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Abstract In this study, the effects of elastic foundations (EFs) and carbon nanotube
(CNT) reinforcement on the hydrostatic buckling pressure (HBP) of truncated conical
shells (TCSs) are investigated. The first order shear deformation theory (FOSDT) is
generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs
for the first time. The material properties of composite TCSs reinforced with CNTs are
graded linearly according to the thickness coordinate. The Winkler elastic foundation
(W-EF) and Pasternak elastic foundation (P-EF) are considered as the EF. The basic
relations and equations of TCSs reinforced with CNTs on the EFs are obtained in the
framework of the FOSDT and solved using the Galerkin method. One of the innovations
in this study is to obtain a closed-form solution for the HBP of TCSs reinforced with
CNTs on the EFs. Finally, the effects of the EFs and various types CNT reinforcements
on the HBP are investigated simultaneously. The obtained results are compared with the
results in the literature, and the accuracy of results is confirmed.
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1 Introduction

Since carbon nanotubes (CNTs) are flexible, durable, and powerful, it is becoming more and
more attractive for use as a reinforcing element in various fields of technology[1–3]. Structural
elements reinforced by nanotubes are lighter, stronger, and more resistant to heat and radia-
tion, and are often used in various areas of the spacecraft, defense industry, and mechanical
engineering. Since structural elements reinforced with CNTs have become inevitable in various
environments, it is very important to determine the influence of elastic media on their behavior
during design. Many foundation models have been proposed to better describe the structure
of soils. The simplest model for an elastic foundation (EF) is the Winkler model, it was later
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developed by Pasternak, which takes into account the interaction of springs separated in the
Winkler model by adding a new dependent parameter[4]. Since then, the Pasternak model
has been widely used to describe the mechanical behavior of structures that interact with the
EFs. The basic information on these models and their interaction problems with the structural
elements are presented in detail in Refs. [5]–[7]. A study on the behavior of truncated conical
shells (TCSs) on the Pasternak elastic foundation (P-EF) is first found in Ref. [8].

Thus, in recent years, researchers began to study analyzes of the bending, buckling, and
vibration of structural elements reinforced with CNTs on the EFs. One of the first studies on
the buckling of shell structures reinforced with CNTs resting on the EFs belongs to Shen and
Xiang[9]. After this work, a number of studies were carried out, most of which belonged to
Shen and co-authors[10–13], as well as the work of Bidgoli et al.[14] and Mohammadi et al.[15]

have been published. At the same time, the problems of bending, buckling, and vibration of
plates reinforced with CNTs on the EFs have been studied since 2015, which continue to this
day[16–27].

The literature review by the authors reveals that the number of studies for buckling and
vibration of TCSs reinforced with CNTs on the EFs is rather limited compared with plates and
cylindrical shells reinforced with CNTs. One of these studies was described by Duc et al.[28],
the authors addressed the solution of the stability of TCSs reinforced with CNTs under the
axial load and resting on the EFs. Thanh et al.[29] studied dynamic response and vibration of
TCSs reinforced with CNTs and resting on the EFs. In the above studies[28–29], the stability
and vibration of TCSs have been addressed in the framework of the classical shell theory (CST).

As far as the authors know, there is no literature describing the buckling of TCSs reinforced
with CNTs and resting on the EFs based on the first order shear deformation theory (FOSDT).
The FOSDT is generalized to the buckling problem of TCSs reinforced with CNTs resting on
the EFs for the first time. One of the unique aspects of this study is that shear stress functions
are used for TCSs reinforced with CNTs instead of the shear correction factor. The influences
of shear strains are included in the fundamental relations and basic equations in the form of
parabolic functions. One of the innovations in this study is to obtain formula for the hydrostatic
buckling pressure (HBP) of TCSs reinforced with CNTs on the EFs within the FOSDT. Finally,
numerical calculations are performed to show the influences of EFs on the HBP for the TCSs
reinforced with CNTs for different volume fractions and geometries.

2 Multi-scale model for TCSs reinforced with CNTs

Let us assume that the TCS reinforced with CNTs on the EFs is exposed to the uniform
hydrostatic pressure, TH (see Fig. 1). The length, small and large radii, thickness and semi-
vertex angle of the TCS are l, r1, r2, h, and θ, respectively. In this case, the membrane forces
Nx0, Nϕ0, and Nxϕ0 for the condition with zero initial moments are determined as follows:





Nx0 = −0.5TH
x

cot θ
,

Nϕ0 = −TH
x

cot θ
,

Nxϕ0 = 0.

(1)

Let us assume that the origin of the coordinate system Oxϕζ is chosen so that it is at the
top of the cone, on the reference surface of the shell. Let u, v, and w be the cone displacements
parallel to a right hand set of axes (x, ϕ, ζ), in which x is longitudinal, ϕ is circumferential,
and ζ is perpendicular to the shell surface, and ψ1 and ψ2 are the mid-surface rotations of the
normal about the ϕ- and x-axes, respectively. The conical shell resting on the P-EF and the
reaction force per unit area, N0 of the P-EF to TCSs is formulated as follows[3–8]:

N0 = k1w − k2∇
2w, (2)
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where k1 is the Winkler spring stiffness (N/m3), k2 is shearing layer stiffness of the foundation
(N/m), ϕ0 = ϕ sin θ, and ∇

2w = (w,xx +w,x /x + w,ϕ0ϕ0
/x2) is Laplace operator for x and

ϕ[8]. Here, a coma denotes partial differentiation versus the coordinates. When k2 = 0, the
P-EF turns into the Winkler elastic foundation (W-EF).

ζ

θ

ϕ

Fig. 1 TCS reinforced with CNTs under the hydrostatic pressure on the P-EF and notations (color
online)

When the stress function is expressed by Ψ, the relationship between the force components
(Nx, Nϕ, Nxϕ) will be[30]

(Nx, Nϕ, Nxϕ) =
( 1

x2

∂2Ψ

∂ϕ2
0

+
1

x

∂Ψ

∂x
,
∂2Ψ

∂x2
,−

1

x

∂2Ψ

∂x∂ϕ0
+

1

x2

∂Ψ

∂ϕ0

)
h. (3)

The FOSDT was developed by Ambartsumian[30], who assumed the parabolic distributions
of the transverse shear strains over the thickness of the shells. One of the advantages of this
theory is that the number of independent unknowns is four (Ψ, w, ψ1, ψ2), and the shear cor-
rection factor is not used. On the basis of the FOSDT, the basic equations for TCSs reinforced
with CNTs on the P-EF can be derived in terms of Ψ, w, ψ1, and ψ2 as





L11(Ψ) + L12(w) + L13(ψ1) + L14(ψ2) = 0,

L21(Ψ) + L22(w) + L23(ψ1) + L24(ψ2) = 0,

L31(Ψ) + L32(w) + L33(ψ1) + L34(ψ2) = 0,

L41(Ψ) + L42(w) + L43(ψ1) + L44(ψ2) − k1w + k2∇
2w = 0,

(4)
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where Lij(i, j = 1, 2, 3, 4) are differential operators and defined as





L11 =h
(
a12

∂4

∂x4
+
a11−a31

x2

∂4

∂x2∂φ2
0

+
3a31−a21−3a11

x3

∂3

∂x∂φ2
0

+
a11+a12−a22

x

∂3

∂x3

+
a22 − a12 − a11 − a21

x2

∂2

∂x2
+

3 (a21 + a11 − a31)

x4

∂2

∂φ2
0

+
2a21

x3

∂

∂x

)
,

L12 =−a13
∂4

∂x4
−
a14+a32

x2

∂4

∂x2∂φ2
0

+
3a14+3a32+a24

x3

∂3

∂x∂φ2
0

−
a13+a14−a23

x

∂3

∂x3

+
a13 + a14 − a23 + a24

x2

∂2

∂x2
−

3(a14 + a24 + a32)

x4

∂2

∂φ2
0

−
2a24

x3

∂

∂x
,

L13 = a15
∂3

∂x3
+
a15 − a25

x

∂2

∂x2
+
a35

x2

∂3

∂x∂φ2
0

− t3
∂

∂x
−
a15 − a25

x2

∂

∂x
−
a35

x3

∂2

∂φ2
0

,

L14 =
a38 + a18

x

∂3

∂x2∂φ0
−
a28 + a18 + a38

x2

∂2

∂x∂φ0
+

2a28

x3

∂

∂φ0
,

(5a)





L21 = h
(a21h

x3

∂4

∂φ4
0

+
(a22 − a31)

x

∂4

∂x2∂φ2
0

+
a21

x2

∂3

∂x∂φ2
0

)
,

L22 = −
a32 + a23

x

∂4

∂x2∂φ2
0

−
a24

x2

∂3

∂x∂φ2
0

−
a24

x3

∂4

∂φ4
0

,

L23 =
a25 + a35

x

∂3

∂x∂φ2
0

+
a35

x2

∂2

∂φ2
0

,

L24 = a38
∂3

∂x2∂φ0
+

2a38

x

∂2

∂x∂φ0
+
a28

x2

∂3ψ

∂φ3
0

− t4
∂

∂φ0
,

(5b)





L31 = h
(ϑ11

x4

∂4

∂φ4
0

+
(2ϑ31 + ϑ21 + ϑ12)

x2

∂4

∂x2∂φ2
0

−
2(ϑ31 + ϑ21)

x3

∂3

∂x∂φ2
0

+
2(ϑ31+ϑ21+ϑ11)

x4

∂2

∂φ2
0

+
ϑ11

x3

∂

∂x
−
ϑ11

x2

∂2

∂x2
+

(ϑ21+2ϑ22−ϑ12)

x

∂3

∂x3
+ϑ22

∂4

∂x4

)
,

L32 = −
ϑ14

x4

∂4

∂φ4
0

+
2ϑ32 − ϑ13 − ϑ24

x2

∂4

∂x2∂φ2
0

+
2(ϑ24 − ϑ32)

x3

∂3

∂x∂φ2
0

+
2(ϑ32 − ϑ24 − ϑ14)

x4

∂2

∂φ2
0

−
ϑ14

x3

∂

∂x
+

(
ϑ14

x2
+

cot θ

x

)
∂2

∂x2

+
ϑ13 − ϑ24 − 2ϑ23

x

∂3

∂x3
− ϑ23

∂4

∂x4
,

L33 =
2ϑ35 + ϑ15

x2

∂3

∂x∂φ2
0

+ ϑ25
∂3

∂x3
+

2ϑ25 − ϑ15

x

∂2

∂x2
,

L34 =
ϑ18

x3

∂3

∂φ3
0

+
2ϑ38 + ϑ28

x

∂3

∂x2∂φ0
+

2ϑ38 − ϑ18

x2

∂2

∂x∂φ0
+
ϑ18

x3

∂

∂φ0
,

(5c)






L41 =
h cot θ

x

∂2

∂x2
,

L42 = −
THx

cot θ

∂2

∂x2
−
THx

cot θ

(
1

x

∂2

∂φ2
0

+
∂

∂x

)
− k1 + k2

(
∂2

∂x2
+

1

x

∂

∂x
+

1

x2

∂2

∂φ2
0

)
,

L43 = t3

(
∂

∂x
+

1

x

)
, L44 =

t4
x

∂

∂φ0
,

(5d)
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in which t3 = t4 = f (0.5h) − f (−0.5h), and the following definitions are used:





a11 = A1
11ϑ11 +A1

12ϑ21, a12 = A1
11ϑ12 +A1

12ϑ21,

a13 = A1
11ϑ13 +A1

12ϑ23 +A2
11, a14 = A1

11ϑ14+A1
12ϑ24+A2

12,

a15 = A1
11ϑ15+A1

12ϑ25+A1
15, a18 = A1

11ϑ18 +A1
12ϑ28 +A1

18,

a21 = A1
11ϑ11 +A1

22ϑ21, a22 = A1
22ϑ12 +A1

21ϑ22,

a23 = A1
21ϑ13 +A1

22ϑ23 +A2
21, a24 =A1

21ϑ14+A1
22ϑ24 +A2

22,

a25 = A1
21ϑ15+A1

22ϑ25+A1
25, a28 =A1

21ϑ18+A1
22ϑ28+A1

28,

a31 = A1
66ϑ31, a32 = A1

66ϑ32 + 2A2
66,

a35 = A1
35 −A1

66ϑ35, a38 = A1
38 −A1

66ϑ38,

ϑ11 = A0
22u, ϑ12 = −A0

12υ,

ϑ13 =
(
A0

12A
1
21 −A0

11A
0
22

)
υ, ϑ14 =

(
A0

12A
1
21 −A1

12A
0
22

)
υ,

ϑ15 =
(
A0

25A
0
12 −A0

15A
0
22

)
υ, ϑ18 =

(
A0

28A
0
12 −A0

18A
0
22

)
υ,

ϑ21 = −A0
21u, ϑ22 = A0

11υ, ϑ23 =
(
A1

11A
0
21 −A1

21A
0
11

)
υ,

ϑ24 =
(
A1

12A
0
21 −A1

21A
0
11

)
υ, ϑ25 =

(
A0

15A
0
21 −A0

25A
0
11

)
υ,

ϑ28 =
(
A0

18A
0
21 −A0

28A
0
11

)
υ, υ =

(
A0

11A
0
22 −A0

12A
0
21

)−1
,

ϑ31 = 1/A0
66, ϑ32 = −2A1

66/A
0
66,

ϑ35 = A0
35/A

0
66, ϑ38 = A0

38/A
0
66,

(6)

where





Ai
11 =

∫ 0.5h

−0.5h

q11ζ
idζ, Ai

12 =

∫ 0.5h

−0.5h

q12ζ
idζ =

∫ 0.5h

−0.5h

q21ζ
idζ = Ai

21,

Ai
22 =

∫ 0.5h

−0.5h

q22ζ
idζ, Ai

66 =

∫ 0.5h

−0.5h

q66ζ
idζ, i = 0, 1, 2,

Aj
15 =

∫ 0.5h

−0.5h

ζjt1q11dζ, Aj
18 =

∫ 0.5h

−0.5h

ζjt2q12dζ,

Aj
25 =

∫ 0.5h

−0.5h

ζjt1q21dζ, Aj
28 =

∫ 0.5h

−0.5h

ζjt2A22dζ,

Aj
35 =

∫ 0.5h

−0.5h

ζjt1q66dζ, Aj
38 =

∫ 0.5h

−0.5h

ζjt2q66dζ, j = 0, 1.

(7)

In the above equations, the forces (Nij , Qi) and moments (Mij) are defined as[30–32]

(Nij , Qi, Mij) =

∫ 0.5h

−0.5h

(σij , σiz , ζσij) dζ, i, j = x, ϕ, (8)

where σij(i, j = x, ϕ, ζ) are the stress components of TCSs reinforced with CNTs.
In order to extend the FOSDT to the TCSs reinforced with CNTs, it is necessary to evaluate

equivalent material properties that usually take into account the influence of nanotubes with
multi-scale modeling of CNTs and matrices.

According to the extended mixing rule, the effective Young’s modulus (Yij) and shear mod-
ulus (Sij) of TCSs reinforced with CNTs can be expressed as follows[9]:





Y11 = e1VcnY
cn
11 + VmY

m,
e2
Y22

=
Vcn

Y cn
22

+
Vm

Y m
,

e3
S12

=
Vcn

Scn
12

+
Vm

Sm
, S13 = S12, S23 = 1.2S12,

(9)
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where Young’s and shear moduli of the CNTs and matrix are denoted by Y cn
11 , Y

cn
22 , Scn

12 , Y m, and
Sm, respectively, the volume fraction of TCSs reinforced with CNTs and efficiency parameters
of CNTs are denoted by Vcn and ej (j = 1, 2, 3), respectively. Vm is the volume fraction of the
matrix, which satisfies the relationship of Vcn + Vm = 1.

As already mentioned, the load transfer between the nanotube and the polymer phase due
to a number of effects, such as effects of the surface, the strain gradient, and the intermolecular
coupled stress, is not ideal. Therefore, in order to consider the small-scale effect and other effects
on the material properties of TCSs reinforced with CNTs, we introduce the CNT efficiency
parameter ej (j = 1, 2, 3) in formula (9).

Since the change of the Poisson’s ratio (p) of TCSs reinforced with CNTs along the thickness
coordinate is weak (insignificant), the following relation is used for p12:

p12 = V ∗
cnp

12
cn + Vmp

m, (10)

where V ∗
cn is the volume fraction of CNTs and defined as[9]

V ∗
cn =

mcn

mcn + (dcn/dm) − (dcn/dm)mcn
, (11)

where mcn is the mass fraction of CNTs, dcn and dm are densities of the CNT and matrix,
respectively.

In accordance with the FOSDT, the matrix relationship is formed between the stress and
strain components of TCSs reinforced with CNTs as




σxx

σϕϕ

σxz

σϕz

σxϕ




=




q11 q12 0 0 0
q21 q22 0 0 0
0 0 q44 0 0
0 0 0 q55 0
0 0 0 0 q66







exx

eϕϕ

γxz

γϕz

γxϕ



, (12)

where eii (i = x, ϕ) and γij (i, j = x, ϕ, z) are normal and shear strains, and the definition of
qij (i, j = 1, 2, 6) is presented below:






q11 =
Y11(ζ)

1 − p12p21
, q22 =

Y22(ζ)

1 − p12p21
,

q12 =
p21Y11(ζ)

1 − p12p21
=

p12Y22(ζ)

1 − p12p21
= q21,

q44 = Y23(ζ), q55 = Y13(ζ), q66 = Y12(ζ).

(13)

In accordance with the FOSDT, since the shear stresses σxζ and σϕζ for the TCSs reinforced
with CNTs are assumed to vary depending on the thickness coordinate, they are expressed as
follows[30]:

σxζ = f,ζ ψ1, σϕζ = f,ζ ψ2, (14)

where f(ζ) is the posteriori specified shape function, which defined as f(ζ) = ζ − 4ζ3/(3h2).

Unlike the CST, since the displacements in the x- and ϕ-directions of any point at a distance
ζ from the mid-surface of TCSs reinforced with CNTs within FOSDT are not linearly related
to the ζ coordinate, as a rule, the following expressions for strains on the mid-surface (exx,
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eϕϕ, γ0xϕ) are obtained:




exx

eϕϕ

γxϕ




=




εxx − ζ
∂2w

∂x2
+ t1

∂ψ1

∂x

εϕϕ − ζ
( 1

x2

∂2w

∂ϕ2
0

+
1

x

∂w

∂x

)
+ t2

1

x

∂ψ2

∂ϕ0

γ0xϕ − 2ζ
(1

x

∂2w

∂x∂ϕ0
−

1

x2

∂w

∂ϕ0

)
+ t1

1

x

∂ψ1

∂ϕ0
+ t2

∂ψ2

∂x



, (15)

where ϕ0 = ϕ sin θ, and the following definitions are used:

t1 =

∫ ζ

0

f,ζ q
−1
55 dζ, t2 =

∫ ζ

0

f,ζ q
−1
44 dζ. (16)

3 Solution to governing equations

Since the TCSs reinforced with CNTs are subjected to freely-supported (F-S) boundary con-
ditions from the edges, the following approximation functions are used to solve basic equations[33]:

{
Ψ = Ψ0x2e

(η+1)x sin(δ1x) cos(δ2ϕ0), w = w0e
ηx sin(δ1x) cos(δ2ϕ0),

ψ1 = Ψ1e
ηx cos(δ1x) cos(δ2ϕ0), ψ2 = Ψ2e

ηx sin(δ1x) sin(δ2ϕ0),
(17)

where Ψ0, w0,Ψ1, and Ψ2 are amplitudes, η is an unknown parameter to be found from the
minimum conditions of the HBP, x = ln

(
x
x2

)
, δ1 = mπ

x0
, δ2 = n

sin θ
, x0 = ln

(
x2

x1

)
, in which m

and n are the wave numbers.
After substituting Eq. (17) into Eq. (4) and applying the Galerkin method, after some trans-

formation, the matrix equations are obtained as follows:




s11 −s12 s13 s14
s21 −s22 s23 s24
s31 −s32 s33 s34
s41 s42 s43 s44







Ψ0

w0

Ψ1

Ψ2


 =




0
0
0
0


 , (18)

where sij (i, j = 1, 2, 3, 4) are parameters depending on the TCSs reinforced with CNTs[33].
To find a nontrivial solution of Eq. (18), the determinant of the matrix of the left-hand side

is equal to zero, and after some mathematical operations, an analytical expression is found for
the dimensionless hydrostatic buckling pressure (DHBP) of TCSs reinforced with CNTs on the
P-EF in the framework of the FOSDT:

T crwp
1sdt =

1

sTH
Y m

·

( (λ4 −
λ1λ6

λ3
)(λ8 −

λ2λ6

λ3
) − (λ5 −

λ2λ6

λ3
)(λ7 −

λ1λ9

λ3
)

(λ4 −
λ1λ6

λ3
)

+ kwskw
+ kpskp

)
, (19)

where





λ1 =
s21s14 − s11s24

s14
, λ2 =

s12s24 − s22s14
s14

, λ3 =
s23s14 − s24s13

s14
,

λ4 =
s31s14 − s11s34

s14
, λ5 =

s12s34 − s32s14
s14

, λ6 =
s33s14 − s13s34

s14
,

λ7 =
s41s14 − s11s44

s14
, λ8 =

s12s44
s14

, λ9 =
s43s14 − s13s44

s14
,

(20)
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in which the parameters skw
, skp

, and sTH
are defined as






skw
=

δ21(e−2(η+1)x0 − 1)

4((η + 1)2 + δ21)(η + 1)
,

skp
=
δ21

(
e−2ηx0 − 1

) (
η2 + δ21 + δ22

)

4 (η2 + δ21) ηx
2
2

,

sTH
=

(2δ21 + 2η2 + 2η + 1 + 4δ22)δ
2
1(e(2η+1)x0 − 1)

2x2(1 + 2η)((1 + 2η)2 + 4δ21) cot θ
.

(21)

When k2 = 0 is taken into account in Eq. (19), the expression for the DHBP of TCSs reinforced
with CNTs on the W-EF within the FOSDT is obtained and the symbol T crw

1sdt is used.
When k1 = k2 = 0 are taken into account, the expression for the DHBP (T cr

1sdt) of TCSs
reinforced with CNTs without EFs on the basis of the FOSDT is obtained.

Since the influence of shear stresses is ignored from Eq. (19), the expressions for the HBP of
TCSs reinforced with CNTs on the W- and P-EFs within the CST are found and the symbols
T crwp

1cst and T crw
1cst are used.

Finding the magnitudes of the DHFP for TCSs reinforced by CNTs on the EFs within
FOSDT is achieved by minimizing Eq. (19) in accordance with the number of circumferential
waves for different η. Various numerical calculations and analyzes show that the magnitudes of
the DHBP for F-S TCSs reinforced by CNTs are obtained at η = 2.4.

4 Numerical results and discussion

4.1 Key specifications of TCSs reinforced with CNTs

In this part, key specifications of TCSs reinforced with CNTs are defined. Poly (methyl
methacrylate), referred to as PMMA, is selected for the matrix with material properties Y m =

2.5 Pa, pm = 0.34, dm = 1 150 kg/m3, and (10,10) armchair SWCNT with length L̃ = 9.26 nm,

radius r̃ = 0.68 nm, and thickness h̃ = 0.067 nm is chosen as the reinforcements.
Three different types of TCSs reinforced with CNTs, namely, uniformly distribution (UD),

i.e., Vcn = V ∗
cn, linear distributions across the TCS thickness in the form (VD) and (XD) are

used and are expressed as Vcn =
(
1 − 2ζ

)
V ∗

cn and Vcn = 4
∣∣ζ

∣∣V ∗
cn, respectively[9–12].

The topologies of the cross-section of UD, VD, and XD-TCSs are depicted in Fig. 2.

Fig. 2 The topologies of TCSs reinforced with CNTs (color online)

Typical values of the effective material properties of the TCSs reinforced with CNTs are
calculated at T = 300 K as follows[12]:
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Y cn
11 = 6.183 87 − 0.002 86T + 4.228 67 × 10−6T 2

− 2.272 4 × 10−9T 3 = 5.646 6 TPa,

Y cn
22 = 7.753 48 − 0.003 58T + 5.300 57 × 10−6T 2

− 2.848 68 × 10−9T 3 = 7.080 0 TPa,

Scn
12 = 1.801 26 + 7.784 5 × 10−4T − 1.127 9 × 10−6T 2 + 4.934 84 × 10−10T 3 = 1.944 5 TPa,

pcn
12 = 0.175, dcn = 1 400 kg/m

3
.

The efficiency parameters for different volume fractions of CNTs are[13]

e1 = 0.137, e2 = 1.022, e3 = 0.715 for V ∗
cn = 0.12;

e1 = 0.142, e2 = 1.626, e3 = 1.138 for V ∗
cn = 0.17;

e1 = 0.141, e2 = 1.585, e3 = 1.109 for V ∗
cn = 0.28.

These key properties are used in the next subheadings.
4.2 Comparison

In this subheading, numerical comparisons are made to prove the formula (19) obtained for
the DHBP of TCSs reinforced with CNTs under F-S boundary conditions within the FOSDT
and are presented in Tables 1−3. Since the buckling problem of TCSs reinforced with CNTs
within the FOSDT under the UHP and resting on the EFs has not yet been solved, our results
are compared with the HBP for homogeneous isotropic shells and with the lateral buckling
pressure for TCSs reinforced with CNTs without EFs in the framework of the FOSDT.

In Table 1, the magnitudes of DHBP of metal TCSs within the CST are compared with the
results of Ref. [34]. In the computation of Eq. (19), we take into account V ∗

cn = 0, Vm = 1, k1 =
k2 = 0, E11 = E22 = Em, and ν12 = νm. The data were adopted as[34] Em = 2.1×1011 (N/m2),
νm = 0.3 and h/r1 = 1/100; r1/l = 0.5; r1/l = 2.0. The values in parentheses are the buckling
mode corresponding to the HBP. It is seen from Table 1 that the values of dimensionless DHBP
are in good agreement with the results of Ref. [34].

Table 1 Comparison of the values of DHBPs of metal TCSs in the framework of the CST

θ

T cr
1cst × 106(ncr)

r1/l = 0.5 r1/l = 2

Ref. [34] Present study Ref. [34] Present study

10◦ 3.74 (7) 3.70 (7) 19.40 (11) 19.39 (11)

30◦ 2.23 (8) 2.15 (8) 14.55 (11) 14.51 (11)

50◦ 1.16 (8) 1.14 (9) 8.81 (11) 8.73 (11)

In Table 2, the lateral buckling pressure (LBP), unconstrained TCSs reinforced with CNTs,
are compared with the results of Ref. [35]. This comparison uses features of the TCS reinforced
by CNTs, as described in the previous subheading. The specific properties of the cone are listed
as follows: l = 0.017 32, r1 = 0.1, h = 0.001 m. From Table 2 it can be seen that the LBP for
TCSs reinforced with CNTs are in good agreement with the results of Ref. [35] which is used
the GDQ method. The values in parentheses indicate the buckling mode.

Table 2 Comparison of the LBP (kPa) and buckling mode for TCSs reinforced with different CNTs
in the framework of FOSDT without the EFs

θ V ∗

cn

Present study Ref. [35]

UD VD UD VD

0.12 11.494 (10) 11.863 (10) 11.47 (10) 11.69 (10)

30◦ 0.17 19.057 (10) 19.767 (10) 19.00 (9) 19.53 (10)

0.28 22.335 (10) 23.014 (10) 22.30 (10) 23.10 (10)

0.12 8.529 (10) 8.739 (10) 8.61 (10) 8.710 (10)

40◦ 0.17 14.094 (10) 14.526 (10) 14.22 (10) 14.51 (10)

0.28 16.669 (10) 16.973 (10) 16.85 (10) 17.26 (10)
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The values of HBP (ψ) of metal TCSs in the framework of the FOSDT without EFs are
compared with the higher order shear deformation theory (HOSDT) results obtained in Ref. [36].
When the data V ∗

cn = 0, Vm = 1, k1 = k2 = 0, E11 = E22 = Em, ν12 = νm and θ →

0◦ are taken into account in Eq. (19), it is expressed for the HBP of pure metal cylindrical
shells in the framework of FOSDT. The calculations are performed using these data for various
Batdorf parameter ZB, and the numerical results are presented in Table 3 together with the
magnitudes of HBPs in the framework of HOSDT in the study of Shen and Noda[36]. Since
the minimum HBP values of cylindrical shells are independent of the parameter η, therefore,
η = 0 is taken into account in the calculations. The material and shell parameters are used[36]:
Em = 107 (ψ), νm = 0.33 and h = 1 inc, h/r = 1/50, l1 = (ZBrh/(1 − ν2

m)0.5)0.5. Here
l1 is the length of the cylindrical shell. The values in brackets indicate the buckling mode.
Table 3 shows that the HBP values of cylindrical shells in our results agree very well with
existing results.

Table 3 Comparison of the values of HBP (ψ) of metal cylindrical shells within FOSDT

ZB 50 100 500 1 000 5 000 10 000

Ref. [36] (HOSDT) 566.09 (7) 389.62 (6) 166.77 (4) 124.98 (3) 56.5 (2) 37.02 (4)

Present study (FOSDT) 566.75 (7) 389.92 (6) 166.81 (4) 124.997 (3) 56.57 (2) 37.02 (4)

4.3 New analysis of TCSs reinforced with CNTs on the EFs

The HBPs for UD, VD, and XD-TCSs resting on the P-EF and without ground in the
framework of FOSDT and CST are compared according to the variation of the half-peak angle
θ (see Table 4 and Figs. 3–5). The data in Table 4 are calculated numerically from formula
(19) using the following TCS and EF parameters: l/r1 = 0.5, h/r1 = 1/25, (kw, kp) = (0, 0)
and (kw, kp) = (8 × 108 N/m3, 4 × 104 N/m). Two different volume fractions V ∗

cn = 0.17
and 0.28 are used in the calculations. The curves in Figs. 3–5 are plotted using the values
from Table 4. As can be seen, although the magnitudes of the HBP for each θ within the
FOSDT are lower than the magnitudes within the CST, the presence of the elastic foundation
affects the magnitudes of the buckling pressure in both shell theories in the direction of their
increase (see Figs. 3–4).

The buckling mode increases with the increasing of the half-peak angle θ, and also it increases
considering the influence of the P-EF. The smallest buckling mode corresponding to the HBP
occurs in the VD-TCS. As the linear distribution of CNTs in the matrix is in the form of VD,
the influence of heterogeneity on the DHBP is significantly lower than that the distribution in
the form of XD. An increase of the θ apparently reduces the influence of inhomogeneity on the
DHBP for the TCS with the XD-type distribution of CNTs faster than the VD-type distribution
of CNTs within the FOSDT (see Fig. 5). For example; although the influence of heterogeneity
on the T crwp

1sdt decreases from (−2.69%) to (−1.23%) for the VD-type distribution of CNTs,
this effect decreases from (+8.42%) to (+1.05%) for the XD-type distribution of CNTs, as
the θ increases from 15◦ to 75◦ for V ∗

cn=0.17 (see Table 4). For these data, the heterogeneity
is more effective around 2%, when the P-EF is not taken into account. Furthermore, in the
XD-type distribution of CNTs, the heterogeneity is more effective at V ∗

cn=0.17 than the case
V ∗

cn=0.28, but reverses for the VD distribution of CNTs. Consideration of the P-EF reduces
the apparent shear strains on the T crwp

1sdt around 5%. The influence of the P-EF on the values of
the buckling load increases 10% within FOSDT, as the θ increases from 15◦ to 75◦. In addition,
influence of the P-EF is found to be about 11%–18% more prominent within the FOSDT than
the CST.
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Table 4 Comparison of the magnitudes of T crwp
1 and T cr

1 for the UD, VD, and XD-TCSs within the
FOSDT and CST

θ/(◦) Type

T crwp

1sdt
× 103 T crwp

1cst × 103 T crwp

1sdt
× 103 T crwp

1cst × 103

(kw, kp) = (0, 0) (kw, kp) = (4 × 109 N/m3, 3 × 104 N/m)

V ∗

cn = 0.17

15

UD 2.665 (14) 4.193 (15) 3.276 (15) 4.762 (15)

VD 2.538 (13) 3.588 (13) 3.188 (14) 4.229 (14)

XD 2.956 (14) 5.353 (16) 3.552 (15) 5.883 (16)

30

UD 1.999 (14) 3.500 (15) 2.514 (16) 3.987 (16)

VD 1.914 (14) 2.992 (14) 2.458 (15) 3.542 (15)

XD 2.165 (15) 4.477 (17) 2.666 (16) 4.924 (17)

45

UD 1.406 (15) 2.679 (16) 1.806 (16) 3.066 (17)

VD 1.352 (14) 2.284 (14) 1.775 (16) 2.718 (15)

XD 1.491 (16) 3.427 (17) 1.879 (17) 3.784 (18)

60

UD 0.891 (16) 1.801 (16) 1.162 (17) 2.067 (17)

VD 0.858 (15) 1.532 (14) 1.146 (16) 1.833 (16)

XD 0.926 (16) 2.307 (18) 1.190 (17) 2.551 (18)

75

UD 0.431 (16) 0.903 (16) 0.569 (17) 1.039 (17)

VD 0.415 (15) 0.765 (15) 0.562 (17) 0.918 (16)

XD 0.442 (17) 1.156 (18) 0.575 (18) 1.283 (18)

θ/(◦) V ∗

cn = 0.28

15

UD 3.276 (15) 4.762 (15) 3.797 (15) 6.110 (17)

VD 3.188 (14) 4.229 (14) 3.740 (14) 5.395 (15)

XD 3.552 (15) 5.883 (16) 4.230 (15) 8.149 (17)

30

UD 2.514 (16) 3.987 (16) 2.882 (16) 5.119 (17)

VD 2.458 (15) 3.542 (15) 2.846 (15) 4.518 (16)

XD 2.666 (16) 4.924 (17) 3.120 (16) 6.820 (18)

45

UD 1.806 (16) 3.066 (17) 2.050 (17) 3.929 (18)

VD 1.775 (16) 2.718 (15) 2.029 (16) 3.468 (16)

XD 1.879 (17) 3.784 (18) 2.161 (17) 5.239 (19)

60◦
UD 1.162 (17) 2.067 (17) 1.310 (18) 2.651 (19)

VD 1.146 (16) 1.833 (16) 1.299 (17) 2.336 (17)

XD 1.190 (17) 2.551 (18) 1.347 (17) 3.530 (19)

75

UD 0.569 (17) 1.039 (17) 0.637 (18) 1.330 (19)

VD 0.562 (17) 0.918 (16) 0.633 (17) 1.171 (17)

XD 0.575 (18) 1.283 (18) 0.646 (18) 1.774 (20)

θ

Fig. 3 Variations of HBPs for UD, VD, and XD-TCSs with and without P-EF versus θ for V ∗

cn = 0.17
(color online)



1022 A. H. SOFIYEV, I. T. PIRMAMEDOV, and N. KURUOGLU

Fig. 4 Variations of HBPs for UD, VD, and XD-TCSs with and without P-EF versus θ for V ∗

cn = 0.28
(color online)

θ

Fig. 5 Variations of HBPs for UD, VD, and XD-TCSs with and without P-EF on the basis of the
FOSDT versus the θ for V ∗

cn = 0.17 and 0.28 (color online)

In Fig. 6, the curves of T crwp
1sdt and T crwp

1cst for UD and VD-TCSs on the W-EF and P-EF are
shown in accordance with the r1/h ratio and compared with the corresponding curves of the
same TCSs without EFs. The parameters of the TCS and EFs which are used to construct the
curves in Fig. 6 as follows: r1/l = 2, θ = 30◦, V ∗

cn = 0.12, (kw, kp) = (0, 0); (8 × 108, 0); (8 ×

108; 4×104). The buckling pressures of UD and VD-TCSs on the W-EF and P-EF decrease due
to an increase of the r1/h ratio. The influence of the linear distribution of CNTs in the form
of VD on the DHBP weakens more if the TCS relies on the P-EF than relies on the W-EF. In
addition, as the small radius to thickness ratio increases, the influences of W-EF and P-EF on
the hydrostatic buckling loads for UD and VD-TCSs increase. The influence of shear strains on
the DHBPs is more pronounced, if the TCS is on the W-EF than on the P-EF and it reduces,
as the r1/h increases. For instance, the influences of shear stresses on the DHBPs of VD-TCSs
on the W- and P-EFs decrease from 37.47% to 11.5% and 32.86% to 9.02%, respectively, when
the r1/h ratio increases from 25 to 40. In addition to the fact that the difference between the
influences of P-EF and W-EF on the HBPs is significant, it is determined that this difference
increases significantly with increasing the r1/h ratio.

The curves defining the change of buckling pressures for UD, VD, and XD-TCSs on W-EF
and P-EF are plotted using different theories in Fig. 7 depending on the change of l/r1. The
data used for the drawing of Fig. 7 are considered as follows: h/r1 = 1/25, θ = 30◦, V ∗

cn = 0.12,
(kw, kp) = (0, 0); (4.5 × 108, 0); (4.5 × 108; 1.5 × 104). As can be seen from Fig. 7, considering
the effects of P-EF and W-EF on the buckling pressures of the UD, VD, and XD- TCSs, their
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rate of decrease is weakened due to the increase of the l/r1 ratio. As l/r1 increases from 0.6 to
1, the influences of soils on the buckling loads of UD, VD, and XD-TCSs increase significantly,
and the influences of W-EF and P-EF on the buckling loads of VD-TCSs with length l/r1 make
up (+25.6%) and (+46.86%), respectively. An increase of the l/r1 ratio reduces the influence
of shear stresses on the buckling loads, and the effects of EFs further reduce the influence of
shear stresses.

θ °

Fig. 6 Variations of DHBPs for UD, VD, and XD- TCSs on the W-EF and P-EF within two theories
versus r1/h (color online)

θ °

Fig. 7 Variations of DHBPs for UD, VD, and XD- TCSs on the W-EF and P-EF within two theories
versus l/r1 (color online)

5 Conclusions

In this study, the effects of W-EF, P-EF, and CNT reinforcement on the DHBP for the
TCSs are investigated. The material properties of TCSs reinforced with CNTs are graded
linearly according to the thickness coordinate. The basic relations and equations of TCSs
reinforced with CNTs on the EFs are obtained in the framework of the FOSDT and solved
using the Galerkin method. The novelty of this study is to obtain closed-form solutions for the
HBP of TCSs reinforced with CNTs on the EFs. Finally, the effects of the EFs and various
types CNT reinforcements on the DHBP are investigated simultaneously. The obtained results
are compared with the results in the literature, and the accuracy of present results is confirmed.
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