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A B S T R A C T   

Microarray data classification is one of the hottest issues in the field of bioinformatics due to its efficiency in 
diagnosing patients’ ailments. But the difficulty is that microarrays possess a huge number of genes where the 
majority of which are redundant or irrelevant resulting in the deterioration of classification accuracy. For this 
issue, mutated binary Aquila Optimizer (MBAO) with a time-varying mirrored S-shaped (TVMS) transfer function 
is proposed as a new wrapper gene (or feature) selection method to find the optimal subset of informative genes. 
The suggested hybrid method utilizes Minimum Redundancy Maximum Relevance (mRMR) as a filtering 
approach to choose top-ranked genes in the first stage and then uses MBAO-TVMS as an efficient wrapper 
approach to identify the most discriminative genes in the second stage. TVMS is adopted to transform the 
continuous version of Aquila Optimizer (AO) to binary one and a mutation mechanism is incorporated into 
binary AO to aid the algorithm to escape local optima and improve its global search capabilities. The suggested 
method was tested on eleven well-known benchmark microarray datasets and compared to other current state-of- 
the-art methods. Based on the obtained results, mRMR-MBAO confirms its superiority over the mRMR-BAO al-
gorithm and the other comparative GS approaches on the majority of the medical datasets strategies in terms of 
classification accuracy and the number of selected genes. R codes of MBAO are available at https://github. 
com/el-pashaei/MBAO.   

1. Introduction 

Microarray technology is widely utilized for a variety of purposes, 
including the diagnosis of diseases such as cancer. 

Using DNA microarray data, researchers can discover all the differ-
ences in gene expression between two different cell types, such as 
healthy and cancerous cells in a single experiment. In medical research, 
the use of microarray data for disease classification based on distinct 
patterns of gene expression is crucial. Microarray data classification 
plays an important role in real-world clinical practice, particularly in the 
diagnosis of heart disease, infectious disease, and cancer research 
(Nguyen et al., 2015). Microarray classification is a supervised learning 
task that uses an expression array phenotype to determine the diagnostic 
category of a tissue sample (Sánchez-Maroño et al., 2019). However, the 
classification of microarray data faces significant challenges due to the 
high dimensionality and high complexity of data. Microarray datasets 
contain tens of thousands of genes (features) and a low number of 
samples, often from less than hundreds of patients. Although the huge 
number of genes in microarray datasets may appear to be beneficial, 

many of these genes are noisy, redundant, or irrelevant, causing a 
deterioration of the classification quality. Furthermore, because most of 
the genes in microarray data are directly or indirectly connected with 
each other, microarray data can be perceived as very complex. To 
address these issues, gene selection (GS) approaches are used to identify 
the most informative genes before the classification process. GS tech-
niques aid in reducing data dimensionality, simplifying the learning 
model, speeding up the learning process, improving classification ac-
curacy, and increasing the interpretability of data (Alanni et al., 2019). 
The best GS approach can be defined as one that reduces the number of 
selected genes while increasing the classifier’s accuracy. 

Filter approaches, wrapper approaches, and hybrid approaches are 
the three commonly used types of GS techniques. Filter approaches 
remove irrelevant and redundant genes without employing a classifier. 
They utilize some principal characteristics of the training data to 
calculate a score for each gene and then choose the highest-ranking 
genes. Some of the widely used filter approaches are Information Gain 
(IG) (Zhang et al., 2020), Mutual Information Maximization (MIM) 
(Dabba et al., 2021), Fisher-Score (Dashtban and Balafar, 2017), ReliefF 
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(Shukla and Tripathi, 2019), Chi-Square (Kanti Ghosh et al., 2021), 
Symmetrical Uncertainty (SU) (Shreem et al., 2022), and Minimum 
Redundancy Maximum Relevance (mRMR) (Alomari et al., 2018). 
Wrapper approaches use a classifier as a fitness evaluator to measure the 
usefulness of genes or gene subsets. They build a lot of models with 
different subsets of input genes and then choose the ones that produce 
the best model based on the fitness value. Although the wrapper ap-
proaches may obtain better performances, they are not suitable for 
high-dimensional datasets since they are computationally expensive. In 
comparison, filter approaches are less computationally expensive but 
yield less classification accuracy. For this reason, hybrid methods have 
been suggested to combine the best properties of both filter and wrapper 
approaches. 

Finding the best gene subsets has already been demonstrated as an 
NP-hard problem (Pashaei and Pashaei, 2021a; Alomari et al., 2021). 
Therefore, nature-inspired optimization algorithms (NIOAs) have been 
adopted in wrapper-based approaches to address feature selection (FS) 
problems. The majority of NIOAs begin with a random population 
initialization and continue with solution evaluation based on the fitness 
function at each iteration, solution updating, and finally identifying the 
optimal solution based on the termination criterion (Elgamal et al., 
2020). Binary Krill Herd (BKH) algorithm (Zhang et al., 2020), Binary 
Black Hole Algorithm (BBHA) (Pashaei and Pashaei, 2021a, 2020; 
Pashaei et al., 2016a), Gray Wolf Optimizer (GWO) (Alomari et al., 
2021), Moth Flame Optimization Algorithm (MFOA) (Dabba et al., 
2021), improved Binary Clonal Flower Pollination Algorithm (IBCFPA) 
(Yan et al., 2019a), improved Shuffled Frog Leaping Algorithm (ISFLA) 
(Hu et al., 2018), Harmony Search Algorithm (HSA) (Dash, 2021), 
Harris hawks optimization (HHO) algorithm (Abdel-Basset et al., 2021), 
and Binary Coral Reefs Optimization with Simulated Annealing and 
tournament selection strategy (BCROSAT) (Yan et al., 2019b) are some 
examples of wrapper techniques that have been used to address GS 
problem. 

Several hybrid filter/wrapper approaches have also been introduced 
to tackle the GS problem. Examples of these implementations are IG/ 
modified BKH algorithm (MKHA) (Zhang et al., 2020), Fisher-Score/ 
Intelligent Dynamic Genetic Algorithm (IDGA) (Dashtban and Balafar, 
2017), Random Forest Ranking (RFR)/ IDGA (Pashaei and Pashaei, 
2019), robust mRMR/ bat-inspired algorithm (BA)-β hill-climbing 
(Alomari et al., 2018), mRMR/ hybrid of Simulated Annealing and 
Rao Algorithm (SARA) (Baliarsingh et al., 2021), Correlation Feature 
Selection (CFS)/ Improved Particle Swarm Optimization (IPSO) (Jain 
et al., 2018), SU/ reference set HAS (RSHSA) (Shreem et al., 2022), RFR/ 
BBHA (Pashaei et al., 2016b), RFR/ hybrid of BBHA and PSO (Pashaei 
et al., 2019), MIM/ MFOA (Dabba et al., 2021), mRMR/ hybrid of BBHA 
and binary dragonfly optimization algorithm (DBH) (Pashaei and 
Pashaei, 2021a), “Technique for Order Preference by Similarity to Ideal 
Solution” (TOPSIS) filtering/ binary Jaya algorithm (Chaudhuri and 
Sahu, 2021), and Joint Mutual Information (JMI)/ bacterial algorithm 
(Wang et al., 2017). 

Most of the above-mentioned approaches, however, suffer from 
stagnation in local optima that result from the intricate interplay be-
tween genes and the huge space search (Alomari et al., 2018, 2021). As a 
result, a robust search technique is still required to select the optimum 
gene subset in an acceptable amount of time in order to enhance clas-
sification accuracy. Aquila Optimizer (AO) is one of the efficient NIOAs 
that has recently been suggested by Abualigah et al (Abualigah et al., 
2021). This algorithm is inspired by the behavior of Aquilas in nature 
while catching their prey. Compared with other recognized NIOAs, AO 
has unique characteristics, such as easy implementation, flexibility, and 
robustness to control parameters. As a result, the AO and its hybrid 
version (Wang et al., 2021) have been utilized to tackle several opti-
mization problems since its creation in 2021, such as industrial engi-
neering design problems (Wang et al., 2021), Adaptive Neuro-Fuzzy 
Inference System (ANFIS) parameter tuning for oil production fore-
casting (Alrassas et al., 2021), image enhancement (Rajinikanth et al., 

2022), FS for COVID-19 image classification (Abd Elaziz et al., 2021), 
and FS for intrusion detection system (Fatani et al., 2021). However, to 
our knowledge, AO is not yet properly investigated for GS and cancer 
classification problems. 

In this paper, a hybrid filter/wrapper GS method is proposed for 
cancer microarray data classification using the mRMR and Mutated Bi-
nary Aquila Optimizer (MBAO) algorithm. A time-varying mirrored S- 
shaped (TVMS) transfer function (Beheshti, 2020) is applied to convert 
continuous search space to a binary one. The TVMS transfer function can 
balance exploration and exploitation in BAO. To improve the efficiency 
of Binary AO (BAO) in dealing with complex high-dimensional micro-
arrays data, a mutation mechanism is incorporated into the BAO. Mu-
tation operation randomly modifies one or more elements of the local 
best solution and therefore can empower BAO’s global search capabil-
ities, and avoid the algorithm from getting stuck in the local optimum. 
The suggested method is called mRMR-MBAO and it uses Support Vector 
Machine (SVM) classifier (Pashaei and Aydin, 2018; Pashaei et al., 
2016c) to evaluate candidate gene subsets. Before performing MBOA for 
microarray data classification, a subset of the most discriminative genes 
must be selected from thousands of genes. The mRMR filter strategy is 
used first in the proposed hybrid method to select M top-ranked genes. 
Thereafter, MBAO uses these genes as a powerful initial input to deter-
mine the final most informative subset of genes. 

The main contributions of this paper are as follows:  

• A novel wrapper approach based on an improved Aquila Optimizer is 
applied to GS for microarray data.  

• The TVMS transfer function is introduced in continuous AO to design 
a new binary AO.  

• A mutation genetic operator is combined with BAO to improve the 
search performance of the original BAO.  

• Eleven well-known microarray datasets are used to evaluate whether 
the suggested method (mRMR-MBAO) can produce a gene subset 
with fewer genes and higher classification accuracy than current GS 
approaches. 

For performance analysis and comparison evaluations, three metrics 
have been used: classification accuracy, number of selected genes, and 
fitness value. The performance of mRMR is compared against other well- 
regarded filtering approaches. The performance of BAO with and 
without mutation mechanism is also studied. For comparative evalua-
tion, the proposed mRMR-MBAO method is compared with current 
state-of-art approaches. The conducted experiments demonstrate that 
mRMR-MBAO is able to obtain comparatively better results in terms of 
accuracy and number of selected genes than other previously proposed 
methods. 

The remainder of this paper is organized as follows: The AO method 
and mRMR filtering method are briefly discussed in Section 2. In Section 
3, the stages of the developed method are presented. The experimental 
setup, the obtained results, and their discussions are reported in Section 
4. Finally, the conclusion and future works are given in Section 5. 

2. Background 

2.1. Aquila optimizer algorithm 

AO (Abualigah et al., 2021) is a new stochastic population-based 
NIOA that mimics the hunting techniques of Aquila, the most popular 
raptor in the Northern Hemisphere. Aquila uses four different hunting 
strategies (S) in nature, depending on the type of prey. High soar with 
vertical stoop (S1), contour flight with a short glide attack (S2), low fly 
with gradual descent attack (S3), and strolling and grabbing prey (S4) 
are the strategists in question, which are modeled in the AO algorithm. 
Depending on the situation, Aquila skillfully and quickly switches be-
tween those hunting strategies. The AO algorithm contains two search 
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phases: the exploration phase, which conducts a global search using S1 

and S2 tactics, and the exploitation phase, which conducts a local search 
using S3 and S4 tactics. This condition t ≤ (2/3) × T determines the AO 
algorithm’s transition between exploration and exploitation phases. t 
and T present the current iteration and the maximum number of itera-
tions, respectively. When the condition is true, the AO conducts the 
exploration phase; otherwise, it executes the exploitation phase. The 
following subsections detail each phase of the AO algorithm: 

2.1.1. Initialization phase 
The search space and the fitness function are defined in this phase. 

The AO solutions are initialized randomly in the search space, consid-
ering the area’s boundaries: 

Xij = rand ×
(
UBj − LBj

)
+LBj (1)  

where Xij is the position of the ith candidate solution (Aquila) in the jth 
dimension. i = 1,2,…,N (N is the total number of solutions) and j = 1,
2,…,D (D is the dimension of the solutions). UB and LB are the 
maximum and minimum bounds of the given problem. rand is a random 
number in U ∼ [0, 1]. 

2.1.2. Exploration phase 
The S1 and S2 tactics are used to provide AO’s exploratory behavior. 

In S1, Aquila scouts the search zone from a high altitude to find the prey. 
S1 mathematically formulated as follows: 

XS1
i (t+ 1) = Xb(t) ×

(
1 −

t
T

)
+(XM(t) − Xb(t)) × rand (2)  

XM(t) =
1
N

∑N

i=1
Xi(t) ∀ j = 1, 2, …, D (3)  

where XS1
i (t+1) presents the next position of the ith solution in the 

continuous search space using S1 tactic. Xb(t) is the prey position (i.e. 
the best solution so far), and the XM(t) is the average position of Aquilae 
(solutions). 

The Aquila then circles above the prey in the S2 tactic, and narrowly 
explores the prey’s vicinity in a spiral shape in preparation for the 
attack. S2 mathematically formulated in Eq. (4). 

XS2
i (t+ 1) = Xb(t) × Levy(D)+XR(t) + (r × cos(θ) − r × sin(θ)) × rand

(4)  

Levy(D) = 0.01 × ((μ × σ)
/

|v|1/β
), σ

=

(
Γ(1 + β) × sin(πβ/2)

Γ((1 + β)
/

2) × β × 2((1− β)/2)

)1
β

(5)  

r = r1 + 0.0265 × [1 2 3…D], θ

= − 0.005 × [1 2 3…D] + (3 × π/2) (6) 

Fig. 1. Pseudocode of AO.  
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where XR(t) is a randomly selected solution from N candidate solutions 
in the current iteration t. r1 is a random value in the range [0,20], and 
[1,2,3…D] is a vector from 1 to dimension size D. In Levy flight distri-
bution (Levy(D)), β= 1.5, μ and v are two random numbers within [0,1], 
and the Gamma function Γ for an integer z is expressed as Γ(z) =
∫∞

0 tz− 1e− tdt. 
The S1 and S2 techniques in the exploration phase also are condi-

tioned by a random number. If the random value is less than 0.5, then 
the S1 tactic is performed; otherwise, the S2 tactic is conducted. 

2.1.3. Exploitation phase 
The S3 and S4 tactics are employed to offer AO’s exploitation search 

behavior. Aquila is ready to land and attack in S3. It makes a vertical 
descent with a preliminary attack to see how the prey reacts. This 
technique is mathematically presented as follows: 

XS3
i (t+ 1) = (Xb(t) − XM(t) ) × 0.1 − rand +(rand × (UB − LB)+ LB) × 0.1

(7) 

In S4 the Aquila finally attacks the prey to grab it, which is mathe-
matically defined as follows: 

XS4
i (t+ 1) = QF × Xb(t) − ((2 × rand − 1 ) × Xi(t) × rand ) − (2

× (1 − (t
/

T)) × Levy(D)+ rand × (2 × rand − 1 ) (8)  

QF(t) = t(2×rand− 1)/(1− T2) (9)  

where QF(t) represents the value of the quality function in the tth iter-
ation that is employed to balance the search strategy. 

Again, a random number influences the S3 and S4 strategies. If the 
random value is greater than 0.5, then the S3 tactic will be called to 
action; otherwise, the S4 tactic will be used. The pseudocode of the AO 
algorithm is presented in Fig. 1. The AO is a relatively new approach that 
originally has been suggested to handle numerical optimization prob-
lems as well as real-world engineering design optimization challenges. 
This study is one of the first to put the AO to the test in terms of discrete 
GS problems. 

2.2. The mRMR filtering approach 

The mRMR, as a widely used GS filtering approach (Pashaei and 
Pashaei, 2021a, 2022; Radovic et al., 2017), favors features that have a 
high correlation with the class (output) but a low correlation with each 
other. The mutual Information Difference (MID) objective function is 
used in mRMR to evaluate genes in the search space. MID denotes the 
relevance and redundancy difference of genes, while mutual informa-
tion is utilized to calculate the correlation between genes (redundancy) 
and correlation with the class (relevance). Let M =

{
xk,j

}

K×D represents 
a microarray gene expression matrix, where xk,j represents the expres-
sion of gene j in sample k. K and D represent the total number of samples, 
and genes in M, respectively. Let xj =

(
x1,j, x2,j,…, xK,j

)
denotes expres-

sion of jth gene across samples. The indexed set of genes are G =

{1,2, ...,D}. The method begins with a gene that has maximum mutual 
information with the class l and inserts it into a subset Z⊂G. Then, it 
adds the next gene with a maximum value of MID into the set of already 
selected genes (Z subset). 

MID(j) = I(l ; j) −
1
|Z|

∑

j′ ∈Z,j′ ∕=j

I(j; j′ ) (10)  

I(l ; j) =
∑

xj

p
(
l ; xj

)
log

(
p
(
l ; xj

)/
p
(
l )p(xj

) )
(11)  

where I(l ; j) is the mutual information between class labels l and gene j, 
which quantify the relevancy of gene j for the classification. I(j; j′ ) rep-
resents the redundancy of gene j with the other genes in the subset Z. 

3. The proposed mRMR-MBAO algorithm for GS 

This section introduces a novel GS technique based on mRMR and 
two different BAO variants (BAO-TVMS with and without mutation). 
The least important genes in the dataset are first pruned using the mRMR 
filtering method. Then, as shown in Fig. 2, the proposed MBAO with 
TVMS transfer function is utilized to determine the best gene subset from 
the current set of genes. The proposed method is described in-depth in 

Fig. 2. Flowchart of proposed mRMR-MBAO approach for GS.  
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the following subsections. 

3.1. Preprocessing of genes using mRMR 

The mRMR filter method performs data preprocessing to prepare the 
input data for suggested BAO by eliminating noisy genes. mRMR selects 
the M top-ranked genes based on the score achieved from their corre-
lation with each other and class label. The selected genes, which served 
as input for the construction of the initial population in the BAO wrapper 
GS approach, are more useful for cancer classification. The filtering 
method, in addition to improvement of classification accuracy, reduces 
the computing burden associated with an exhaustive search across all 
possible gene subsets of wrapper approaches, since the number of gene 

subsets grows exponentially as the number of genes increases. 

3.2. Binary Aquila optimizer with TVMS transfer function 

The selected features from the previous preprocessing step are fed to 
the suggested BAO wrapper approach to find the best gene subset. As a 
result, the M top-ranking genes from mRMR are narrowed down even 
more at this stage to provide the smallest subset of informative genes 
with the highest fitness value for cancer classification. 

GS is a binary optimization problem. This problem’s solutions are 
limited to binary values of 0 and 1. A candidate solution X is represented 
as a binary string of size D, X = {g1, g2,…, gD}, where D denotes the 
problem dimension, and gj is jth element (gene) in the solution (j =

Fig. 3. Pseudocode of BAO with TVMS transfer function.  
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{1,2, ..,D}). In the binary solution X, the gene gj will be preserved if 
the value is 1, and it will be eliminated if the value is 0. Thus, only genes 
that are coded in one are considered in the evaluation. 

AO works in a continuous solution space whereas the GS problem has 
a discrete (binary) solution space. The continuous space must be turned 
into discrete space before applying the AO to the GS problem. Therefore, 
AO should be modified to handle binary optimization problems. This 
means that each solution’s elements should be set to 0’s or 1’s. This 
modification is done using a transfer function (TF). Although there are 

various TFs in the literature including V-shaped, S-shaped, and U-sha-
ped, TF selection is not a trivial task (Chaudhuri and Sahu, 2021; 
Beheshti, 2021). The choice of TFs was demonstrated to have a sub-
stantial impact on the binary algorithm’s output (Hammouri et al., 
2020). This study uses the recently developed TVMS transfer function 
(Beheshti, 2020) to introduce a binary version of AO (BAO). The AO is a 
new efficient NIOA whose capability to solve the GS problem has not 
been investigated yet. 

The TVMS transfer function mathematically is formulated in Eqs. 
(12), (13), and (15). 

S
(
xij(t+ 1), ω

)
= sigmoid

(
xij(t+ 1), ω

)
= 1

/
(1+ e ω(− xij(t+1)))

(12)  

S′ ( xij(t+ 1), ω
)
= sigmoid

(
xij(t+ 1), ω

)
= 1

/
(1+ e ω(xij(t+1)))

(13) 

Two sigmoid functions are used to convert the real results to binary 
ones by generating the probability of changing the element xij to 0 or 1. 
xij(t+1) demonstrates the value of the jth dimension of the ith solution 
in the new iteration (t+1), and ω is a time-varying variable, which is 
defined as follows: 

Fig. 4. Pseudocode of BAO with mutation.  

Table 1 
Benchmark gene expression datasets.  

Dataset 
Name 

#Samples #Genes #Classes Diagnostic task 

Colon 
Tumor  

62  2000 2 (Binary 
class) 

‘Tumor’:40, ‘Normal’:22 

CNS  60  7129 2 (Binary 
class) 

‘MS’:39, ‘TF:’21 

Ovarian  253  15154 2 (Binary 
class) 

‘Cancer’:162, ‘Normal’:91 

ALL-AML  72  7129 2 (Binary 
class) 

‘ALL’:47, ‘AML’:25 

Breast 
Cancer  

97  24481 2 (Binary 
class) 

‘relapse’:46, ‘non- 
relapse’:51 

Prostate 
Tumor  

102  10509 2 (Binary 
class) 

‘Tumor’:50, ‘Normal’:52 

MLL  72  12582 3 (Multi- 
class) 

‘AML’:28, ‘ALL’:24, 
‘MLL’:20 

Leukemia- 
3c  

72  7129 3 (Multi- 
class) 

‘B-cell’:38, ‘T-cell’:9, 
‘AML’:25 

Leukemia- 
4c  

72  7129 4 (Multi- 
class) 

‘AML-B’:38, ‘AML-P’:9, 
‘ALL-B’:21, ‘ALL-T’:4 

SRBCT  83  2308 4 (Multi- 
class) 

‘EWS’:29, ‘RMS’:25, 
‘NB’:18, ‘BL’:11 

Lung Cancer  203  12600 5 (Multi- 
class) 

‘A’:139, ‘N’:17, ‘SM’:6, 
‘SQ’:21, ‘P’:20  

Table 2 
Parameter setting.  

Parameters BAO MBAO Explanation 

T 50 50 Max number of iteration 
N 35 35 Population size 
r1 10 10 Parameters inside BAO/MBAO movement 

equations, which were set according to the 
original AO’s parameter values 

β 1.5 1.5 
ωmin 1 1 
ωmax 10 10 
pm – [0.005,0.9] Mutation rate  
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ω = ( ωmax − ωmin)(t/T)+ ωmin (14)  

where t indicates the current iteration and T indicates the maximum 
iteration. ωmin = 1 and ωmax = 10 are the lower and upper bound of the 
variable ω. To transition seamlessly from exploration to 
exploitation, ω is initially set to ωmax and gradually dropped to ωmin. 

Eqs. (15) and (16) determine the binary solutions of each transfer 
function. Then, to update the new solution, the best solution among 
Pij(t+1) and P′

ij(t+1) is chosen according to their fitness value. The el-
ements of the candidate solution are set to 0 and 1 based on Eq. (17). 

Pij(t+ 1) =
{

1 ,&if rand < S
(
xij(t + 1), ω

)

0 , if rand ≥ S
(
xij(t + 1), ω

)

}

(15)  

P′

ij(t+ 1) =
{

1 ,&if rand > S′ ( xij(t + 1), ω
)

0 , if rand ≤ S′ ( xij(t + 1), ω
)

}

(16)  

xij(t+ 1) =

⎧
⎪⎨

⎪⎩

Pij(t + 1) ,&if fitness
(
Pij(t + 1)

)〉
fitness

(
P′

ij(t + 1)
)

P
′

ij(t + 1), if fitness
(
Pij(t + 1)

)
≤ fitness

(
P

′

ij(t + 1)
)

⎫
⎪⎬

⎪⎭

(17) 

A set of randomly generated binary solutions is used to start the 
wrapper feature selection approaches. During the search process, the 
approaches employ a fitness (objective) function to evaluate each so-
lution in the population. The fitness function is an important factor to 
consider when designing any optimization algorithm because the fitness 
function guides the algorithm to find the optimal solution within the 
large search space. Machine learning classifiers such as support vector 
machine (SVM) (Pashaei and Pashaei, 2021a; Pashaei and Aydin, 2018; 
Pashaei et al., 2016c), k-nearest neighbor (KNN) (Dashtban and Balafar, 
2017), artificial neural network (ANN) (Pashaei and Pashaei, 2021b), 
and Naïve Bayes (NB) (Ahmed et al., 2017) are used as the fitness 
function to evaluate the predictive accuracy of candidate gene subsets. 
SVM with linear kernel function is utilized in this study to calculate the 
fitness value of each solution using 10-fold cross-validation (CV). A 
better solution has a higher fitness value, which permits more accurate 
cancer classification. It’s worth noting that wrapper FS techniques try to 
reduce the number of genes while improving classification accuracy. If 
two subset genes have the same classification accuracy, the subset with 
fewer genes is chosen in the evaluation procedure. Fig. 3 depicts the 
pseudocode of the proposed BAO for GS. 

Each gene subset can be seen as a candidate solution (Aquila posi-
tion) in BAO. Each solution may contain D genes, where D is the number 
of genes found during the previous filtering stage. The algorithm begins 
with a population of randomly generated binary solutions. The fitness 
function is then employed to assess each solution in the population. The 
population’s best solution is found after fitness values have been 
assigned. The core loop of BAO is repeated multiple times. Several 
random values within [0,1] are used to choose between the exploration 
and exploitation phases. Four hunting strategies of Aquila (Eqs. (2), (4), 
(7), and (8)) are utilized to update the solutions. Then, the TVMS 
transfer function is carried out to convert real values to binary values. 
First, Pi and P′

i are calculated by Eqs. (15) and (16), and the best solution 
between Pi and P′

i is selected as the next solution. Then, the obtained 
solution is compared with the current solution and global best solution 
in terms of classification accuracy and number of selected genes, and 
both are updated accordingly. The algorithm repeats the steps until it 
reaches the value of the maximum iteration. 

3.3. Proposed BAO with mutation (MBOA) 

The proposed BAO performs well on a wide range of microarray 
datasets. On some benchmark datasets, however, it fails to provide 
sufficient performance. To address this issue, the mutation mechanism is 

Table 3 
Choosing the optimal value of mutation parameter pm for some datasets. The 
best values are highlighted in bold and the selected parameter values are 
highlighted by underlining.  

pm values Colon Tumor CNS Breast Cancer Prostate Tumor 

ACC #G ACC #G ACC #G ACC #G 

0.005  96.67  11  80.48  27  85.22  28  95.27  9 
0.01  95.00  11  88.24  23  85.22  28  95.27  9 
0.02  92.04  11  88.33  41  82.67  32  97.09  11 
0.03  87.80  10  85.14  32  86.54  12  96.09  8 
0.04  91.66  12  82.38  19  86.78  10  97.18  10 
0.05  96.90  9  85.48  21  85.67  26  97.09  15 
0.06  94.26  13  89.90  40  91.78  25  96.09  8 
0.07  91.76  11  88.24  39  90.85  30  96.28  7 
0.08  91.76  11  85.24  41  90.82  34  96.27  7 
0.09  91.28  11  85.48  25  85.56  8  95.00  24 
0.1  95.11  28  84.67  38  88.21  21  95.09  19 
0.2  90.21  24  80.14  34  84.11  15  96.09  3 
0.3  94.83  21  83.24  18  86.78  18  96.09  7 
0.4  88.81  19  88.24  52  87.76  42  98.00  7 
0.5  94.00  12  82.81  41  86.56  24  95.18  9 
0.6  89.57  36  81.23  46  87.56  17  96.17  18 
0.7  94.35  26  88.03  47  84.56  17  96.18  24 
0.8  92.09  14  85.38  4  90.87  26  96.09  25 
0.9  91.21  4  82.99  11  83.44  10  95.27  5  

Table 4 
Comparison of classification accuracy (ACC), True Positive (TP), and False 
Positive (FP) rate of different filtering approaches on eleven biological datasets 
using SVM classifier.  

Class Datasets Metrics mRMR IG Chi- 
square 

RelifF 

Binary 
Class 

Colon Tumor ACC 85.48 77.41 79.03 80.64   

TPR 85.5 77.4 79 80.6   
FPR 1.82 26.7 27.9 27  

CNS ACC 63.33 75.00 73.33 66.66   
TPR 63.3 75 73.33 66.7   
FPR 4.83 26.6 34.1 39.9  

Ovarian ACC 100 100 100 100   
TPR 100 100 100 100   
FPR 100 100 100 100  

ALL-AML ACC 98.61 98.61 97.22 97.22   
TPR 98.6 98.6 97.2 97.2   
FPR 2.8 2.6 3.3 3.3  

Breast ACC 75.25 74.22 74.22 77.31   
TPR 75.3 74.2 74.2 77.3   
FPR 2.49 2.6 2.5 2.32  

Prostate_Tumor ACC 94.11 88.23 86.27 93.13   
TPR 94.1 88.2 86.3 93.1   
FPR 5.9 11.8 13.8 6.8 

Multi 
Class 

MLL ACC 97.22 95.83 97.22 97.22   

TPR 97.2 95.8 97.2 97.2   
FPR 1.4 2.0 1.4 1.1  

Leukemia-3c ACC 95.83 97.22 94.44 94.44   
TPR 95.8 97.2 94.44 94.44   
FPR 3 1.8 3.8 3.8  

Leukemia-4c ACC 94.44 94.44 94.44 87.5   
TPR 94.4 94.4 94.4 87.5   
FPR 3.3 3.3 3.3 6.1  

SRBCT ACC 100 100 100 100   
TPR 100 100 100 100   
FPR 100 100 100 100  

Lung Cancer ACC 96.55 93.59 92.11 91.62   
TPR 96.6 93.6 92.11 91.6   
FPR 4.4 8.8 9 13.1 

The best results are highlighted in bold font. 
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introduced to the BAO algorithm, and an MBAO algorithm is suggested. 
The local searching performance of the BAO is improved, the diversity of 
solutions is increased, and early convergence is avoided by incorpo-
rating the mutation mechanism. The mutation operator is added to the 
BAO structure to produce a mutation vector xm

i for the current solution 
xi. The mutation operator modifies specific elements in the solution xi 
with a probability pm (mutation rate), resulting in a more diverse solu-
tion to assist the search process in escaping local optimal. The values of 
pm have a significant impact on the performance of mutation operators 
in BAO. Each solution has a mutation rate pm, which determines the 
number of mutated elements. Mutation rate pm is set to a random value 
within the range [0.01,0.9] for each solution at each iteration. 

Assume the solution after the tth iteration is xi = (1,0, 0, 1,1, 1) in 
MBAO. One or more elements in the xi are chosen randomly, the ele-
ments are modified by reversing their values, and the other elements are 
left unchanged (e.g. two elements (1 and 3) are chosen). The mutated 
solution xm

i = (0, 0,1, 1,1, 1) can be obtained via this mutation tech-
nique. The BAO evaluates the mutated vector xm

i using the fitness 
function. If xm

i is better than xi in terms of fitness value and number of 
selected genes, xi will be replaced by xm

i . Otherwise, the xi remained 
unchanged. Furthermore, if xm

i has a higher fitness value and a fewer 
number of selected genes than the best solution, xb will be updated by 
xm

i . (i.e. Lines 17–19 in Algorithm 3). The proposed MBAO algorithm 
pseudocode is shown in Fig. 4. 

Table 5 
Comparison between BAO and MBAO.  

Algorithm       Datasets        

Colon CNS Ovarian SRBCT Lung Cancer Leukemia-4c MLL ALL-AML Leukemia-3c Breast Prostate_Tumor 

BAO #G 11 31.8 5.857 9.2 42.71 21.33 11.29 7.66 9.8 21.87 16.87  
ACC 93.43 84.58 100 100 98.08 98.18 99.06 99.583 99.9 87.23 95.99 

MBAO #G 16.11 21.37 5.166 7.5 23.833 21.33 11.28 8.71 12.28 23.58 15.85  
ACC 95.74 88.57 100 100 98.54 98.70 99.64 100 100 89.12 97.038  
T–Sig. * * – – – – – – – * * 

The best results are highlighted in bold font. 

Fig. 5. Classification accuracy versus the number of selected genes by mRMR-BAO and mRMR-MBAO for 11 datasets using the SVM classifier.  
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4. Experimental results 

In this section, the performance of the suggested method was 
assessed using benchmark microarray datasets. Section 4.1 describes the 
details of the datasets. The min-max normalization and mRMR filtering 
method were applied to datasets at the first stage to normalize our data 
to [0,1] and eliminate noisy and redundant features. The impact of the 
mRMR on classification accuracy is investigated in Section 4.2. In the 
next stage, suggested BAO and MBAO algorithms were employed to find 
the best gene subset. Therefore, Section 4.3 evaluates the performance of 
BAO and MBAO on microarray datasets where the BAO with and 
without mutation are compared. Section 4.4 discusses the comparison of 
the proposed mRMR-MBAO-SVM algorithm with existing state-of-the- 
art approaches such as IG-MBKH (Zhang et al., 2020), SU-RSHSA 
(Shreem et al., 2022), MIM-MFOA (Dabba et al., 2021), IBCFPA (Yan 
et al., 2019a), ISFLA (Hu et al., 2018), BCROSAT (Yan et al., 2019b), 
mRMR-DBH (Pashaei and Pashaei, 2021a), SARA (Baliarsingh et al., 
2021), and TOPSIS-Jaya (Chaudhuri and Sahu, 2021) in the terms of 
classification accuracy and the number of selected genes. Finally, Sec-
tion 4.5 presents the biological interpretation of the marker genes 
selected by the mRMR-MBAO method. 

The proposed algorithm was implemented in R programming lan-
guage and simulations are conducted on an Intel Core 2.2 GHz Core i5 
CPU with 8 GB of RAM and a Windows 10 operating system. The 
‘praznik’ R package was used to implement mRMR and package ’e1071’ 
was utilized to implement the SVM classifier. Weka, an open-source 

machine learning platform, was used to implement the other filter 
techniques (ReliefF, Chi-Square, and IG). The heat map was generated 
using the “pheatmap” package of R. 

4.1. Datasets and experimental setup 

The suggested algorithms were evaluated on eleven publicly avail-
able microarray gene expression datasets with different types of diseases 
(https://data.mendeley.com/datasets/fhx5zgx2zj/1). The details of 
these datasets are summarized in Table 1 and include the dataset name, 
the number of samples, the number of genes, the number of classes, and 
the diagnostic task. The datasets included binary classes and multi- 
classes datasets with thousands of genes. The datasets’ dimensional 
scopes span from 2000 to 15154 (high-dimensional data) while sample 
sizes (number of patients) are (very) small. 

SVM classifier with a 10-fold CV was utilized to validate the fitness 
performance of the suggested algorithm on each of the datasets, while 
Leave-One-Out CV (LOOCV) approach provided the final evaluation of 
the suggested method with the selected genes. Moreover, a linear kernel 
was chosen in SVM to carry out the classification task. For the fairness of 
the experiment, the experiments of all methods were also repeated 10 
times for each dataset, and the mean values were reported as the final 
result. Table 2 provides the proposed methods’ parameter setting values. 
These parameter values were chosen based on preliminary experiments 
and previous studies on AO (Abualigah et al., 2021; Wang et al., 2021). 
Parameter values of other comparison algorithms are the same as Ref 

Fig. 5. (continued). 
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(Zhang et al., 2020). The population size N, the maximum number of 
iterations T, and mutation rate pm are the three main hyperparameters of 
the proposed algorithm. For both BAO and MBAO algorithms, popula-
tion size and iteration number are set to 35 and 50, respectively, in our 
trials. While performing several experiments, the mutation 

hyperparameter comes out to be important since the slight variation of 
this parameter causes significant changes in the results. The variation of 
classification accuracies (ACC) and the number of selected features (#G) 
concerning the mutation rate on several microarray datasets are given in 
Table 3. It is worth noting that the reported results in Table 3 were 

Fig. 6. Boxplots for all datasets to show the diverse behavior of the proposed mRMR-MBAO.  
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produced by a single run of the proposed MBAO algorithm using 10 fold 
CV. From Table 3, it can observe that the optimal choice of 
pm hyperparameter can significantly affect the resulting model’s per-
formance. Therefore, the mutation parameter should be adjusted for 
each dataset to maximize the proposed model performances. Fortu-
nately, fine-tuning the mutation parameter is not a difficult task. It can 
be determined by a grid search as seen in Table 3. 

4.2. Effect of mRMR in the proposed method 

The classification behavior of mRMR is compared with several well- 
known filtering algorithms such as IG, RelifF, and Chi-square in order to 
explore the effect of the mRMR on the performance of the proposed 
algorithm. The mRMR filtering approach was used to find the most 
important genes and reduce the dataset’s dimensionality. For compar-
ative purposes, the SVM classifier with LOOCV was utilized to measure 
the performance of all filtering methods. Table 4 shows the performance 
of the mRMR and other comparative methods in terms of classification 
accuracy (ACC), True Positive rate (TPR), and False Positive rate (FPR) 
for all binary classes and multi-class microarray datasets. The best re-
sults are highlighted in bold font. Note that top-ranked 100 genes are 
selected to make up the initial set of candidate genes after the pre-filter 
operation except CNS (125), following previous studies (Pashaei and 
Pashaei, 2021a, 2022). According to the results presented in Table 4, the 

mRMR-SVM gives admirable classification performance in almost all 
datasets. It can be seen that mRMR is able to find very competitive re-
sults where some of which are the best-recorded. 

4.3. Performance evaluation of BAO and MBAO 

In this section, the effect of mutation on the performance of the 
proposed BAO algorithm is studied. The BOA with mutation (i.e. MBAO) 
and BAO without mutation are compared together. These comparisons 
are shown in Table 5, Figs. 5 and 6. Both algorithms were run in 10 
independent runs because they are stochastic algorithms. It should be 
noted that as a first step the mRMR filtering method was used to exclude 
noisy features and 100 top-ranked genes were picked for BAO and 
MBAO. The average classification accuracy (ACC), the average number 
of selected genes (#G), and the Wilcoxon signed-rank statistical test are 
utilized in Table 5 for exposing the obtained experimental results. The 
Wilcoxon signed-rank statistical test was performed on classification 
accuracy to determine if there is a statistically significant difference 
between MBAO and BAO algorithms. The results obtained were sum-
marized in the ‘T-Sig’ row of Table 5 with the probability range of p −

value ≤ 0.05. Symbol ‘*’ indicates that the MBAO’s results are signifi-
cantly better than BAO, whereas symbol ‘-’ indicates the MBAO results 
are not significantly better than BAO. Moreover, for all tested datasets, 
the performance of MBAO vs BAO was depicted in Fig. 5. As can be seen 

Table 6 
Experimental results by mRMR-MBAO on all datasets.  

Dataset Accuracy #Genes 

Best Worst Avg. SD Best Worst Avg. SD 

Colon Tumor 96.90 95 95.74 1.183  12  20 16.11 3.75 
CNS 93.33 85.24 88.57 2.85  11  32 21.37 8.423 
Ovarian 100 100 100 0  4  6 5.16 0.752 
SRBCT 100 100 100 0  7  8 7.5 0.547 
Lung Cancer 99.02 98.02 98.54 0.318  13  27 23.83 7.88 
Leukemia_4c 98.75 97.5 98.70 0.431  9  29 21.33 7.88 
MLL 100 98.75 99.64 0.609  7  14 11.28 2.21 
ALL-AML 100 100 100 0  6  12 8.714 2.13 
Leukemia_3c 100 100 100 0  9  16 12.28 2.49 
Breast 92.09 87.62 89.12 1.33  12  39 23.58 7.82 
Prostate_Tumor 98.09 96 97.038 0.604  11  24 15.85 4.29  

Table 7 
Results of comparison between proposed mRMR-MBAO and the state-of-art methods.  

Datasets Metric  Proposed 
approach 

SU- 
RSHSA 

mRMR- 
DBH  

IBCFPA MIM- 
MFOA 

BCROSAT ISFLA SARA TOPSIS- 
Jaya 

IG- 
MBKH 

Colon Tumor ∣ # G∣  16.11 7. 59 12  25.9 24.25 20.5 37.1 9 18.90 17.10  
ACC  95.74 93.17 97.02  92.16 99.19 92.31 89.56 97.02 97.76 96.47 

CNS ∣ # G∣  21.37 13.15 39.75  25.2 17 21.40 41.1 – 8.7 14.70  
ACC  88.57 89.36 97.19  84.82 85.00 82.00 77.46 – 96.22 90.34 

Ovarian ∣ # G∣  5.166 20.47 2.66  48.8 33.20 – 33.3 6 18.50 3.40  
ACC  100 99.61 100  99.06 97.63 – 97.29 99.15 99.52 100 

SRBCT ∣ # G∣  7.5 8.37 –  49.8 13.50 33.0 43.10 5 15.80 6.3  
ACC  100 97.98 –  98.02 95.18 95.76 93.72 99.81 100 100 

Lung Cancer ∣ # G∣  23.833 – –  82.2 19.50 23.3 40.3 5 9.9 23.80  
ACC  98.54 – –  94.44 87.13 93.57 89.56 90.22 94.24 96.12 

Leukemia_4c ∣ # G∣  21.33 12.02 –  45.6 – 30.9 32.2 – 19.50 15.80  
ACC  98.70 97.11 –  94.35 – 90.90 90.91 – 99.72 99.44 

MLL ∣ # G∣  11.28 7.83 5.25  42.21 24.50 35.6 40.7 – 12.90 11.10  
ACC  99.64 99.94 100  96.51 69.30 98.04 92.59 – 99.62 99.72 

ALL-AML ∣ # G∣  8.71 21.64 4  29.9 8.23 – 35.8 7 16.10 4.2  
ACC  100 100 100  99.37 99.31 – 96.34 97.65 100 100 

Leukemia_3c ∣ # G∣  12.28 10.72 –  49.6 10.50 32 40.0 7 6.6 8.80  
ACC  100 100 –  97.97 93.75 94.50 94.00 98.02 100 100 

Breast Cancer ∣ # G∣  23.58 18.31 14  – 22.50 – – – – – 
ACC  89.12 80.40 90.21  – 84.11 – – – – – 

Prostate Tumor ∣ # G∣  15.85 – 28  – 14.00 – – – – – 
ACC  97.038 – 98.19  – 86.63 – – – – – 

The best results are highlighted in bold. 
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in Table 5 and Fig. 5, MBAO is able to obtain higher classification ac-
curacy than BAO on nine out of eleven datasets (i.e. Colon Tumor, CNS, 
Lung Cancer, Leukemia_4c, MLL, ALL-AMLL, Leukemia_3c, Breast, and 
Prostate_Tumor) and similar best-recorded classification accuracy 
(100%) in rest of datasets (i.e. Ovarian, and SRBCT). 

In terms of the number of selected genes, MBAO performs better than 
BAO in two out of eleven datasets (i.e., CNS and Lung Cancer), and 
performs approximately the same in five datasets (i.e. Ovarian, SRBCT, 
Leukemia_4c, MLL, and Prostate_Tumor). For Colon Tumor, ALL-AMLL, 
Breast, and Leukemia_3c datasets, the BAO approach selected slightly 
fewer genes than MBAO; however, its classification accuracy is smaller. 
Furthermore, MBAO gets significantly better results than BAO in four 

out of eleven datasets, while no significant differences were found in the 
remaining seven datasets. It shows on some datasets, the mutation 
mechanism enhanced the performance of the BAO, but on others, the 
results were nearly identical. This proves the capability of naïve BAO 
with TVMS transfer function to GS selection. Based on the result re-
ported in Table 5 and Fig. 5, both proposed BAO and MBAO are capable 
of determining a minimum number of the most informative genes to 
obtain competitive or higher classification accuracy. However, the re-
sults of MBAO are better than BAO in most of the datasets in terms of 
classification accuracy and the number of selected genes. These fruitful 
results are due to the integration of a mutation operator with BAO, 
which acts as a local search and so increases the BAO algorithm’s 

Fig. 7. Comparison between the proposed algorithm and the state-of-art methods regarding the accuracy.  

Fig. 8. Comparison between the proposed algorithm and the state-of-art methods regarding the number of selected genes.  
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exploitation capabilities. 
Detailed results of MBAO when solving all datasets are presented in 

Table 6. The accuracy and number of selected genes (#Genes) are two 
evaluation metrics that are used to quantify the performance of the 
prediction model. Besides average (Avg.), best, worst, and Standard 
Deviation (SD) are adopted to assess the robustness of the algorithm. 
Smaller SD indicates that the algorithm performs more stable. For 
almost all datasets, the SD achieved by mRMR-MBAO is relatively small 
in terms of classification accuracy. However, the SD is a little bit high in 
CNS, Lung cancer, Leukemia_4c, and Breast cancer datasets. 

Moreover, the boxplot enriched with p − value ≤ 0.05 (Wilcoxon 
signed-rank statistical test) was utilized as a graphical representation to 
provide a better understanding of the varied behaviors of the proposed 
strategies. Fig. 6 statistically compares the means of BAO and MBAO 
algorithms in the terms of fitness value and demonstrates the diversity of 
results during the search. The p − value ≤ 0.05 shows that the MBAO 
generates significantly better results than BAO; however, the 
p − value > 0.05 indicates that the MBAO does not produce significantly 
better results than BAO. Although significant differences in favor of the 
MBAO can be seen for only four datasets, the classification accuracy of 
MBAO for the remaining datasets is much better than BAO. In addition, 
the diversity of produced results by MBAO is smaller when compared 
with BAO. 

4.4. Comparative evaluation 

The experiment in this study includes the comparison of mRMR- 
MBAO with other state-of-the-art GS approaches. Nine well-known GS 
approaches including MIM-MFOA (Dabba et al., 2021), IBCFPA (Yan 
et al., 2019a), ISFLA (Hu et al., 2018), BCROSAT (Yan et al., 2019b), 
mRMR-DBH (Pashaei and Pashaei, 2021a), SARA (Baliarsingh et al., 
2021), SU-RSHSA (Shreem et al., 2022), TOPSIS-Jaya (Chaudhuri and 
Sahu, 2021), and IG-MBKH (Zhang et al., 2020) are utilized to further 
analyze the proposed algorithm performance. Table 7 presents the 
experiment result of multiple independent runs for each approach in 
terms of classification accuracy (ACC) and the number of selected genes 
(#G). Moreover, to demonstrate mRMR-MBAO performance intuitively, 

Figs. 7 and 8 show the average accuracy comparison and average 
selected gene numbers for all datasets, respectively. 

As seen in Table 7 and Fig. 7, for one of the eleven experiment 
datasets, mRMR-MBAO outperformed other comparing approaches in 
terms of classification accuracy (i.e., Lung Cancer). In addition, in four 
out of eleven datasets (i.e. Ovarian, SRBCT, ALL-AML, and Leuke-
mia_3c), the mRMR-MBAO is able to produce the best-recorded classi-
fication accuracy (100%) as done by other comparative methods. The 
mRMR-MBAO was ranked second in Prostate-tumor and Breast cancer 
datasets, and third in the Leukemia_4c dataset among the approaches. In 
the case of the MLL dataset, mRMR-MBAO has competitive accuracy, 
while for Colon and CNS datasets it has slightly lower performance 
compared to other state-of-art methods. In general, the classification 
accuracy generated by the mRMR-MBAO is promising for all datasets in 
comparison to existing approaches. 

In terms of the number of the selected genes, mRMR-MBAO shows an 
acceptable performance based on the results in Table 6 and Fig. 8. 
Taking into account the number of genes as well as the classification 
accuracy, the mRMR-MBAO achieves the best performance on two 
datasets (Lung Cancer and the Prostate-Tumor), where it manages to 
select the fewest number of genes with the highest classification accu-
racy. In the Lung Cancer dataset TOPSIS-Jaya, SARA, and MIM-MFOA 
select fewer genes (9, 5, 19) and achieve 94.24%, 90.22%, and 
87.13% classification accuracy. In comparison, the mRMR-MBAO 
method select quite higher genes (23) but achieved the highest classi-
fication accuracy (98.54%). In the Prostate-Tumor dataset, MIM-MFOA 
selects 14 genes with 86.63% accuracy, while mRMR-MBAO selects 
approximately the same number of genes (15) with 97.83% classifica-
tion accuracy. The mRMR-MBAO was ranked second in three datasets (i. 
e. Colon, Breast, and SRBCT) and third in five datasets (i.e. CNS, 
Ovarian, Leukemia_3c, Leukemia_4c, and ALL-AML) between the algo-
rithms compared in terms of the number of genes chosen and their ac-
curacy. In the MLL dataset, mRMR-MBAO was ranked fourth among 
algorithms although it achieves 99.69% accuracy with 11 gene numbers. 

In sum, it can be observed that the mRMR-MBAO has a classification 
rate of more than 88%. In terms of the number of selected genes, the 
mRMR-MBAO was able to obtain fewer than 24 for eleven datasets on 
average. Furthermore, mRMR-MBAO appears to be competitive and in 
some cases superior to state-of-arts in the GS problem. 

4.5. Biological interpretation 

From a biological standpoint, only a small number of genes in 
microarray data are important for cancer diagnosis (Pashaei and 
Pashaei, 2021a; Shukla et al., 2018). The suggested strategy seeks to find 
the smallest gene subset with the highest classification accuracy. It is 
critical to analyze these genes by determining the obtained genes, as 
well as their impact and biological meaning. Table 8 shows the best 
subset of gens obtained by using the proposed method in each dataset. 
As can be seen in Table 8, the SVM classifier achieves high accuracy and 
TPR on the selected optimal gene subsets (minimum 92%) on eleven 
high-dimensional microarray data. Also, some of the obtained genes are 
common with others reported genes in the literature, for example, the 
24107 gene index in the Breast cancer dataset has been reported before 
as a marker gene in (Pashaei and Pashaei, 2021a) study. We can observe 
that the proposed mRMR-MBAO can identify and select informative 
genes. Fig. 9 displays a heatmap created for the identified best subset of 
gens to show their expression levels. The heatmap correctly clusters 
samples and reorders the genes into blocks with similar expression 
patterns. 

5. Conclusion 

The high-dimensional, complex, and noisy data pose a great chal-
lenge to recognize disease-related gene expression patterns embedded in 
the microarray datasets. Finding a small set of biologically meaningful 

Table 8 
The best subsets of genes obtained from the proposed approach for each dataset.  

Dataset Index of Genes Accuracy TPR FPR 

Colon Tumor 1976, 822, 1221, 1494, 377, 
1920, 143, 1730, 317, 1102, 
1562, 1520  

96.90  96.9  3.8 

CNS 5637, 6345, 2474, 6248, 3239, 
2087, 5355, 1787, 6565, 4536, 
4469, 4062, 5563  

93.33  93.3  10.2 

Ovarian 2238, 6781, 183, 2196  100  100  0.0 
SRBCT 1, 1003, 545, 338, 1601, 1613, 

1207  
100  100  0.0 

Lung Cancer 3191, 10188, 8457, 1422, 9164, 
10573, 12121, 12375, 9134, 
6949, 12524, 5934, 7298  

99.02  99  2 

Leukemia_4c 4050, 6855, 3469, 6225, 5543, 
2121, 5300, 3237, 1926, 5688  

98.75  98.7  2 

MLL 7666, 6067, 7232, 9845, 1132, 
7961, 6089, 7155  

100  100  0.0 

ALL-AML 2354, 4847, 6376, 1779, 5593, 
4951  

100  100  0.0 

Leukemia_3c 2642, 4055, 4377, 6236, 5466, 
5300, 3847  

100  100  0.0 

Breast 10889, 8776, 1872, 6541, 2769, 
13625, 3232, 2177, 8782, 18811, 
6836, 1364, 18761, 15833, 
21752, 9480, 19044, 7206, 
20859, 13058, 24107, 22834, 
1409, 8899  

92.09  92  7.4 

Prostate_Tumor 4823, 8765, 7451, 2439, 8009, 
5227, 4346, 275, 10130, 6105, 
10504  

98.09  98  2.6  
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genes is, therefore, necessary but a difficult issue in microarray 
expression data analysis. In this paper, a new Binary version of the 
Aquila Optimizer (BAO) algorithm is proposed for solving the GS 
problem. The mutation mechanism and TVMS transfer function are 
combined with BAO to develop a novel algorithm, called MBAO, to 
efficiently reduce the dimensionality of the microarray dataset. To our 
knowledge, this is the first time the AO has been employed to solve the 
FS problem in high-dimensional microarray datasets. 

The suggested hybrid approach works as follows. First, the mRMR 
filter approach is used to generate a robust gene list from the input 

dataset in order to achieve high classification accuracy. Second, the 
proposed MBAO with SVM classifier is used to find the best gene subset 
from the most informative genes obtained by the mRMR approach. To 
make BAO more suited for the complex gene selection search space, the 
mutation mechanism was added to the BAO algorithm to enlarge the 
searching range and avoid local minima. The TVMS transfer function 
was also used to convert AO from continuous to binary, which aids in 
finding the ideal balance between exploration and exploitation. To 
evaluate the suggested approach, eleven well-known benchmark 
microarray datasets were used. The performance of MBAO was deeply 

Fig. 9. The heat map of the actual expression profiles for the best subset of genes produced by the proposed method.  

E. Pashaei                                                                                                                                                                                                                                        



Computational Biology and Chemistry 101 (2022) 107767

15

examined in comparison with other current state-of-art methods using 
several evaluation measures, such as the fitness values, classification 
accuracy, and the number of selected genes. Simulating results show 
that MBAO has better performance than BAO and almost all state-of-art 
methods due to its good ability to strike a balance between exploration 
and exploitation while avoiding the local optimum. 

For future works, mutation-based AO can be applied to solve other 
optimization and real-world problems such as clustering, sentiment 
analysis, and intrusion detection. Furthermore, other NIOAs can be 
combined with BOA to make the algorithm more effective when tackling 
various optimization problems. 
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