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A B S T R A C T

This study is one of the first attempts on the nonlinear forced vibration behaviors of nonhomogeneous
orthotropic (NHO) structural members with linear viscous damping at primary resonance within the shear
deformation theory (SDT). First, mechanical properties of double curved systems consisting of NHO materials
are mathematically modeled and nonlinear basic relations are established. Using these relations, nonlinear
basic partial differential equations are derived and reduced to ordinary differential equations with second and
third order nonlinearities by Galerkin procedure. Multiple-scales method is used to obtain the nonlinear forced
vibration frequency–amplitude dependence of double curved NHO structural members with damping. After
testing the correctness of the proposed methodology, the influences of non-homogeneity, damping, transverse
shear deformations and anisotropy on nonlinear forced vibration frequencies for various structural members
at the primary resonance are investigated and interpreted in detail.
1. Introduction

At the present stage of the development of science and technol-
ogy, scientific and technological progress is impossible without the
production of new non-standard materials with high technological and
operational properties alongside traditional materials, and most impor-
tantly, without anticipating their application possibilities. Currently,
the heterogeneous anisotropic materials play a leading role in the con-
struction of new products that are used in many developed industries.
In modern technology, plates, panels and shells made of homogeneous
anisotropic materials as well as heterogeneous anisotropic materials
are widely used as main structural elements, especially in aviation
and spacecraft, rocket and shipbuilding, mechanical engineering and
construction.

The fact that the new generation heterogeneous composite mate-
rials created by technological methods have predetermined properties
increases the reliability of the structures, as well as decreasing the
material consumption and the cost of the products. The inhomogeneity
of elastic properties can occur both due to the technological processes
in obtaining the structural elements and in the formation process of
the body itself. Studying the mechanical behavior of inhomogeneous
anisotropic structural elements reveals many important practical prob-
lems for researchers in which the true properties of materials are
taken into account. Although it is quite complicated to mathemati-
cally model the heterogeneity and anisotropy of materials in various
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problems of solid mechanics, it also creates new physical, qualita-
tive and quantitative effects. The direction of research on vibration
and stability problems of inhomogeneous anisotropic structural ele-
ments is determined by the current demands of engineering practice,
the need to develop solid mechanics theories, including mathematical
models of constructions, and the development of analytical and numer-
ical methods to solve specific problems. It should be especially noted
some fundamental studies, which occupy an important place in the
development of the mechanics of inhomogeneous bodies [1–4].

In the framework of the theories developed in the above-mentioned
monographs, the properties of inhomogeneous anisotropic materials
were modeled mathematically and the effects of inhomogeneity and
anisotropy on the strength calculations of structural elements were
presented in the studies of [5–9]. Advanced shell theories are used
to obtain realistic results in the strength calculations of shell-type
elements made of composite anisotropic materials. After the devoted
efforts of scientists, various advanced shear deformation theories have
been formed. The development of shear deformation theories has led
to more realistic results on the nonlinear response of shallow shells
composed of advanced materials [10–13].

Since structural elements consisting of homogeneous and inhomoge-
neous composites are applied in various advanced industries, including
spacecraft, rockets, aviation technology and other areas of technol-
ogy, they inevitably experience nonlinear oscillations. Among types of
https://doi.org/10.1016/j.tws.2021.108662
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vibrations that can cause the most damage to structural elements is
forced vibrations caused by periodic external excitation depending on
the time. When shell-type structural members have significant dynamic
displacements (due to non-linear deformations), this relationship can
reveal a ‘‘resonant’’ phenomenon. This circumstance, which occurs in
structural elements, has become the cause of many accidents, and
sometimes serious disasters. Modeling and solving problems of forced
vibration in a resonance not only solves the problems of forecasting, but
also maximally prevents their detrimental effect on structural elements.
A systematic presentation of various problems of nonlinear dynamics,
including nonlinear forced vibrations of homogeneous plates, panels
and shallow shells, was given in the monographs of Volmir [14] and
Amabili [15]. These books present solutions to various problems of
nonlinear vibrations (natural, forced, parametric) described by the
Fopp–Karman equations for plates and the Marger equations for shal-
low shells. An invaluable resource for solving nonlinear problems of
forced vibration, especially in resonance cases, is work of Nayfeh and
Mook [16].

Due to the complication of the modeling of forced vibration prob-
lems for inhomogeneous structural elements, the number of works
is very limited compared to other vibration types. In recent years,
the number of studies on the solution of nonlinear forced vibration
problems of functionally graded structural elements has been increas-
ing. Du et al. [17] studied the nonlinear forced vibration of infinitely
long functionally graded cylindrical shells using the Lagrangian theory
and multiple scale method. In the studies of Sheng and Wang [18]
and [19] were investigated primary resonance responses of function-
ally graded rotating cylindrical shells in thermal medium including
nonlinear dynamics, quasi-periodic and chaotic responses based on
Hamilton principle using von Kármán nonlinear theory and first-order
shear deformation theory. Ave et al. [20] studied primary resonance
of double-curved nanocomposite systems using improved nonlinear
theory and multi-scales method. In the study of Amabili and Balasub-
ramanian [21] were investigated the nonlinear forced vibrations of
laminated composite conical shells using a high-order shear deforma-
tion theory that include rotary inertia and geometric nonlinearity at all
kinematic parameters and trigonometric extensions. Sofiyev et al. [22,
23] presented the nonlinear forced vibration behaviors of functionally
graded and nano-composites structural systems based on the classical
shell theory (CST). In the study of Zhu et al. [24], the nonlinear free
and forced vibrations of porous piezoelectric doubly curved shells rest-
ing on visco-elastic foundation is performed within nonuniform electric
field model, harmonic balance and Runge–Kutta methods. Ye and Wang
[25] analyzed the nonlinear forced vibration of thin-walled metal
foam cylindrical shells reinforced with functionally graded graphene
platelets, noting 1:1:1:2 internal resonances using the pseudo-arclength
continuation technique. In a study by Liu et al. [26] used Donnell’s
nonlinear theory of shallow shells, Hamilton’s principle, energy ap-
proximation, Galerkin scheme, and arc length continuation method for
nonlinear forced vibrations of multilayer cylindrical shells made of
porous functionally graded material (FGM) on an elastic substrate. In
the study of Gao et al. [27], the symplectic wave-based method has
been extended to free and forced vibration analysis of thin orthotropic
circular cylindrical shells with arbitrary boundary conditions. Ahmadi
et al. [28] investigated the non-linear forced vibrations of stiffened
imperfect functionally graded double curved shallow shells, as rested
on nonlinear elastic foundations using the CST.

The majority of aforementioned studies are devoted to the forced
vibration of structural elements made of nonhomogeneous isotropic
materials. Solutions of the forced vibration problems of the structural
elements made of NHO materials are presented only within CST. The
main purpose of this study is to solve this problem using the Galerkin
procedure and the multiple scales method after mathematically model-
ing of this problem in the framework of SDT, considering the viscous
damping effect, in order to obtain a damped nonlinear forced vibration
frequency–amplitude dependence and an expression for the ratio of
2

vibrations. This research is one of the first attempts to investigate the
nonlinear forced vibration for NHO structural elements with viscous
damping in the framework of SDT at primary resonance. Since the spe-
cial cases of shells with double curvature are structural elements, such
as spherical and hypar shells, rectangular plates and panels, obtained
expressions can be used for their forced vibration analysis. In addition,
it aims to analyze and interpret the quantitative and qualitative changes
caused by the influences of non-homogeneity, nonlinearity, orthotropy,
external excitation and viscous damping on the frequency–amplitude
dependence.

2. Formulation of the problem

Let us consider the nonhomogeneous orthotropic double curved
shallow shell with thickness ℎ, side lengths 𝑙1 and 𝑙2, curvature radii
𝑅1 and 𝑅2, subjected to the harmonic external excitation 𝑞(𝑥, 𝑦, 𝜏) (see,
Fig. 1). The orthogonal coordinate system is placed on the mid-surface
of the double curved shell, its origin being situated at the upper left
corner and the direction of the axes is shown in Fig. 1. We will denote
the displacements in the direction of the 𝑥, 𝑦 and 𝑧 coordinate axes
with symbols 𝑢, 𝑣 and 𝑤, respectively. The shallow shell with double
curvature is transformed into (a) spherical shell as 𝑅1 = 𝑅2, (b)
hyperbolic-paraboloid shell or hypar shell as 𝑅1 = −𝑅2, and (c) panel
as 𝑅1 → ∞, and (d) plate, as 𝑅1 → ∞, 𝑅2 → ∞ (Fig. 2).

The elastic properties of shell-type structural elements made of NHO
materials can be modeled as a continuous function of the 𝑧 coordinate
in the following form [5–9]:

𝐸𝑧𝑖𝑖 = 𝜂1(𝑧)𝐸0
ii , 𝐺

𝑧
𝑖𝑗 = 𝜂1(𝑧)𝐺0

𝑖𝑗 , 𝜌
𝑧
𝐻𝑇 = 𝜂2(𝑧)𝜌0, (𝑖 = 1, 2, 𝑗 = 2, 3)𝑧 = 𝑧∕ℎ

(1)

where 𝐸0
𝑖𝑖(𝑖 = 1, 2) are the elasticity moduli of raw materials in 𝑥 and 𝑦

directions, respectively, 𝐺0
𝑖𝑗 (𝑖 = 1, 2, 𝑗 = 2, 3) are the shear moduli and

0 is the density of raw materials.

2.1. Governing relations

The relationship between stress (𝜎1, 𝜎2, 𝜎12, 𝜎13, 𝜎23) and strain
(𝜀1, 𝜀2, 𝛾12, 𝛾13, 𝛾23) tensors of shell-type structural elements made of
NHO materials in the framework of SDT are formed as follows [14]:
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where

𝑌 𝑧𝑖𝑖 =
𝐸𝑧𝑖𝑖

1 − 𝜈12𝜈21
(i = 1, 2), 𝑌 𝑧12 =

𝜈21𝐸𝑧11
1 − 𝜈12𝜈21

=
𝜈12𝐸𝑧22

1 − 𝜈12𝜈21
= 𝑌 𝑧21,

𝑌 𝑧44 = 𝐺𝑧23, 𝑌
𝑧
55 = 𝐺𝑧13, 𝑌

𝑧
66 = 𝐺𝑧12

(3)

in which 𝜈𝑖𝑗 (𝑖, 𝑗 = 1, 2) denote the Poisson ratios for NHO materials and
they are assumed to be constant and satisfies the condition 𝜈21𝐸𝑧11 =
12𝐸𝑧22.

On the basis of the assumptions of the SDT, the 𝜎𝑖3(𝑖 = 1, 2) can be
expressed by the rotation angles of the normal to the reference surface
𝜒𝑖(𝑖 = 1, 2) and the shear stress functions 𝑓

𝑧
𝑖 as follows [10]:

𝜎𝑖3 = 𝑓
𝑧
𝑖 𝜒𝑖, (𝑖 = 1, 2) (4)

where 𝑓
𝑧
=

d𝑓𝑧𝑖 (𝑖 = 1, 2).
𝑖 d𝑧
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Fig. 1. NHO double curved shell subjected to external excitation and coordinate systems.
Fig. 2. (a) Spherical, (b) hyperbolic-paraboloid shells, (c) panel, (d) plate under an external excitation 𝑞(𝜏) and coordinate system.
The mathematical model of the stress functions corresponding to the
istribution of transverse shear stresses in the thickness direction is as
ollows [10,11]:

𝑓
𝑧
𝑖 =

d𝑓 𝑧𝑖
d𝑧

= 1 − 𝑧2 (5)

Two- and three-dimensional distributions of shear stress functions
f structural elements are presented in Fig. 3.

The strains (𝜀1, 𝜀2, 𝛾12) for any point of shells made from NHO ma-
erials can be expressed by stresses (𝑒1, 𝑒2, 𝛾012) at the reference surface,
urvatures and rotation angles 𝜒 ,(𝑖 = 1, 2), in the context of nonlinear
𝑖

3

Donnell-type shell theory and taking into account expression (4), as
follows [14,15]:
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Fig. 3. (a) Two- and (b) three-dimensional distributions of transverse shear stress functions.
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f (6) is introduced in (2), it will be:
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The forces
(

𝑇1, 𝑇2, 𝑇12), (𝑄1, 𝑄2
)

and moments
(

𝑀1,𝑀2, 𝑀12
)

of
NHO structural elements are defined by the following integrals [15,16]:

(

𝑇𝑖,𝑀𝑖
)

= ∫

ℎ∕2

−ℎ∕2
(1, 𝑧) 𝜎𝑖d𝑧,

(

𝑄1, 𝑄2
)
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ℎ∕2
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(

𝜎1𝑘, 𝜎2𝑘
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d𝑧,
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)
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(1, 𝑧) 𝜎12d𝑧, (𝑖 = 1, 2, 𝑘 = 2, 3)

(9)

By introducing the Airy stress function, 𝜑, the forces can be ex-
pressed as [15]:
(

𝑇1, 𝑇2, 𝑇12
)

= ℎ
(
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𝜕𝑦2

,
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𝜕𝑥2
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𝜕𝑥𝜕𝑦

)

(10)

The dynamic stability and deformation compatibility equations of
ouble curved structures subjected to external excitation 𝑞(𝑥, 𝑦, 𝜏) and
onsidering viscous damping effect based on the Hamilton principle are
s follows [15]:
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where 𝜌𝑡 and 𝜌𝑖(𝑖 = 1, 2, 3) denote coefficients of normal and rotary
inertia and are expressed as:

𝜌𝑡 = 𝜌0 ∫

h∕2

−h∕2
𝜂2(𝑧)d𝑧, 𝜌1 = 𝜌0 ∫
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−h∕2
𝑧2𝜂2(𝑧)d𝑧,
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𝑧𝐼𝑧2 𝜂2(𝑧)d𝑧

(13)

We now substitute (8) and (10) into Eq. (9) and perform the
integration over the thickness of the shell with a double curvature. The
results of these mathematical operations are obtained the expressions
for the strains on the mid-surface, forces and moments as the functions
of the 𝜑,𝑤, 𝜒1, 𝜒2. The expressions for moments, forces and strains on
the mid-surface are substituted into Eqs. (11) and (12) by considering
the relation (10), the following set of equations for the dynamic stabil-
ity and deformation compatibility equations for double curved shells
made of NHO materials with viscous damping under external excitation
𝑞(𝑥, 𝑦, 𝜏) are obtained:

11(𝜑) + 𝐿12(𝑤) + 𝐿13(𝜒1) + 𝐿14(𝜒2) = 0

𝐿21(𝜑) + 𝐿22(𝑤) + 𝐿23(𝜒1) + 𝐿24(𝜒2) = 0 (14)

𝐿31(𝜑) + 𝐿32(𝑤) + 𝐿33(𝜒1) + 𝐿34(𝜒2) + 𝐿35(𝜑,𝑤) + 𝑞(𝑥, 𝑦, 𝜏) = 𝜌𝑡
𝜕2𝑤
𝜕𝜏2

+ 2𝜉𝜌𝑡
𝜕2𝑤
𝜕𝜏

𝐿41(𝜑) + 𝐿42(𝑤) + 𝐿43(𝜒1) + 𝐿44(𝜒2) + 𝐿45(𝑤,𝑤) = 0 (15)

where 𝐿𝑖𝑗 (𝑖 = 1, 2,… , 4, 𝑗 = 1, 2,… , 5) denote nonlinear differential
operators and are given in Appendix A.
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3. Methods of solution

The NHO shell-type structural elements with a double curvature
under simply supported boundary conditions:

𝑤 = 0, 𝑀1 = 0, 𝜒2 = 0, as 𝑥 = 0 and 𝑥 = 𝑙1

𝑤 = 0, 𝑀2 = 0, 𝜒1 = 0, as 𝑦 = 0 and 𝑦 = 𝑙2
(16)

Thus, the functions 𝑤, 𝜒1 and 𝜒2 are sought in the following
form [10,23]:
𝑤 = 𝑤(𝜏) sin(𝑚𝑥) sin(𝑛𝑦), 𝜒1 = 𝜒1(𝜏) cos(𝑚𝑥) sin(𝑛𝑦),

𝜒2 = 𝜒2(𝜏) sin(𝑚𝑥) cos(𝑛𝑦)
(17)

where 𝑤(𝜏), 𝜒 𝑖(𝜏)(𝑖 = 1, 2) are the time dependent functions, 𝑚 = 𝑚𝜋
𝑙1

and 𝑛 = 𝑛𝜋
𝑙2

, in which (𝑚, 𝑛) is a vibration mode.
The expressions (17) are substituted in the partial differential Eq.

15) and the following expression for the 𝜑 is obtained depending on
the deflection and rotation angles functions:

𝜑 = 𝛬1 cos(2𝑚𝑥) + 𝛬2 cos(2𝑛𝑦) + 𝛬3 sin(𝑚𝑥) sin(𝑛𝑦) (18)

where

𝛬1 =
𝑤2

32𝐵22ℎ

(

𝑛
𝑚

)2
, 𝛬2 =

𝑤2

32𝐵11ℎ

(

𝑛
𝑚

)−2
,

𝛬3 =
𝛿1𝑤

2 + 𝛿2𝜒1 + 𝛿3𝜒2

ℎ
[

𝐵11𝑚
4 + (𝐵12 + 𝐵21 + 𝐵31)𝑚

2𝑛2 + 𝐵22𝑛
4
]

(19)

n which

1 = 𝐵23𝑚
4 + (𝐵24 + 𝐵13 − 𝐵32)𝑚

2𝑛2 + 𝐵14𝑛
4 + 𝑚2

𝑅2
+ 𝑛2

𝑅1
,

𝛿2 = −𝐵25𝑚
3 − (𝐵15 + 𝐵35)𝑚𝑛

2, 𝛿3 = −(𝐵28 + 𝐵38)𝑚
2𝑛 − 𝐵18𝑛

3.
(20)

Suppose that the excitation is unevenly distributed over the surface
of the shell as follows:

𝑞(𝑥, 𝑦, 𝜏) = 𝑞0 sin(𝑚𝑥) sin(𝑛𝑦) cos (𝛺𝜏) (21)

here 𝛺 is the frequency and 𝑞0 is the amplitude of excitation.
Taking into account (17), (18) and (21) and using the Galerkin

ethod to the system of Eqs. (14), one gets,

𝜏
11
d2𝑤
d𝜏2

+ 𝑘𝜏12
d2𝜒1

d𝜏2
+ 𝑘11𝑤 + 𝑘𝑁𝐿11 𝑤2 + 𝑘12𝜒1 + 𝑘13𝜒2 = 0,

𝑘𝜏21
d2𝑤
d𝜏2

+ 𝑘𝜏23
d2𝜒2

d𝜏2
+ 𝑘21𝑤 + 𝑘𝑁𝐿21 𝑤2 + 𝑘22𝜒1 + 𝑘23𝜒2 = 0, (22)

𝜌𝑡
d2𝑤
d𝜏2

+ 2𝜉𝜌𝑡
𝜕2𝑤
𝜕𝜏

+ 𝑘31𝑤 + 𝑘𝑁𝐿31 𝑤2 + 𝑘32𝑤
3 + 𝑘33𝜒1 + 𝑘34𝜒2

− 𝑞0 cos (𝛺𝜏) = 0

here 𝑘𝑖𝑗 (𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, 4) are defined in Appendix B.
Analyzes show that inertia terms with the upper index 𝜏 have very

ittle effect on the nonlinear vibration frequency values, so these terms
22) are ignored from the set of equations. Then, 𝜒1 and 𝜒2 functions

in the first and second equations of the system are expressed with the
𝑤 function and taken into account in the third equation of the Eq. (22),
the following nonlinear ordinary differential equation is obtained:

d2𝑤
d𝜏2

+ 2𝜉 d𝑤
d𝜏

+
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2𝑤 + 𝜃1𝑤

2 + 𝜃2𝑤
3 − 𝜃3𝑞0 cos (𝛺𝜏) = 0 (23)

where 𝜔𝐿𝑖𝑛𝑆𝐷𝑇 denotes the undamped linear frequency for NHO double
urved structures in the framework of SDT and is defined by:

𝐿𝑖𝑛
𝑆𝐷𝑇 =

√

1
𝜌𝑡

[

𝑘31 −
𝑘21𝑘34
𝑘23

+
(

𝑘33 −
𝑘22𝑘34
𝑘23

)

𝑘11𝑘23 − 𝑘21𝑘13
𝑘22𝑘13 − 𝑘23𝑘12

]

(24)

and

𝜃1 =
𝑘∗𝑁𝐿31
𝜌𝑡

, 𝜃2 =
𝑘32
𝜌𝑡
, 𝜃3 =

1
𝜌𝑡
,

𝑘∗𝑁𝐿 = 𝑘𝑁𝐿 −
𝑘34𝑘𝑁𝐿21 +

(

𝑘34𝑘22 − 𝑘33

) 𝑘𝑁𝐿11 𝑘23 − 𝑘13𝑘𝑁𝐿21

(25)
31 31 𝑘23 𝑘23 𝑘12𝑘23 − 𝑘13𝑘22

5

The following initial conditions are used to solve the Eq. (23) [15,
16,19,23,29]:

𝑤 = 𝑤0 and d𝑤
d𝜏

= 0 when 𝜏 = 0 (26)

where 𝑤0 is the initial deflection amplitude.
Nonlinearity causes the formation of a term containing cos(𝜔𝐿𝑖𝑛𝑆𝐷𝑇 𝜏)

for 𝑂(𝜀3), which describes the small disturbance parameter. So, to
ensure that all terms of (23) are of the same order, we express 2𝜉 d𝑤d𝜏 ,
as the 2𝜉1

d𝑤
d𝜏 , and 𝜃3𝑞0 cos(𝛺𝜏), as the 𝜀2𝑞0 cos(𝛺𝜏), which can be

ransformed to the following form:

d2𝑤
d𝜏2

+
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2𝑤 = −2𝜀2𝜉1

d𝑤
d𝜏

− 𝜀𝜃1𝑤
2 − 𝜀2𝜃2𝑤

3 + 𝜀2𝑞0 cos(𝛺𝜏) (27)

where

𝜉1 =
𝜉
𝜀2
, 𝜃1 =

𝜃1
𝜀
, 𝜃2 =

𝜃2
𝜀2
, 𝑞0 =

𝜃3𝑞0
𝜀2

(28)

For the solution of Eq. (27), the 𝑤 is expanded into the series with
a small parameter using the new time scales as follows [16,29]:

𝑤(𝜏, 𝜀) =
∞
∑

𝑖=0
𝜀𝑖𝑤𝑖(𝜏0, 𝜏1, 𝜏2) (29)

ere, 𝜏𝑖 = 𝜀𝑖𝜏(𝑖 = 0, 1, 2,…) denote new independent variables,
hich 𝜏0 = 𝜏 is a fast time characterizing the movements of linear
ibrations with natural frequency, 𝜏1 = 𝜀𝜏 and 𝜏2 = 𝜀2𝜏 are slow
cales characterizing the amplitude and phase modulation in nonlinear
ibration.

The integer expansions of derivatives, which are used in the method
f multiple time scales, generally are written as [19,29]:
d
d𝑡

=
∞
∑

𝑖=0
𝐷𝑖𝜀

𝑖

d2

d𝑡2
= 𝐷2

0 + 2𝜀𝐷0𝐷1 + 𝜀2(𝐷2
1 + 2𝐷0𝐷2) +⋯

(30)

here

0 =
𝜕
𝜕𝜏0

, 𝐷1 =
𝜕
𝜕𝜏1

and 𝐷2 =
𝜕
𝜕𝜏2

(31)

For consistency the 𝛺 − 𝜔𝐿𝑖𝑛𝑆𝐷𝑇 is assumed to be 𝑂(𝜀2) and defined by:

𝛺 = 𝜔𝐿𝑖𝑛𝑆𝐷𝑇 + 𝜀2𝜗 (32)

where 𝜗 is a detuning parameter that characterizes a small inconsis-
tency between the frequency values.

After substituting expressions (29) and (30) into Eq. (27), coeffi-
cients with same powers of 𝜀 are set equal to zero, and the following
equations are obtained for different orders:

𝜀0 ∶𝐷2
0𝑤0 +

(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2𝑤0 = 0 (33)

1 ∶𝐷2
0𝑤1 +

(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2𝑤1 = −2𝐷0𝐷1𝑤0 − 𝜆10𝑤

2
0 (34)

𝜀2 ∶𝐷2
0𝑤2 +𝛺2

0𝑤2 = −2𝐷0𝐷1𝑤1 − 2𝐷0𝐷2𝑤0 −𝐷2
1𝑤0 − 2𝜉1𝐷0𝑤0

−2𝜃1𝑤0𝑤1 − 𝜃2𝑤
3
0 + 𝑞0 cos(𝜔

𝐿𝑖𝑛
𝑆𝐷𝑇 𝜏0 + 𝜗𝜏2)

(35)

Solving Eqs. (33) and (34), yields the following expressions for 𝑤0 and
𝑤1:

𝑤0 = 𝐴(𝜏1, 𝜏2)𝑒
𝑖𝜔𝐿𝑖𝑛𝑆𝐷𝑇 𝜏0 + 𝐴(𝜏1, 𝜏2)𝑒

−𝑖𝜔𝐿𝑖𝑛𝑆𝐷𝑇 𝜏0 (36)

𝑤1 =
𝜃1

(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2

(

−2𝐴(𝜏2)𝐴(𝜏2) +
1
3
𝐴2(𝜏2)𝑒

2𝑖𝜔𝐿𝑖𝑛𝑆𝐷𝑇 𝜏0 + 1
3
𝐴2(𝜏2)𝑒

−2𝑖𝜔𝐿𝑖𝑛𝑆𝐷𝑇 𝜏0
)

(37)

where 𝐴(𝜏1, 𝜏2) and 𝐴(𝜏1, 𝜏2) indicate unknown complex and conjugate
unctions. It should be emphasized that while 𝑤1 is being found, it is

taken into account that 𝜕𝐴(𝜏1 ,𝜏2) = 0.
𝜕𝜏1
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Substituting the expressions (36) and (37) for 𝑤0 and 𝑤1 in Eq. (35),
the secular terms are set to zero:

2𝑖𝜔𝐿𝑖𝑛𝑆𝐷𝑇

(

𝜕𝐴(𝜏2)
𝜕𝜏2

+ 𝜉1𝐴(𝜏2)
)

+
⎛

⎜

⎜

⎝

3𝜃2 −
10𝜃

2
1

3
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2

⎞

⎟

⎟

⎠

𝐴2(𝜏2)𝐴(𝜏2)

− 0.5𝑞0𝑒𝑖𝜗𝜏2 = 0 (38)

The solution of Eq. (38) is sought in polar coordinates as follows:

(𝜏2) = 0.5𝑟(𝜏2)𝑒𝑖𝜙(𝜏2) (39)

here 𝑟(𝜏2) and 𝜑(𝜏2) denote amplitude and phase of vibration.
By replacing (39) into (38), the following equations are obtained

hen the real and imaginary parts are set to zero separately:

𝜕𝑟
𝜕𝜏2

= −𝜉1𝑟 +
𝑞0

2𝜔𝐿𝑖𝑛𝑆𝐷𝑇

sin𝜓 (40)

𝜕𝜓
𝜕𝜏2

= 𝜗 −
9𝜃2

(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2 − 10𝜃

2
1

24
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)3

𝑟2 +
𝑞0

2𝑟𝜔𝐿𝑖𝑛𝑆𝐷𝑇

cos𝜓 (41)

where 𝜓 = 𝜗𝜏2 − 𝜙 denotes the new phase angle.
From the conditions 𝜕𝜓

𝜕𝜏2
= 0 and 𝜕𝑟

𝜕𝜏2
= 0, in the presence of steady-

tate motions, the following expression for the detuning parameter is
btained:

1,2 = 𝜐𝑓 2 ±
⎛

⎜

⎜

⎝

𝑞201
4
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2 𝑓 2

− 𝜉
2
1

⎞

⎟

⎟

⎠

0.5

(42)

where

𝜐 = ℎ2

8𝜔𝐿𝑖𝑛𝑆𝐷𝑇

⎛

⎜

⎜

⎝

3𝜃2 −
10𝜃

2
1

3
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2

⎞

⎟

⎟

⎠

, 𝑞201 =
𝑞20
ℎ2
, 𝑓 = 𝑟

ℎ
(43)

Substituting expression (42) into (32), the damped nonlinear forced
ibration frequency–amplitude dependence for NHO shell-type struc-
ural elements with a double curvature at primary resonance in the
ramework of SDT, we obtain:

𝑁𝐿𝑓𝑜𝑟𝑐𝑖
𝑆𝐷𝑇 = 𝜔𝐿𝑖𝑛𝑆𝐷𝑇 + 𝜀2

⎧

⎪

⎨

⎪

⎩

𝜐𝑓 2 ±
⎛

⎜

⎜

⎝

𝑞201
4
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2 𝑓 2

− 𝜉
2
1

⎞

⎟

⎟

⎠

0.5
⎫

⎪

⎬

⎪

⎭

, (𝑖 = 1, 2) (44)

Here, the plus sign corresponds to the non-linear forced-1 (abbreviated
𝑓𝑜𝑟𝑐1) frequency component, and the negative sign corresponds to the
non-linear forced-2 (abbreviated 𝑓𝑜𝑟𝑐2) frequency component.

From the expression (44), the ratio of the nonlinear forced fre-
quency to the linear frequency with damping is easily found as:

𝛺𝑁𝐿𝑓𝑜𝑟𝑐𝑖
𝑆𝐷𝑇

𝜔𝐿𝑖𝑛𝑆𝐷𝑇

= 1 + 𝜀2

𝜔𝐿𝑖𝑛𝑆𝐷𝑇

⎧

⎪

⎨

⎪

⎩

𝜐𝑓 2 ±
⎛

⎜

⎜

⎝

𝑞201
4
(

𝜔𝐿𝑖𝑛𝑆𝐷𝑇
)2 𝑓 2

− 𝜉
2
1

⎞

⎟

⎟

⎠

0.5
⎫

⎪

⎬

⎪

⎭

(𝑖 = 1, 2) (45)

The dependences (44) and (45) can be used for NHO shell-type
structural elements such as spherical and hypar shells, panels and plates
with viscous damping in the framework of SDT, as 𝑅1 = 𝑅2, 𝑅2 = −𝑅1,
𝑅1 → ∞ and 𝑅1 → ∞, 𝑅2 → ∞, respectively (see, Fig. 2a–2d).

In a particular case, the frequency of nonlinear forced vibrations
and the ratio of nonlinear forced vibrations to the linear frequency for
NHO structures without damping in the scope of SDT can be found from
dependences (44) and (45), at 𝜉 = 0

In a particular case, the backbone curve associated with undamped
free vibrations (𝛺𝑁𝐿𝑏𝑏

𝑆𝐷𝑇 ) for NHO shell-type structural elements with a
ouble curvature within SDT can be found from expression (44), when
0 = 0 and 𝜉 = 0.

Dependences (44) and (45) can be used in the framework of CST,
as the influences of transverse shear deformations are not considered
into account in basic relationships. In this case, the symbols use CST
instead of SDT.
6

Table 1
Comparison the 𝛺𝑁𝐿𝑏𝑏

𝐶𝑆𝑇 ∕𝜔𝐿𝑖𝑛𝐶𝑆𝑇 ratio for HO cylindrical shell within CST with the
Ref. [19].
𝑓 Sheng and Wang [19] Present study

0.5 1.0017 1.00185
1.0 1.0066 1.0741
1.5 1.0149 1.0166
2.0 1.0265 1.0296
2.5 1.0414 1.0463

Table 2
Comparison the linear vibration frequencies of homogeneous plates with various
orthotropy ratios in the framework of SDT with the results of Thai and Kim [30].
𝑙1∕𝑙2 𝐸0

11∕𝐸
0
22 → 𝑙1∕ℎ Thai and Kim [30] Present study

10 20 10 20

�̂�𝐿𝑖𝑛𝑆𝐷𝑇

10 8.5241 11.0551 8.5282 10.9871
0.5 20 9.1141 12.4009 9.1168 12.3802

10 9.5628 11.9334 9.5668 11.7472
1.0 20 10.2349 13.2676 10.2379 13.2029

10 14.9934 16.4739 15.1724 16.4735
2.0 20 16.5030 18.4742 16.5746 18.4795

4. Numerical applications

Firstly, the accuracy of present formulas is confirmed by compar-
isons and then numerical analyzes on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐𝑖

𝑆𝐷𝑇 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐𝑖
𝑆𝐷𝑇 ∕𝜔𝐿𝑖𝑛𝑆𝐷𝑇

(𝑖 = 1, 2) for NHO shell-type structural members are presented in
comparison with the appropriate results obtained in the framework of
classical shell theory.

In order to verify the present results, 𝛺𝑁𝐿𝑏𝑏
𝐶𝑆𝑇 ∕𝜔𝐿𝑖𝑛𝐶𝑆𝑇 for HO cylin-

drical shell within CST are compared with Ref. [19] and presented
in Table 1. The nonlinear backbone frequency 𝛺𝑁𝐿𝑏𝑏

𝐶𝑆𝑇 is obtained by
writing 𝜉 = 0, 𝑞0 = 0 and 𝜂𝑖 = 1(𝑖 = 1, 2) in (42), when the influences
of transverse shear deformations are not considered. The following
parameters are used for the comparison: 𝑙1 = 0.4, 𝑙2 = 1.5748𝑅2,𝑅1 →
, 𝑅2 = 100 h, 𝐸0

11 = 2 × 1011 Pa, 𝐸0
22 = 𝐺0

12 = 𝐸0
11∕20, 𝜈12 = 0.2,

and 𝜌0 = 7800 kg∕m3. It should be emphasized that at 𝑅2∕ℎ = 100, the
𝛺𝑁𝐿𝑏𝑏∕𝜔𝐿𝑖𝑛 ratios within the CST and SDT are approximately the same.
The comparison of the magnitudes for 𝛺𝑁𝐿𝑏𝑏

𝐶𝑆𝑇 ∕𝜔𝐿𝑖𝑛𝐶𝑆𝑇 ratio, which are
presented in Ref. [19], with the magnitudes obtained for a particular
case in our study, shows that the results are in good agreement (see,
Table 1).

In the second comparison, the results obtained in the study of Thai
and Kim [30] for linear vibration frequencies of HO plates with various
orthotropy ratios in the framework of SDT are compared with our
results. Considering 𝜇1 = 0, 𝑅1 → ∞, 𝑅2 → ∞ in the expression
(24) in our study, the expression for linear vibration frequencies of
HO plates is obtained in the framework of SDT. In the comparison,
the 𝐸0

11∕𝐸
0
22 ratio changes and the other HO material properties are as

follows: 𝐺0
12∕𝐸

0
22 = 𝐺0

13∕𝐸
0
22 = 0.5, 𝐺0

23∕𝐸
0
22 = 0.2, 𝜈12 = 0.25, 𝜌0 = 1. The

variation of geometric parameters is shown in Table 2. The following
formula is used for the nondimensional frequency in a comparison:
̂𝐿𝑖𝑛𝑆𝐷𝑇 = 𝜔 𝑙1

ℎ

√

𝜌0

𝐸0
22

. The very good agreement of the obtained results
confirms the accuracy of the expression obtained for the frequency in
the framework of SDT in our study (see, Table 2).

In numerical analysis, various shell-type structural elements made
of graphite/epoxy with the following material properties are used
(except for Figs. 5 and 6) [11]:

𝐸0
11 = 137.9 GPa, 𝐸0

22 = 8.96 GPa, 𝐺0
12 = 𝐺0

13 = 7.1 GPa,

𝐺0
23 = 6.21 GPa, 𝜈12 = 0.3, 𝜈21 = 𝜈12𝐸

0
22∕𝐸

0
11,

𝜌0 = 1.45 × 103 (kg∕m3)

The non-homogeneity functions vary exponentially as follows: 𝜂𝑖(𝑧)
= 𝑒𝜇𝑖(𝑧+1∕2)(𝑖 = 1, 2), where 𝜇 (𝑖 = 1, 2) are the coefficients of variation
𝑖
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Fig. 4. (a) Two- and (b) three-dimensional distributions of Young’s modulus (𝐸𝑧
11).
of elasticity moduli and density, those vary in the range of 0 ≤ 𝜇𝑖 ≤ 1,
while the case of 𝜇𝑖 = 0 corresponds to HO material. By using Maple 14,
(a)two- and (b) three-dimensional distributions of the Young’s modulus
(𝐸𝑧11) are illustrated in Fig. 4. Here 𝑥 = 𝑥∕𝑙1 is the dimensionless
longitudinal coordinate. Variations of other mechanical properties with
respect to the thickness coordinate can be plotted similarly

The nonhomogeneity types of material properties of shell-type struc-
tural elements are designated by symbols as follows: (𝜇1, 𝜇2) = (1, 0)
or NHO-1 and (𝜇1, 𝜇2) = (+1,+1)or NHO-2. The damping coefficient
is taken into account as 𝜉 = 𝜉1𝜔𝐿𝑖𝑛 [19,31]. In all calculations and
analyzes performed below, the main vibrational mode (𝑚, 𝑛) = (1, 1)
has been considered.

The variations of damped and undamped nonlinear forced vibration
frequencies and undamped backbone frequency of HO and NH or-
thotropic (NHO-1) spherical shell and hypar shell against the 𝑓 within
(a) shear and (b) classical theories are illustrated in Figs. 5 and 6 for
different orthotropy ratios 𝐸0

11∕𝐸
0
22 = 10, 15, 20. The other parameters

are taken into account: 𝐺0
12∕𝐸

0
22 = 𝐺0

13∕𝐸
0
22 = 0.5, 𝐺0

23∕𝐸
0
22 = 0.2,

𝜈12 = 0.25, 𝜌0 = 1, 𝑅2∕𝑙1 = 3, 𝑙1∕𝑙2 = 1, 𝑙1∕ℎ = 10, 𝑞0 = 1.388 × 107

(Pa/m), 𝜉1 = 0 and 𝜉1 = 0.05. As shown in Figs. 5 and 6, due to
the rise of 𝑓 , 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 of shallow shells with and without
damping increment, while 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 first reduces and then increment.
The damped and undamped nonlinear forced vibration frequencies and
backbone frequency of shallow shells reduce due to 𝐸0

11∕𝐸
0
22 increment

from 10 to 20. The undamped nonlinear forced vibration frequencies
and backbone frequency of spherical shells are more significant than
those of hypar shells at 𝑓 > 0.8. The nonlinear forced vibration and
backbone frequencies of hypar shells are less than those of spherical
shells when the viscous damping is taken into account. Due to the
increase of 𝑓 , the effect of shear deformations on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and
𝛺𝑁𝐿𝑏𝑏 for shallow shells without damping decreases, while it first raises
to its maximum value and then diminishes for the 𝑓𝑜𝑟𝑐1 frequency.
For example, due to the rise of 𝑓 from 0.16 to 1.60 at 𝐸0

11∕𝐸
0
22 =

20, the influence of shear deformations on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏

for spherical shells originating from NHO-1 decreases (12.36%) and
(5.98%), respectively. At the same time, it first increases by (2.29%)
and then diminishes by (3.97%) for the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 . The effect of shear
deformations on 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 for the hypar shell originating
from NHO-1 diminishes (18.32%) and (10.57%), respectively, while it
7

first rises by (2.2%) and then reduces by (7.69%) for the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 for
hypar shells. The influence of shear deformations on damped and un-
damped nonlinear forced vibration frequencies and backbone frequency
of shallow shells originating from NHO-1 rises due to the orthotropy
ratio increment. For example, due to the rise of 𝐸0

11∕𝐸
0
22 from 10 to 20

at 𝑓 = 0.16, the effect of transverse shear deformations on 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 ,
𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 for NHO-1 originating spherical and hypar shells
with and without damping increase (3.5%), (9.8%), (6%) and (3.4%),
(10.2%), (6.1%), respectively.

Due to the increase of the 𝐸0
11∕𝐸

0
22 ratio, the effect of the NHO-1

profile on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 for shallow shells with and without viscous
damping decreases, whereas it rises for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 . The effect of the
NHO-1 profile on the backbone frequency of shallow shells remains
constant. For example, due to the rise of 𝐸0

11∕𝐸
0
22 from 10 to 20 at

𝑓 = 0.16, the influence of the NHO-1 profile on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 for
spherical and hypar shells under SDT diminishes by (3.2%) and (2.8%),
whereas raises by (13.9%) and (15.5%) for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 , respectively.

The viscous damping effect on forced vibration frequencies for shal-
low shells decreases as the orthotropy ratio increment. For example,
as 𝐸0

11∕𝐸
0
22 increment from 10 to 20, the influence of damping on

nonlinear forced vibration frequencies for the spherical shell consisting
of raw material diminishes (1%) and (1.8%) at 𝑓 = 0.8, while it
for NHO-1 profiles reduce (1%) and (1.1%) within SDT and CST,
respectively at 𝑓 = 0.48. Similarly, the damping influence on forced
vibration frequencies of hyperbolic-paraboloid shells originating from
raw material and NHO-1 material diminishes (0.6%) in the framework
SDT and CST, at 𝑓 = 0.8.

Figs. 7 and 8 show the variation of nonlinear forced vibration and
backbone frequencies four different structural elements such as HO
and NHO-1 spherical and hypar shells, cylindrical panels and plates
depending on the increase of 𝑓 for various damping coefficient 𝜉1
within (a) SDT and (b) CST. The numerical data used in the drawing
of Figs. 7 and 8 are as follows: 𝑅2∕𝑙1 = 1, 𝑙1∕𝑙2 = 1, 𝑙1∕ℎ = 20, 𝑞0 =
1.0476 × 107, 𝜉1 = 0, 0.06, 0.07, 0.08. While the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑏𝑏 for
spherical shell decrease, the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 first increases and then reduces
with the increasing of 𝑓 , as the damping coefficient is zero. While
the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑏𝑏 for the spherical shell with damping decrease
depending on the increase of 𝑓 , the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 increases. Due to the
increase of 𝑓 from 0.07 to 0.75, 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 increase for the
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Fig. 5. Variation of nonlinear forced vibration frequencies of HO and NHO-1 spherical shells with and without damping against the 𝑓 within (a) shear and (b) classical theories.
hypar shell, cylindrical panel and plate, in contrast, 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 reduces
o its minimum value and then raises, when damping is not taken into
ccount. In the presence of damping, 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 increase,
hile the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 decreases, depending on the rise of 𝑓 . For the
ll-structural elements, the undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 are larger than the
8

undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 , and vice versa for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 . Backbone frequencies
in undamped and damped cases are equal to each other.

The forced vibration and backbone frequencies of the spherical shell
and the cylindrical panel are higher than the frequency of the plate,
whereas those of hypar shell are less than the frequencies of the plate.
Depending on the increase of damping parameter 𝜉 , the difference
1



A.H. Sofiyev, F. Turan and N. Kuruoğlu Thin-Walled Structures 171 (2022) 108662
Fig. 6. Change of nonlinear forced vibration frequencies of HO and NHO-1 hyperbolic-paraboloid shells with and without damping against the 𝑓 within (a) shear and (b) classical
theories.
between 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 decreases, while between 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 increase in the

spherical shell and cylindrical panel, while it remains constant in the

hypar shell.
9

The influence of damping on nonlinear forced vibration frequencies
of four structures increases with the increase of 𝑓 . For example, due to
the rise of 𝑓 from 0.07 to 0.27 at 𝜉1 = 0.06, the damping effect on
the forced vibration frequencies of the HO- spherical shell increases
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Fig. 7. Variation of nonlinear forced vibration frequencies of HO structures versus the 𝑓 for various damping coefficient 𝜉1 within (a) shear and (b) classical theories.
(2.8%) and (3.5%), while it increases (0.8%) and (1%) for the HO-
hypar shell and HO-plate, (1.2%) and (1.4%) for the HO-cylindrical
panel within shear and classical theories, respectively. The effect of
damping on frequencies of structural elements increases depending on
the rise of 𝜉1. For instance, due to the increase of 𝜉1 from 0.06 to 0.08 at
𝑓 = 0.11, the influence of damping on the𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 for the
10
spherical shell consisting of the NHO-1 profile within SDT raises (1.8%)
and (2.19%), respectively. It rises (0.5%) and (0.8%) for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1

and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 for the hyperbolic-paraboloid shell and plate, and it
raises (0.7%) and (1.1%) for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 for the cylindrical
panel, respectively. The damping influence for CST is more pronounced
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Fig. 8. Distribution of nonlinear forced vibration frequencies of NHO-1 structural members versus the 𝑓 for various damping coefficient 𝜉1 within (a) SDT and (b) CST.
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y (0.4%) for the spherical shell and by (0.15%) for the hyperbolic-
araboloid shell, cylindrical panel, and plate than the damping effect
n the SDT.

While the effect of the transverse shear deformations on the non-
inear forced vibration frequencies of structural elements decreases for
𝑁𝐿𝑓𝑜𝑟𝑐1 , it raises for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2due to the increase of 𝜉1. For example,

s 𝜉1 increment from 0 to 0.08, the change of the transverse shear
eformations effect on forced frequencies for the NHO-1 structural
lements such as for spherical shell is (0.6%) at 𝑓 = 0.11, for the hypar
hell and plate is (2.6%) at 𝑓 = 0.27 and for the cylindrical panel is
1%) at 𝑓 = 0.19.
11
While the effect of NHO-1 profile on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 for structural
lements decreases, it increases for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 due to the rise of 𝜉1. For
nstance, due to the increase of 𝜉1 from 0 to 0.08, the change of the
HO-1 profile effect on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 for the spherical

hell is (2.8%) and (3.3%) at 𝑓 = 0.11, for the hypar shell and plate
it is (5.3%) and (6.1%) at 𝑓 = 0.27 and for the cylindrical panel it is
(3.1%) and (3.6%) at 𝑓 = 0.19, respectively within CST. The effect of
the NHO-1 profile on the forced frequencies in the SDT is lower than
in the CST by (0.6%) for a spherical shell and (0.2%) for a hypar shell,
cylindrical panel and plate.
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l

Fig. 9. Variation of undamped/damped nonlinear forced vibration frequencies of HO and NHO-1 spherical shells versus 𝑓 for different 𝑞0 within (a) shear and (b) classical theories.
Figs. 9 and 10 show the change of the undamped/damped non-
inear forced vibration and backbone frequencies of HO and NHO-1

orthotropic spherical and hyperbolic-paraboloid shells depending on
the amplitude of 𝑓 for various 𝑞0 within (a) SDT and (b) CST. The
following loading, damping and geometric parameters are used: 𝑞0 =
3 × 108, 3.3 × 108, 3.6 × 108, 𝑅 ∕𝑙 = 1, 𝑙 ∕𝑙 = 3, 𝑙 ∕ℎ = 10, 𝜉 = 0 and
2 1 1 2 1 1

12
𝜉1 = 0.08. As shown in Figs. 9 and 10, depending on the increase of
𝑓 , the undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑏𝑏 for shallow shells
raise, while the undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 it first reduces to
its minimum value and then raises. As the undamped and damped
𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 of the shells increase due to increment of 𝑞0, whereas the
𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 diminish. The undamped forced vibration frequencies of the
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s
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Fig. 10. Variation of undamped/damped nonlinear forced vibration frequencies of HO and NHO-1 hyperbolic-paraboloid shells versus 𝑓 for different 𝑞0 within (a) shear and (b)
classical theories.
o
hyperbolic-paraboloid shell are more pronounced than the undamped
forced vibration frequencies for the spherical shell, at 𝑓 > 1.12, vice
versa in the damped case.

Due to the increase of 𝑓 from 0.32 to 3.2, the effect of shear
deformations on the undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 and 𝛺𝑁𝐿𝑏𝑏 for the spherical
hell raises, while it first reduces to its minimum value and then raises
or the undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 . While the influence of shear deformations
13
n the undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 and 𝛺𝑁𝐿𝑏𝑏 for hyperbolic-paraboloid shell
diminishes, it first increases to its maximum value and then reduces for
undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 . The influence of shear deformations on 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1

for shallow shells in the undamped and damped cases diminish, at the
same time, it raises for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 , when 𝑞0 increases for fixed 𝑓 . As the
𝑞0 increases from 3 × 108 to 3.6 × 108, the effect of shear deformations
on the undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 for HO-spherical and HO-
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Fig. 11. Distribution of undamped/damped nonlinear forced vibration frequencies to linear frequency ratios of NHO-2 spherical shells versus 𝑓 for different 𝑅2∕𝑙1 within (a) SDT
and (b) CST.
hyperbolic-paraboloid shells increases (1.8%) and (2.8%), respectively,
whereas, it for 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 is less than (0.5%) at 𝑓 = 0.32.

Due to the increase of 𝑞0 from 3 × 108 to 3.6 × 108, the effect of
NHO-1 profile on the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1 for spherical and hypar shells in the
undamped and damped cases within CST diminishes by (1.8%) and
14
(1.9%), respectively, whereas it raises by (%7.5) and (%10) for the
𝛺𝑁𝐿𝑓𝑜𝑟𝑐2 frequencies, at 𝑓 = 0.32.

The damping effect on nonlinear forced vibration frequencies of
shallow shells diminishes due to the rise of 𝑞0 from 3 × 108 to 3.6 × 108.
For instance, due to the increase of 𝑞 from 3 × 108 to 3.6 × 108 at 𝑓 =
0
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Fig. 12. Distribution of undamped/damped nonlinear forced vibration frequencies to linear frequency ratios of NHO-2 hypar shells versus 𝑓 for different 𝑅2∕𝑙1 within (a) shear
and (b) classical theories.
1.12, the damping effect on the nonlinear forced vibration frequencies
of the spherical shell consisting of the HO profile decreases (0.85%)
and (1.2%), while this influence for the HO- hyperbolic-paraboloid
shell diminishes (0.6%) and (1.7%) within shear and classical theories,
respectively.
15
In Figs. 11 and 12 are presented the variation of nonlinear forced
vibration frequency to linear frequency ratios of the NHO-2 spherical
and hypar shells with and without damping within two shell theories
versus 𝑓 for different 𝑅2∕𝑙1 ratio. The following data is used for the
calculations: 𝑅2∕𝑙1 = 1, 1.5, 2, 𝑙1∕𝑙2 = 1, 𝑙1∕ℎ = 10, 𝑞0 = 3.2 × 107,
𝜉 = 0 and 𝜉 = 0.03. Due to the increase of 𝑓 , the undamped
1 1
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and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑏𝑏∕𝜔𝐿𝑖𝑛 ratios rise, whereas the
𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 ratio first reduces to its minimum value and then raises

or the hypar shell. Undamped𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 and𝛺𝑁𝐿𝑏𝑏∕𝜔𝐿𝑖𝑛 ratios for
spherical shell diminish, whereas 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratio first increases to
its maximum value and then decreases, as 𝑓 increment at 𝑅2∕𝑙1 = 1,.
Due to the increase of 𝑓 , as 𝑅2∕𝑙1 > 1, the undamped and damped
𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑏𝑏∕𝜔𝐿𝑖𝑛 ratios of the spherical shell rise, while
the 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 frequency ratio first diminishes and then incre-
ment. Due to the rise of the 𝑅2∕𝑙1 ratio from 1 to 2, the undamped
and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑏𝑏∕𝜔𝐿𝑖𝑛 ratios of spherical shells
decrease, while 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratio first diminishes to its minimum
value and then increases. The undamped and damped forced vibra-
tion and backbone frequency ratios of the hyperbolic-paraboloid shell
raise.

Depending on the increase of 𝑓 , the effect of shear deformations
on the undamped and damped forced vibration frequency ratios for
shallow shells first diminishes to its minimum value and then increases,
at the same time, this effect on the backbone frequency ratios rises
for fixed 𝑅2∕𝑙1. For example, due to the increase of 𝑓 from 0.12
to 2.36 at 𝑅2∕𝑙1 = 1, the influence of shear deformations on the
undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratios of the spherical
shell firstly diminishes by (1.64%) and (1.95%) then rise by (11.94%)
and (11.79%), respectively. Also, the shear deformations effect on the
undamped backbone frequency ratio raises by (12.3%). The shear defor-
mation influence on the undamped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛

ratios of the hypar shell firstly decrease by (6.56%) and (20.2%)
then increase by (6.68%) and (5%), respectively. Besides, the shear
deformation effect on the backbone frequency ratio rises by (7.2%).
When 𝑅2∕𝑙1 = 1.5 and 𝑓 = 1.4, the influence of shear deformations on
the undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 ratios of the spherical shell
s (2.5%) and (2.1%), respectively. At the same time, this effect on the
ndamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratios are (3.4%) and (3.8%),
espectively.

Due to the increase of 𝑅2∕𝑙1 from 1 to 2, the shear deformations
ffect on undamped and damped forced vibration frequency ratios of
he spherical shell raises in the range of 0.12 ≤ 𝑓 ≤ 0.68, while
t decreases at 𝑓 > 0.76. The influence of shear deformations on
he undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 ratios of the hyperbolic-
araboloid shell rise, while it diminishes for the undamped and damped
𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratios. Due to the rise of 𝑅2∕𝑙1 from 1 to 2, the vari-

tion of the shear deformation effect on the undamped and damped
ackbone frequency ratios of shallow shells is insignificant. For in-
tance, depending on the rise of 𝑅2∕𝑙1 ratio from 1 to 2 at 𝑓 =
.12, the effect of shear deformations on the undamped and damped
𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 and 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratios of the spherical shell incre-
ent (2.6%) and (7.8%), respectively. Due to the increase of 𝑅2∕𝑙1

atio from 1 to 2 at 𝑓 = 2.2, the influence of shear deformations
n undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐1∕𝜔𝐿𝑖𝑛 ratios for the hypar shell
aises (1.12%) and (2.5%) respectively. At the same time, it diminishes
0.4%) and (1.6%) for the undamped and damped 𝛺𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 ratios,
espectively.

Due to the rise of 𝑓 from 0.12 to 1.0, when 𝑅2∕𝑙1 = 1, the
amping effect on 𝛺𝑁𝐿𝑓𝑜𝑟𝑐𝑖∕𝜔𝐿𝑖𝑛 for the spherical shell raises (1.7%)
nd (2.03%), whereas this effect in the hypar shells raises (0.6%) within
hear and classical theories, respectively. The damping influence on
orced frequency ratios for the shallow shell decreases with increasing
f the 𝑅2∕𝑙1 ratio from 1 to 2. For instance, due to the increase of
he 𝑅2∕𝑙1 ratio from 1 to 2 at 𝑓 = 1, the effect of damping on
𝑁𝐿𝑓𝑜𝑟𝑐2∕𝜔𝐿𝑖𝑛 for shallow shells diminishes about (1.1%) and (0.2%),

espectively.

. Conclusions

The damped nonlinear forced vibration behaviors of NHO structural
lements at primary resonance in the framework of SDT is investigated.

fter mathematically modeling the mechanical properties of double

16
urved structural systems composed of NHO materials, the nonlinear
asic partial differential equations are derived based on nonlinear fun-
amental relationships. In the next step, these equations were reduced
o ordinary differential equations containing second and third order
onlinearities with the Galerkin procedure, and the forced vibration
requency–amplitude dependence in the main resonance is found by
olving them with the multi-scale method. After testing the correctness
f the proposed methodology, the effects of inhomogeneity, transverse
hear deformations, anisotropy and damping on the nonlinear forced
ibration frequencies for various structural elements are investigated
n detail, both qualitatively and quantitatively.
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ppendix A

11(𝜑) = ℎ
[

(𝐴11 − 𝐴31)
𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝐴12

𝜕4

𝜕𝑥4

]

,

𝐿12(𝑤) = 𝜌1
𝜕4

𝜕𝑥2𝜕𝜏2
− 𝐴13

𝜕4

𝜕𝑥4
−
(

𝐴14 + 𝐴32
) 𝜕4

𝜕𝑥2𝜕𝑦2
,

𝐿13(𝜒1) = 𝐴15
𝜕3

𝜕𝑥3
+ 𝐴35

𝜕3

𝜕𝑥𝜕𝑦2
− 𝐼3

𝜕
𝜕𝑥

− 𝜌2
𝜕3

𝜕𝑥𝜕𝜏2
,

𝐿14(𝜒2) =
(

𝐴18 + 𝐴38
) 𝜕3

𝜕𝑥2𝜕𝑦
,

𝐿21(𝜑) = ℎ
[

𝐴21
𝜕4

𝜕𝑦4
+ (𝐴22 − 𝐴31)

𝜕4

𝜕𝑥2𝜕𝑦2

]

,

𝐿22(𝑤) = −
(

𝐴32 + 𝐴23
) 𝜕4

𝜕𝑥2𝜕𝑦2
− 𝐴24

𝜕4

𝜕𝑦4
+ 𝜌1

𝜕4

𝜕𝑥2𝜕𝜏2
,

𝐿23(𝜒1) =
(

𝐴35 + 𝐴25
) 𝜕3

𝜕𝑥𝜕𝑦2
,

𝐿24(𝜒2) = 𝐴38
𝜕3

𝜕𝑥2𝜕𝑦
+ 𝐴28

𝜕3

𝜕𝑦3
− 𝐼4

𝜕
𝜕𝑦

− 𝜌3
𝜕3

𝜕𝑦𝜕𝜏2
,

𝐿31(𝜑) = ℎ
(

1
𝑅2

𝜕2

𝜕𝑥2
+ 1
𝑅1

𝜕2

𝜕𝑦2

)

, 𝐿32(𝑢3) = −𝜌𝑡
𝜕2

𝜕𝜏2
, 𝐿33(𝜓1) = 𝐼3

𝜕
𝜕𝑥
,

𝐿34(𝜒2) = 𝐼4
𝜕
𝜕𝑦
, 𝐿35(𝜑,𝑤) = ℎ

[

𝜕2

𝜕𝑦2
𝜕2

𝜕𝑥2
− 2 𝜕2

𝜕𝑥𝜕𝑦
𝜕2

𝜕𝑥𝜕𝑦
+ 𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2

]

,

𝐿41(𝜑) = ℎ
[

𝐵11
𝜕4

𝜕𝑦4
+ (𝐵12 + 𝐵21 + 𝐵31)

𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝐵22

𝜕4

𝜕𝑥4

]

,

𝐿42(𝑤) = −𝐵23
𝜕4

𝜕𝑥4
−
(

𝐵24 + 𝐵13 − 𝐵32
) 𝜕4

𝜕𝑥2𝜕𝑦2

−𝐵14
𝜕4

𝜕𝑦4
+
(

1
𝑅2

𝜕2

𝜕𝑥2
+ 1
𝑅1

𝜕2

𝜕𝑦2

)

,

𝐿43(𝜒1) = 𝐵25
𝜕3

𝜕𝑥3
+
(

𝐵15 + 𝐵35
) 𝜕3

𝜕𝑥𝜕𝑦2
,

𝐿44(𝜒2) =
(

𝐵28 + 𝐵38
) 𝜕3

𝜕𝑥2𝜕𝑦
+ 𝐵18

𝜕3

𝜕𝑦3
,

𝐿45(𝑤,𝑤) = −
(

𝜕2

𝜕𝑥𝜕𝑦

)2
+ 𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
.
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𝐵

𝐵

𝐵

𝐵

𝑘

R

where
𝐴11 = 𝐶111𝐵11 + 𝐶121𝐵21, 𝐴12 = 𝐶111𝐵12 + 𝐶121𝐵22,

𝐴13 = 𝐶111𝐵13 + 𝐶121𝐵23 + 𝐶112,

𝐴14 = 𝐶111𝐵14 + 𝑐121𝐵24 + 𝑐122, 𝐴15 = 𝐶111𝐵15 + 𝐶121𝐵25 + 𝐶151,

𝐴18 = 𝐶111𝐵18 + 𝐶121𝐵28 + 𝐶181,

𝐴21 = 𝐶211𝐵11 + 𝐶221𝐵21, 𝐴22 = 𝐶211𝐵12 + 𝐶221𝐵22,

𝐴23 = 𝐶211𝐵13 + 𝐶221𝐵23 + 𝐶212,

𝐴24 = 𝐶211𝐵14 + 𝐶221𝐵24 + 𝐶222, 𝐴25 = 𝐶211𝐵15 + 𝐶221𝐵25 + 𝐶251,

𝐴28 = 𝐶211𝐵18 + 𝐶221𝐵28 + 𝐶281,

𝐴31 = 𝐶661𝐵35, 𝐴32 = 𝐶661𝐵32 + 2𝐶662, 𝐴35 = 𝐶351 − 𝐶661𝐵35,

𝐴38 = 𝐶381 − 𝐶661𝐵38,

𝐼𝑘 = ∫

ℎ∕2

−ℎ∕2

𝑑𝑓 𝑧𝑖
𝑑𝑧

d𝑧,(𝑖 = 1, 2; 𝑘 = 𝑖 + 2)

(A.2)

in which
𝐵11 =

𝐶220
𝐻

, 𝐵12 = −
𝐶120
𝐻

, 𝐵13 =
𝐶120𝐶211 − 𝐶111𝐶220

𝐻
,

14 =
𝐶120𝐶211 − 𝐶121𝐶220

𝐻
,

15 =
𝐶250𝐶120 − 𝐶150𝐶220

𝐻
,𝐵18 =

𝐶280𝐶120 − 𝐶180𝐶220
𝐻

,

21 = −
𝐶210
𝐻

, 𝐵22 =
𝐶110
𝐻

,

𝐵23 =
𝐶111𝐶210 − 𝐶211𝐶110

𝐻
, 𝐵24 =

𝐶121𝐶210 − 𝐶221𝐶110
𝐻

,

25 =
𝐶150𝐶210 − 𝐶250𝐶110

𝐻
, 𝐵31 =

1
𝐶660

𝐵28 =
𝐶180𝐶210 − 𝐶280𝐶110

𝐻
, 𝐻 = 𝐶110𝐶220 − 𝐶120𝐶210,

𝑏32 = −
2𝐶661
𝐶660

, 𝑏35 =
𝐶350
𝐶660

, 𝑏38 =
𝐶380
𝐶660

,

𝐶11𝑖1 = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑧11𝑧

𝑖1d𝑧, 𝐶12𝑖1 = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑧12𝑧

𝑖1d𝑧,

𝐶21𝑖1 = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑧21𝑧

𝑖1d𝑧, 𝐶22𝑖1 = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑧22𝑧

𝑖1d𝑧,

𝐶66𝑖1 = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑧66𝑧

𝑖1d𝑧, 𝐶15𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧1𝑌

𝑧
11𝑧

𝑖2d𝑧,

𝐶18𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧2𝑌

𝑧
12𝑧

𝑖2d𝑧, 𝐶25𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧1𝑌

𝑧
21𝑧

𝑖2d𝑧,

𝐶28𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧2𝑌

𝑧
22𝑧

𝑖2d𝑧, 𝐶35𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧1𝑌

𝑧
66𝑧

𝑖2d𝑧,

𝐶38𝑖2 = ∫

ℎ∕2

−ℎ∕2
𝐼𝑧2𝑌

𝑧
11𝑧

𝑖2d𝑧, 𝑖1 = 0, 1, 2; 𝑖2 = 0, 1.
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Appendix B

𝑘11 = 𝑚2
⎧

⎪

⎨

⎪

⎩

𝛿1
[

(𝐴11 − 𝐴31)𝑛
2 + 𝐴12𝑚

2
]

𝐵11𝑚
4 + (B12 + 𝐵21 + 𝐵31)𝑚

2𝑛2 + 𝐵22𝑛
4
− 𝐴13𝑚

2

−
(

𝐴14 + 𝐴32
)

𝑛2
⎫

⎪

⎬

⎪

⎭

,

𝑁𝐿 = − 2𝑚𝑛 𝐴12 o, 𝑘𝑡 = −𝜌1𝑚
2, 𝑘12 = 𝑚

(

𝐴15𝑚
2 + 𝐴35𝑛

2 + 𝐼3
)

,
11 3𝑙1𝑙2 𝐵22
11

17
𝑘𝑡12 = 𝜌2𝑚,

𝑘13 = (𝐴18 + 𝐴38)𝑚
2𝑛,

𝑘21 = 𝑛2
⎧

⎪

⎨

⎪

⎩

𝛿1
[

𝐴21𝑛
2 + (𝐴22 − 𝐴31)𝑚

2
]

𝐵11𝑚
4 + (𝐵12 + 𝐵21 + 𝐵31)𝑚

2𝑛2 + 𝐵22𝑛
4

−
(

𝐴32 + 𝐴23
)

𝑚2 − 𝐴24𝑛
2
⎫

⎪

⎬

⎪

⎭

,

𝑘𝑁𝐿21 = − 2𝑚𝑛
3𝑙1𝑙2

𝐴21o

𝐵11
, 𝑘𝑡21 = −𝜌1𝑛

2, 𝑘22 = (𝐴25 + 𝐴35)𝑛
2𝑚,

𝑘23 = 𝑛
(

𝐴28𝑛
2 + 𝐴38𝑚

2 + 𝐼4
)

,

𝑘𝑡23 = 𝜌3𝑛, 𝑘31 =
𝛿1

(

𝑚2∕𝑅2 + 𝑛
2∕𝑅1

)

𝐵11𝑚
4 + (𝐵12 + 𝐵21 + 𝐵31)𝑚

2𝑛2 + 𝐵22𝑛
4
,

𝑘32 =
1
16

(

𝑛4

𝐵22
+ 𝑚4

𝐵11

)

,

𝑘𝑁𝐿31 = − 1
12𝑙1𝑙2

[

1
𝑅2

1
𝐵22

𝑛
𝑚

+ 1
𝑅1

1
𝐵11

𝑚
𝑛

+
32𝛿1𝑚𝑛

𝐵11𝑚
4 + (B12 + 𝐵21 + 𝐵31)𝑚

2𝑛2 + B22𝑛
4

]

o,

𝑘33 = 𝐼3𝑚, 𝑘34 = 𝐼4𝑛, o =
[

(−1)𝑚+𝑛 − (−1)𝑚 − (−1)𝑛 + 1
]

(B.1)
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