultimate load 

capacity. Additionally, brittle failure was 

observed in plain corbels while GFRC corbels 

failed in ductile manner [14].  

 

3. OVERVIEW ON SUPPORT VECTOR 

MACHINES (SVM)  

Support vector machines (SVM) is an artificial 

intelligence based method, which was initially 

developed by Boser et al. (1992) for 

classification problems [15]. Researchers also 

employed this technique for solving the 

regression problems and called it support vector 

regression (SVR).  

Besides its solid numerical basis in statistical 

learning theory, support vector machines have 

showed extremely competing performance in 

several applications, e.g., face recognition, text 

mining, bioinformatics and image processing. 

This fact has proven that SVMs are one of the 

state-of-the-art approaches for data mining and 

machine learning, together with some other soft 

computing methods, e.g., fuzzy systems and 

neural networks[16]. 

The principal of SVM is based on obtaining the 

most suitable linear function that will separate 

two classes of data. This function ignores the 

errors in a predetermined range and tries to 

obtain the optimum hyper plane between two 
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classes of data. The main goal of SVR is to find 

a function which can estimate the real output 

values with maximum of (ε) error and to obtain 

two hyper planes parallel to this function.  The 

distance between these planes should be 

minimum [17].  

3.1 Support Vector Regression (SVR) 

Initially, SVM were introduced for solving the 

classification problems. Researchers started 

utilizing SVM for regression problems by 

preserving the entire algorithm used and called 

this support vector regression (SVR). A function 

named ε-insensitive loss function that neglects 

errors that are inside a definite distance of the 

exact value is able to supervise a parametric 

quantity that is equal to the margin parameter for 

separating hyper planes. For a given set of 

training data in SVR, the main purpose is to 

obtain a function with maximum difference from 

the exact found targets for all the training data, 

and at the same time, is at most flat i.e., we do 

not focus on errors as long as they are less than a 

certain amount, but any deviation larger than a 

this amount is not acceptable (Chen et al., 2004). 

The (linear) -insensitive loss function L(x, y, f) is 

described as 

 (7a) 

where f is a real-valued function on a x and the quadratic ε-insensitive loss is defined by 

 (7b) 

Figure 5 illustrates the form of linear and quadratic ε-insensitive loss function for zero and non-zero ε. 

 

Figure 5. The form of linear and quadratic ε-insensitive loss function for zero and non-zero ε. 

 

The loss function L(y, f(x, ω)) determines the performance of accuracy. Performing linear regression in 

the high-dimension feature space by the use of ε-insensitive loss function, SVM attempts to decrease 

model complexity by performing the minimization of . By introducing (non-negative) slack variables 
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to determine the deviation of training data outside ε-zone. Following formulation is utilized for the 

minimization of SVM regression: 

subject to  (7d) 

 
(7e) 

The solution of this optimization problem can be found by transforming it into the dual problem: 

+ b subject to  (7f) 

where nsv is the number of support vectors (SVs), 

ai
* and aj are the Lagrange multipliers and K(xj, 

x) is a kernel function and b is the bias term. 

Generalization capability (accuracy of 

estimation) of SVM is dependent on a proper 

setting of meta-parameters C, ε and the kernel 

parameters. Current software applications 

usually allow users to define meta-parameters of 

SVM regression [18]. 

Parameter C controls the exchange between the 

model complexity as well as the degree to which 

deviations larger than ε are tolerated in 

optimization formulation. Parameter ε describes 

the width of ε -insensitive zone, which is utilized 

to fit the training data. The number of SVs used 

to create the regression function can be affected 

by the value of ε. The fewer SVs are obtained by 

choosing the bigger ε. On the other hand, greater 

ε-insensitive values cause more ‘flat’ 

predictions. Although in different ways, both C 

and ε values affect model complexity (flatness) 

[18].  

Although various kernel functions are available 

in machine learning theory, four kernel functions 

are employed in this study:  

Linear kernel function: 

xxxxK ii ),(
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where xi and x are training and testing input, 

respectively, σ is the Gaussian kernel function 

width and d is the polynomial degree of kernel 

function. 

Previously, SVM was employed in several civil 

engineering applications e.g., prediction of fresh 

concrete properties, mechanical characteristics 

of concrete, damage detection, corrosion, self-

compacting concrete (SCC) properties and 

rainfall-runoff modeling. Zhang and Song 

(2012) employed SVM to predict the residual 

mechanical characteristics of fly ash concrete 

specimens exposed acidic environment [19]. 

Yang et al. (2014) investigated the mechanical 

properties of corroded concrete and performed 

tests on specimens under repeated loads. 

Deflection and maximum crack with parameters 

were predicted using least squares support vector 

machines (LS-SVM) [20]. Cao et al. (2013) 

presented a predictive SVM based model for 

elastic modulus of SCC [21]. Also, a SVM based 

approach was implemented for structural 

reliability analysis by Li and Lu (2007) [22]. On 

the other hand, Okkan and Serbes (2012) 

successfully implemented LS-SVM approach to 

predict the runoff values and compared the 

results to those of artificial neural networks 

(ANN) based models [23]. Çevik et al. (2015) 

presented a review that investigates the studies 

on the use of SVM in structural engineering [24]. 

The literature incorporates model proposals 

based on regression [7] and artificial neural 

networks [25]. However, a unified model that 

predicts shear strength of both SFRC and GFRC 

corbels is not present until recently. This 

research is the pioneer study that incorporates 

the SVM-based estimation of shear strength of 

both SFRC and GFRC corbels. 

4. NUMERICAL APPLICATION 

In this paper, emphasis was placed on obtaining 

a unified SVM model to estimate the shear 

strength of FRC corbels. A total of 126 data set 

was used for model creation, whose input 

variables were fiber type (1-steel fiber, 2-glass 

fiber), span-to-depth ratio (a/d), reinforcement 

ratio (ρ), reinforcement tensile strength (fy), 

concrete compressive strength (fcu), concrete 

tensile strength (ft) and fiber volume ratio (vf). 

The output parameter was shear strength (Vk). 

Input parameters contained concrete 

compressive strength of cylinder test specimens 

for both normal strength and high strength 

concrete. The ranges of input parameters are 

listed in Table 1.  Furthermore, Fig. 6 illustrates 

the data distribution of input parameters and no 

abnormal fluctuation was observed.  

 

Table 1. Statistical values of test data. 

 a/d ρ (%) fy (MPa) fcu (MPa) ft (MPa) vf (%) Vk (kN) 

Max. 1.47 1.53 560.00 92.79 9.28 2.50 179.00 

Min. 0.43 0.44 448.70 22.30 1.90 0.00 37.57 

Average 0.88 0.84 491.47 38.08 4.74 1.21 103.06 

St. Dev. 0.20 0.32 45.84 16.47 1.17 0.74 32.46 
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Figure 6. Distribution charts for input variables. 

 

SVM models were created using a commercially 

available software named DTREG [26]. 

Selection optimal model parameters is of great 

importance in SVM. Hence, two different 

approaches (grid search and pattern search) were 

implemented to find the optimum model 

parameters. During the grid search, the program 

evaluates the search area predefined by the user. 

Pattern search, on the other hand, is based on 

searching values, starting from the center and 

trying the steps in both directions for each 

parameter. This process continues until the 

predefined search criteria is achieved. Since the 

model is evaluated at a too many number of grid 

points, grid searches require a large computation 

time and performance. Pattern search requires 

less computation time as compared to grid 

search.  

Model creation process has been conducted by 

using two different kernel types (Epsilon-SVR 

and Nu-SVR) and four different SVM kernel 
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functions (Linear, Polynomial, Radial basis and 

Sigmoid function). To overcome the problem of 

overfitting, v-fold cross validation was applied 

and the data was separated as testing and training 

based on random selection. 25% of data was 

selected as testing set based on random selection, 

operated by the software automatically. Table 2 

lists the input parameters and results for each 

SVM model.  

Table 2. Input and statistical values for developed SVR models. 

 

Among the produced models listed in Table 2, 

radial function based Nu-SVR model was 

selected for parametric study, as it performed the 

best as compared to other models. Fig. 7 shows 

the distribution obtained by the comparison of 

experimental and predicted data. Coefficient of 

determination (r-square, R2) evaluates the linear 

relation between desired and output data (Eq. 9). 

Predicted and tested data appear to be aligned 

along the main diagonal of the graph, implying 

the ideal correspondence of predicted and tested 

data. Root mean squared error (RMSE) and 

coefficient of variation (CoV) were also 

calculated for testing and training sets of each 

model as listed in Table 2 (Eqs. 10-11). For 

proposed model (Model number 7, Nu-SVR-

Radial based); R2 value was calculated as 

0.9784. This indicates the high estimation 

capacity of proposed model. Other statistical 

measures were listen in Table A.1. 

 

(9) 

 

(10) 

Coefficient of Variation (CoV) =


X
 (11) 

where N is the number of data, Oi is the experimental value of ith data, Pi is the predicted value of ith 

data, σ is the standard deviation and  is the mean value.  
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Figure 7. Comparison of SVR model results and experimental results. 

Fig. 8. illustrates the performance of the model 

(Eq. 1) proposed by Fattuhi (1994). Although 

this model was created for the prediction of only 

SFRC corbel strength, we also used this model 

for GFRC corbels for comparison purposes. 

Large scattering of data is visible from Fig. 8a 

and Fig. 8b for SFRC and GFRC corbels, 

respectively. Coefficient of determination (R2) of 

Fattuhi (1994) model (Eq. 1) was calculated as 

0.8422 and 0.7245 for SFRC and GFRC corbels, 

respectively.  

  

(a)            (b) 

Figure 8. Performance of Fattuhi (1994) model [7] for (a) SFRC corbels (b) GFRC corbels. 

 

 

 

 

 

 



 

  

508 Kurtoglu / Cumhuriyet Sci. J., Vol.39-2 (2018) 496-514 

Table A.1. Experimental database and comparison of model predictions 

 

Source Specimen Fiber type a/d 

ρ 

(%) 

fy 

(MPa) 

fcu 

(Mpa) 

ft 

(MPa) 

vf 

(%) 

Vke 

(kN) 

Vk,SVR 

(kN) 

Vk,Eq.1 

(kN) Vke/Vk,SVR 

Fattuhi 

and 

Hughes 

[3] 

C2 Steel Fiber 1.04 0.70 558 53.51 4.37 0.7 84.50 84.50 81.23 1.00 

C3 Steel Fiber 1.05 0.71 558 52.60 5.45 0.7 92.90 92.90 86.21 1.00 

C4 Steel Fiber 1.02 0.70 558 51.40 4.79 0.7 91.80 97.96 85.29 0.94 

C5 Steel Fiber 1.05 0.71 558 51.10 5.36 0.7 96.00 95.88 85.64 1.00 

C6 Steel Fiber 1.07 0.69 558 40.10 3.19 0.7 75.20 71.87 71.81 1.05 

Fattuhi 

and 

Hughes 

[4] 

C27 Steel Fiber 0.43 0.45 495 47.30 4.64 0.7 125.80 125.80 130.15 1.00 

C28 Steel Fiber 0.72 0.45 495 55.70 6.09 0.7 88.20 88.20 92.31 1.00 

C29 Steel Fiber 0.96 0.44 495 55.70 6.09 0.7 65.90 46.53 73.06 1.42 

C30 Steel Fiber 0.43 0.70 558 51.40 4.79 0.7 171.00 171.00 171.50 1.00 

C31 Steel Fiber 0.55 1.02 491 57.00 5.05 0.7 179.00 163.48 181.89 1.09 

C32 Steel Fiber 1.06 1.00 491 47.30 4.64 0.7 110.10 112.86 103.25 0.98 

Fattuhi 

and 

Hughes 

[5] 

T3 Steel Fiber 0.73 0.70 558 47.90 4.66 0.7 133.00 133.00 110.10 1.00 

T4 Steel Fiber 0.72 0.71 558 55.90 6.19 1.4 142.50 142.50 121.80 1.00 

T6 Steel Fiber 0.72 0.70 537 57.40 9.28 2.1 143.00 143.00 138.49 1.00 

T10 Steel Fiber 0.76 1.02 491 47.90 4.66 0.7 138.00 129.12 134.52 1.07 

T11 Steel Fiber 0.74 1.02 491 55.90 6.19 1.4 160.20 160.20 150.76 1.00 

T12 Steel Fiber 0.74 1.02 491 57.40 9.28 2.1 171.20 171.20 172.83 1.00 

Fattuhi 

[6] 

1 Steel Fiber 0.65 1.00 452 41.40 5.84 1.7 153.00 153.00 164.50 1.00 

2 Steel Fiber 0.65 0.98 449 43.40 5.44 1.7 160.00 160.00 163.10 1.00 

3 Steel Fiber 0.63 0.44 451 42.00 4.86 1.7 91.20 91.20 95.64 1.00 

4 Steel Fiber 0.64 0.44 451 40.60 5.30 1.7 93.00 93.00 97.93 1.00 

5 Steel Fiber 1.14 0.98 452 40.51 5.46 1.7 103.00 95.40 102.34 1.08 

6 Steel Fiber 1.13 0.98 452 38.00 5.35 1.7 95.70 95.70 102.42 1.00 

7 Steel Fiber 1.11 0.44 451 33.80 3.89 0.7 53.30 55.25 55.93 0.96 

8 Steel Fiber 1.12 0.44 451 36.90 3.72 0.7 53.10 59.47 54.84 0.89 

9 Steel Fiber 0.65 1.00 452 34.51 5.29 1.7 152.90 148.26 158.03 1.03 

10 Steel Fiber 1.14 0.98 452 37.10 5.24 1.7 102.90 90.22 100.91 1.14 

11 Steel Fiber 1.11 0.44 451 35.80 3.76 0.7 56.00 56.00 55.49 1.00 

12 Steel Fiber 0.64 0.44 451 38.00 3.89 0.7 92.00 91.74 87.98 1.00 

13 Steel Fiber 0.89 0.99 452 34.00 5.04 1.7 111.70 117.36 121.40 0.95 

14 Steel Fiber 0.88 0.44 451 36.51 4.24 0.7 68.30 68.30 69.44 1.00 

15 Steel Fiber 0.87 0.44 451 39.00 3.92 0.7 67.20 70.40 68.57 0.95 

16 Steel Fiber 0.89 0.98 452 37.70 4.94 1.7 114.30 120.81 120.79 0.95 

18 Steel Fiber 0.71 0.99 452 32.60 4.98 1.0 119.00 119.00 145.72 1.00 

Fattuhi 

[7] 

20 Steel Fiber 0.89 0.99 452 38.60 5.43 1.8 126.00 126.00 124.16 1.00 

21 Steel Fiber 0.90 0.98 452 37.00 4.73 1.5 118.00 111.13 117.93 1.06 

22 Steel Fiber 0.81 0.69 454 37.00 4.73 1.5 108.50 106.60 101.76 1.02 

23 Steel Fiber 0.90 1.00 452 33.80 5.12 2.0 126.50 124.31 120.02 1.02 

24 Steel Fiber 0.65 0.69 454 33.80 5.12 2.0 131.50 131.50 125.19 1.00 

27 Steel Fiber 0.65 0.99 452 42.30 6.29 2.5 171.50 171.50 169.25 1.00 

28 Steel Fiber 0.48 0.68 454 42.30 6.29 2.5 173.50 173.50 171.94 1.00 
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29 Steel Fiber 0.61 0.45 451 37.30 4.42 1.0 100.00 100.00 94.78 1.00 

30 Steel Fiber 1.00 0.70 454 37.30 4.42 1.0 86.50 86.50 83.74 1.00 

31 Steel Fiber 1.09 1.19 452 40.60 5.50 2.0 119.50 119.50 120.53 1.00 

32 Steel Fiber 1.00 1.23 452 40.60 5.50 2.0 132.50 132.50 128.31 1.00 

35 Steel Fiber 1.10 1.48 452 38.70 4.91 1.5 124.50 124.50 131.19 1.00 

36 Steel Fiber 0.49 0.44 451 38.70 4.91 1.5 123.50 119.68 117.75 1.03 

37 Steel Fiber 1.10 1.49 452 39.60 5.72 2.0 140.00 136.48 137.86 1.03 

38 Steel Fiber 0.89 0.44 451 39.60 5.72 2.0 74.00 61.58 75.96 1.20 

39 Steel Fiber 0.89 1.20 452 38.70 5.64 2.3 144.50 144.94 142.75 1.00 

40 Steel Fiber 1.02 1.47 452 38.70 5.64 2.3 142.00 136.07 145.83 1.04 

44 Steel Fiber 1.10 1.21 452 35.40 4.85 1.5 109.50 111.94 113.82 0.98 

45 Steel Fiber 1.10 1.50 452 34.80 4.37 1.0 120.00 120.00 124.96 1.00 

46 Steel Fiber 0.82 0.45 451 34.80 4.37 1.0 74.50 74.50 77.04 1.00 

48 Steel Fiber 0.86 0.68 454 35.70 5.16 2.0 100.00 97.32 103.39 1.03 

49 Steel Fiber 0.66 1.00 452 37.60 5.81 2.5 164.50 164.50 162.47 1.00 

Fattuhi 

[8] 

51 Steel Fiber 0.83 1.00 451 38.60 5.83 2.0 130.50 135.23 133.10 0.97 

52 Steel Fiber 1.17 1.00 451 38.60 5.83 2.0 99.00 101.24 106.00 0.98 

53 Steel Fiber 1.01 1.48 451 41.10 5.68 2.0 144.50 147.77 145.78 0.98 

54 Steel Fiber 1.44 1.49 451 41.10 5.68 2.0 101.50 101.50 113.85 1.00 

55 Steel Fiber 0.55 0.44 451 36.90 4.06 1.0 104.00 104.00 99.57 1.00 

56 Steel Fiber 0.65 0.44 451 36.90 4.06 1.0 95.50 89.68 88.78 1.06 

57 Steel Fiber 0.59 0.69 451 38.80 5.92 2.0 138.50 138.50 140.30 1.00 

58 Steel Fiber 0.71 0.69 451 38.80 5.92 2.0 121.50 121.39 122.55 1.00 

59 Steel Fiber 1.18 0.99 451 36.20 5.37 2.0 97.50 97.50 99.50 1.00 

60 Steel Fiber 0.98 1.49 451 36.20 5.37 2.0 142.00 142.00 148.04 1.00 

61 Steel Fiber 0.63 0.44 451 36.30 4.82 1.5 98.50 99.17 97.76 0.99 

62 Steel Fiber 1.18 1.20 451 36.30 4.82 1.5 109.50 109.50 108.57 1.00 

63 Steel Fiber 0.85 0.68 451 38.20 5.94 2.5 101.80 101.80 109.06 1.00 

64 Steel Fiber 0.65 1.00 451 38.20 5.94 2.5 170.00 157.15 169.37 1.08 

75 Steel Fiber 0.60 0.44 451 31.00 4.05 1.0 94.80 94.78 93.79 1.00 

76 Steel Fiber 0.79 0.44 451 31.00 4.05 1.0 73.50 73.50 77.28 1.00 

77 Steel Fiber 0.90 1.00 451 33.20 4.96 1.5 114.50 117.79 118.63 0.97 

78 Steel Fiber 1.11 1.50 451 33.20 4.96 1.5 120.00 120.00 128.45 1.00 

79 Steel Fiber 1.09 1.48 451 33.80 5.26 2.0 128.00 123.80 133.29 1.03 

80 Steel Fiber 0.90 1.00 451 33.80 5.26 2.0 120.80 122.10 121.47 0.99 

81 Steel Fiber 1.11 1.22 451 35.40 5.04 2.0 110.80 110.80 114.08 1.00 

82 Steel Fiber 1.20 1.00 451 35.40 5.04 2.0 98.00 91.82 98.76 1.07 

83 Steel Fiber 1.21 1.53 451 34.90 4.96 1.5 115.30 115.30 120.98 1.00 

84 Steel Fiber 1.47 1.51 451 34.90 4.96 1.5 94.00 94.00 106.39 1.00 

85 Steel Fiber 0.98 0.99 451 35.10 5.17 2.0 123.30 112.95 114.02 1.09 

86 Steel Fiber 1.19 1.48 451 35.10 5.17 2.0 115.50 115.50 125.61 1.00 

87 Steel Fiber 0.64 0.69 451 36.20 6.01 2.5 139.80 139.80 137.14 1.00 

88 Steel Fiber 0.86 1.00 451 36.20 6.01 2.5 138.80 138.80 137.04 1.00 

 

 

 

50-0-10-100 Steel Fiber 0.82 0.86 560 48.15 3.10 0.0 65.91 67.84 100.28 0.97 

50-0-10-130 Steel Fiber 1.06 0.85 560 48.15 3.10 0.0 55.52 55.52 80.94 1.00 
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50-0-12-100 Steel Fiber 0.81 1.22 510 47.53 3.10 0.0 68.06 68.06 126.29 1.00 

50-0-12-130 Steel Fiber 1.02 1.18 510 47.53 3.10 0.0 57.65 61.04 102.23 0.94 

50-1-10-100 Steel Fiber 0.83 0.70 560 50.00 3.70 1.0 110.58 106.25 92.59 1.04 

50-1-10-130 Steel Fiber 1.05 0.70 560 50.00 3.70 1.0 78.80 78.80 76.22 1.00 

50-1-12-100 Steel Fiber 0.82 1.01 510 50.00 3.60 1.0 121.78 114.16 116.81 1.07 

50-1-12-130 Steel Fiber 1.07 1.01 510 50.00 3.60 1.0 89.18 89.13 94.16 1.00 

50-1.5-10-100 Steel Fiber 0.81 0.70 560 50.00 4.50 1.5 125.13 124.05 100.12 1.01 

50-1.5-10-130 Steel Fiber 1.04 0.70 560 50.00 4.50 1.5 86.58 86.58 81.59 1.00 

50-1.5-12-100 Steel Fiber 0.81 1.01 510 50.00 4.20 1.5 127.54 127.54 123.65 1.00 

50-1.5-12-130 Steel Fiber 1.04 1.01 510 50.00 4.20 1.5 89.13 96.66 100.77 0.92 

30-0-10-100 Steel Fiber 0.81 0.85 560 30.00 1.90 0.0 57.22 57.22 83.88 1.00 

30-0-10-130 Steel Fiber 1.06 0.85 560 30.00 1.90 0.0 37.57 49.82 67.78 0.75 

30-0-12-100 Steel Fiber 0.81 1.22 510 30.00 2.00 0.0 63.53 56.12 107.55 1.13 

30-0-12-130 Steel Fiber 1.04 1.21 510 30.00 2.00 0.0 48.65 48.65 87.20 1.00 

30-1-10-100 Steel Fiber 0.81 0.70 560 30.00 2.50 1.0 71.00 72.00 81.14 0.99 

30-1-10-130 Steel Fiber 1.05 0.70 560 30.00 2.50 1.0 52.60 52.60 65.70 1.00 

30-1-12-100 Steel Fiber 0.81 1.01 510 30.00 2.30 1.0 73.39 72.30 99.75 1.02 

30-1-12-130 Steel Fiber 1.02 1.01 510 30.00 2.30 1.0 56.15 56.15 82.37 1.00 

30-1.5-10-100 Steel Fiber 0.82 0.70 560 30.00 3.10 1.5 79.66 79.66 86.11 1.00 

30-1.5-10-130 Steel Fiber 1.06 0.70 560 30.00 3.10 1.5 58.35 53.02 69.85 1.10 

30-1.5-12-100 Steel Fiber 0.79 1.01 510 30.00 3.10 1.5 87.01 87.01 111.46 1.00 

30-1.5-12-130 Steel Fiber 1.05 1.01 510 30.00 3.10 1.5 59.79 59.79 88.73 1.00 

S8-80 Glass Fiber 0.66 0.53 550 102.66 4.79 0.0 100.95 100.95 105.73 1.00 

S8-100 Glass Fiber 0.84 0.56 550 102.66 4.79 0.0 72.80 72.80 90.29 1.00 

S8-120 Glass Fiber 0.99 0.53 550 102.66 4.79 0.0 64.90 64.90 75.98 1.00 

S8-80-0.2 Glass Fiber 0.63 0.53 550 96.15 4.99 0.2 110.50 110.50 110.05 1.00 

S8-100-0.2 Glass Fiber 0.80 0.54 550 96.15 4.99 0.2 88.00 87.35 91.37 1.01 

S8-120-0.2 Glass Fiber 0.95 0.53 550 96.15 4.99 0.2 71.80 71.80 78.90 1.00 

S8-80-0.4 Glass Fiber 0.63 0.53 550 98.69 5.14 0.4 114.00 126.49 111.23 0.90 

S8-100-0.4 Glass Fiber 0.80 0.54 550 98.69 5.14 0.4 98.50 98.50 92.35 1.00 

S8-120-0.4 Glass Fiber 0.96 0.54 550 98.69 5.14 0.4 76.30 76.30 79.64 1.00 

S8-A80 Glass Fiber 0.66 0.55 550 70.50 4.21 0.0 79.50 61.25 102.11 1.30 

S8-A100 Glass Fiber 0.83 0.55 550 70.50 4.21 0.0 68.50 54.74 84.84 1.25 

S8-A120 Glass Fiber 0.99 0.55 550 70.50 4.21 0.0 51.85 51.85 73.47 1.00 

S8-A80 – 0.2% Glass Fiber 0.63 0.53 550 63.71 4.78 0.2 78.90 80.93 106.41 0.97 

S8-A100 -0.2% Glass Fiber 0.79 0.53 550 63.71 4.78 0.2 73.50 73.50 88.58 1.00 

S8-A120-0.2% Glass Fiber 0.95 0.53 550 63.71 4.78 0.2 69.20 69.20 76.28 1.00 

S8-A80-0.4% Glass Fiber 0.63 0.53 550 68.84 4.91 0.4 98.30 89.67 107.72 1.10 

S8-A100-0.4% Glass Fiber 0.79 0.53 550 68.84 4.91 0.4 77.00 77.00 89.67 1.00 

S8-A120 -0.4% Glass Fiber 0.95 0.53 550 68.84 4.91 0.4 63.50 67.42 77.22 0.94 

        Mean 1.01 

           St. Dev. 0.07 

           CoV 0.07 

           R2 0.9784 
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5. PARAMETRIC ANALYSIS 

A parametric analysis was conducted in order to 

survey the generalization capability of proposed 

models. A database was created by determining 

2 values for fiber type (categorical variable) and 

3 values for each input variable (6 variables). 

Thus, 21x36 = 1458 rows of data were created 

using a Matlab code, prepared for parametric 

data generation. These values were kept in the 

range of each parameter as listed in Table 1. The 

database was then used for scoring each model 

and effect of each parameter was observed on the 

output.  

Main effect graph (Fig. 9) is a significant tool to 

observe whether the model works for the input 

data different than test data.  

 

Fig. 9 depicts that the trend of each parameter 

confirms the literature and they are found as 

expected, which approves the generalization 

capability of proposed model.  

As shown in main effect graphs (Fig. 9), span-

to-depth ratio a/d has most dominant effect on 

the shear strength of FRC corbels. Shear-span-

to-depth ratio has inversely proportional effect, 

which confirms the literature [25]. Additionally, 

reinforcement ratio (ρ), compressive and tensile 

strengths of concrete (fcu and ft) and volume fiber 

ratio (vf) shows directly proportional effect on 

the shear strength. On the other hand, tensile 

strength of steel reinforcement (fy) demonstrates 

almost no effect, which can be attributable to the 

fact that the steel reinforcements reached the 

maximum yield strength before the corbel’s 

ultimate load capacity.  

 

Figure 9. Effects of input variables on shear strength of FRC corbels. 

 

Fig. 10 shows the interactive effect of two input 

parameters on output parameter (shear strength). 

Effect of increasing reinforcement ratio yields 

greater shear strength and this effect is greater 

for lower shear span-to-depth ratio values (Fig. 

10a). Similar effect is visible for combined effect 

of compressive strength and span-to-depth ratio 

on shear strength (Fig. 10b). On the other hand, 

higher span-to-depth ratio values result in lower 

shear strength (Fig. 10c).  Increase in 

reinforcement tensile strength does not have a 

significant effect on shear strength, which is 
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pronounced more for greater shear span-to-depth 

ratios (Fig. 10d).  

 

 

 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 10. Interactive effect of inputs on shear strength of FRC corbels. 
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6. CONCLUSION 

Precast corbels are the structural members 

commonly preferred in industrial buildings. This 

paper proposes a support vector machines 

(SVM) based model to predict the ultimate load 

capacity of fiber reinforced concrete (FRC) 

corbels, for the first time in literature. SVM was 

also employed in many structural engineering 

problems [24]. A wide range of database with 

existing test results was established and multiple 

SVM models were created. Among the models, 

best performing one was selected and the results 

were compared to an existing model. 

Furthermore, selected model was tested by 

means of a parametric study to figure out the 

prediction capacity for input values different 

than experimental data.  In models, input 

parameters were fiber type (steel fiber and glass 

fiber), span-to-depth ratio (a/d), steel 

reinforcement ratio (ρ), steel reinforcement 

tensile strength (fy), concrete compressive 

strength (fcu), concrete tensile strength (ft) and 

fiber volume ratio (vf). Based on these findings 

mentioned above, following conclusion can be 

drawn:  

 Proposed model shows high prediction 

performance on estimating the test results 

for shear strength of both SFRC and 

GFRC simply supported corbels with 

various geometry and material properties.  

 Parametric analysis’ results suggest that 

the model has the generalization 

capability, which implies that the model 

functions successfully for not only the 

provided test data but also the data 

generated within the range of input 

variables.  

 It can be stated that the span-to-depth ratio 

(a/d) has dominant effect on ultimate load 

capacity.  

 Encouraging performance of support 

vector machines approach in solving 

complex problems can draw attentions of 

engineers and researchers, being a robust 

and successful alternative.  
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