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a b s t r a c t

DNA microarray technology is the fabrication of a single chip to contain a thousand genetic codes.
Each microarray experiment can analyze many thousands of genes in parallel. The outcomes of the
DNA microarray is a table/matrix, called gene expression data. Pattern recognition algorithms are
widely applied to gene expression data to differentiate between health and cancerous patient samples.
However, gene expression data is characterized as a high dimensional data that typically encompassed
of redundant, noisy, and irrelevant genes. Datasets with such characteristics pose a challenge to
machine learning algorithms. This is because they impede the training and testing process and entail
high resource computations that deteriorate the classification performance. In order to avoid these
pitfalls, gene selection is needed. This paper proposes a new hybrid filter-wrapper approach using
robust Minimum Redundancy Maximum Relevancy (rMRMR) as a filter approach to choose the top-
ranked genes. Modified Gray Wolf Optimizer (MGWO) is used as a wrapper approach to seek further
small sets of genes. In MGWO, new optimization operators inspired by the TRIZ-inventive solution are
coupled with the original GWO to increase the diversity of the population. To evaluate the performance
of the proposed method, nine well-known microarray datasets are tested. The support vector machine
(SVM) is employed for the classification task to estimate the goodness of the selected subset of
genes. The effectiveness of TRIZ optimization operators in MGWO is evaluated by investigating the
convergence behavior of GWO with and without TRIZ optimization operators. Moreover, the results of
MGWO are compared with seven state-of-art gene selection methods using the same datasets based on
classification accuracy and the number of selected genes. The results show that the proposed method
achieves the best results in four out of nine datasets and it obtains remarkable results on the remaining
datasets. The experimental results demonstrated the effectiveness of the proposed method in searching
the gene search space and it was able to find the best gene combinations.
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1. Introduction

Feature selection is selecting/combining features to reduce
the amount of data processing, and is considered an important
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tep when solving classification problems [1–3]. DNA microar-
ay is a molecular analysis technology that allows us to study
nd analyze more than a thousand of genes in one experiment
btained from a large number of cells and tissues. The devel-
pment of DNA microarray leads to generate high-dimensional
ata in fields such as clinical diagnosis, drug discovery, etc [4].
ene expression data is high-dimensional data produced by DNA
icroarray experiments. It is widely used for the classification
nd detection of cancer diseases [5,6]. However, this data contains
large number of redundant, irrelevant, and noisy genes, which
oses a challenge to the machine learning algorithm because
he construction of a predictive model based on these unrelated
enes leads to deterioration in classification performance. The
ost common way to address this challenge is by using gene
election. Gene selection is a pruning procedure that eliminates
edundant and irrelevant genes and maintains the most relevant
nd meaningful ones [7]. Further insights can be gained by gene
election [5] such as (1) helping biologists researchers to fig-
re out the molecular mechanism related to gene expression of
ancer diseases; (2) a potential way of creating a new therapy
hrough extensive analysis of the patterns of the selected genes,
nd (3) decreasing clinical cost. Generally, gene selection methods
ainly fall into two categories [7]: filter-based approaches and
rapper-based approaches. Filter approaches evaluate the genes

n short computation time because it performs filtering based
n the inartistic properties of the training dataset without in-
olving machine learning algorithms in the evaluation process.
xamples of well-known filter approaches are Kullback–Leibler
8], Chi-square [9], ReliefF [10], Minimum Redundancy Maximum
elevancy (MRMR) [11], and Robust MRMR (rMRMR) [12].
Wrapper approaches formulate the gene selection as an opti-

ization search problem [13–19], where candidate gene subsets
roduced by a search technique or machine learning algorithm
re employed to evaluate these candidates. Wrapper approaches
roduce better classification accuracy than filter approaches but
t is more expensive in computation time. Hybrid approaches
filter-wrapper) attract more attention from the researchers [20–
3] especially in high dimensional data such as microarray data
ecause it can leverage the benefits of both filter and wrapper
pproaches and it is proven to be more effective for microarray
ata classification.
However, having an effective and sophisticated hybrid gene

election approach still needs further investigations [20,21]. One
f the challenges facing gene selection methods is the fact that the
umber of possible solutions grows exponentially when the num-
er of genes increases. Therefore, many researchers put efforts
o identify and select the near-optimal candidate gene subsets
y modifying existing metaheuristic approaches. A metaheuris-
ic technique is a problem independent algorithmic framework
hat embeds a set of strategies to develop optimization search
lgorithms [24].
Many metaheuristic algorithms are adapted or modified to

ield better results for gene selection problems. Examples of
he gene or feature selection methods using metaheuristic algo-
ithms are Correlation-based Feature Selection with improved-
inary Particle Swarm Optimization [20], Harmony search with
Markov blanket (HSA-MB) [25], binary flower pollination al-
orithm (FPA) with β-hill climbing (called FPAβ-hc) [26], and
MRMR approach with modified BA algorithm (rMRMR-MBA) [6].
n addition to Binary JAYA Algorithm with Adaptive Mutation
BJAM) [27], and multi-objective salp Swarm Algorithm with
ynamic locality (MODSSA) [14]. However, since the gene selec-
ion problem search space is comprised of a large set of per-
utations and the complex interaction between the genes, the
bove-mentioned gene selection methods are easily stuck in local

ptima.

2

The gray wolf optimizer (GWO) is a recent swarm-based in-
telligence that formulated according to the social hierarchy of
gray packs and the hunting procedure [28]. It involves three main
phases, the first phase is seeking for the prey, which represents
the exploratory search mode. The second and third phases are en-
circling and attacking the prey, which represents the exploitative
search mode. GWO has several merits over other swarm-based
intelligence in literature as it is simple in adaptation, easy to use
by the naive optimizer, parameter-free, and sound-and-complete.
Therefore, GWO gains a tremendous interest from a wide variety
of research communities as reported in [29]. To put a few exam-
ples of this application such as machine learning [30], network-
ing [31], Security [32] , image processing [33] scheduling [34,35],
engineering [36–38], and bioinformatics [39,40].

TRIZ is the abbreviation of Teoriya Resheniya Izobretatelskikh
Zadatch, also well known as the theory of inventive problem-
solving. This theory, proposed by Genrich Altshuller in 1985 [41],
emerged from a deep analysis of one million patent records.
The methodology of TRIZ inventive problem encompasses wors-
ening and improving features, and inventive principles that are
regarded as a set of instructions for TRIZ researchers in solving
design problems. In practice, these principals are formulated as
optimization operators and used to increase the diversity of the
population that leads to enhance the metaheuristic algorithms
performance in solving optimization problems in different ar-
eas [42–44]. In TRIZ principles, there are three main operations
used to support metaheuristic convergence behavior: dynamiza-
tion, segmentation, and local quality. The main role of dynamiza-
tion and segmentation is to divide the solutions into multi groups
and identify the length of each group. In each local quality,
three operators will be used to update the solution, which are
mutation, 2-opt, and swap operators. This is to scan effectively
the interaction between the genes and increase the diversity of
the evolved solutions to avoid the stagnation of local optima
problem. Quite recently, the gene selection problem is solved by
Triz-based bat-inspired algorithm [6]. The principle of Triz with
three optimization operators inspired by Triz inventive solution
has been employed in the main improvement loop of bat algo-
rithm. The main function of these three operators is to diversify
the current bat solution updated by original bat operators. This
current solution is entered to the Triz optimization operators to
implement the split, mutation, 2-opt, and swap operations every
iteration. The results showed the impact of the Triz operators
on the convergence behavior of bat algorithm for gene selection
problem.

This research proposes a hybrid filter/wrapper gene selection
method based on rMRMR to serve as a filter-based approach.
The modified Gray wolf optimizer algorithm (MGWO) is used to
serve as a wrapper-based approach, it is called rMRMR-MGWO.
In rMRMR-MGWO, the TRIZ principles are incorporated within
MGWO to maintain its diversity during the search of the promis-
ing genes from the search space. The main function of these Triz
operators is to iteratively improve the diversity of the whole
updated GWO population at the end of each improvement loop
of GWO. This can be considered as a hybrid mechanism with
inventive operators. These concepts are formulated as optimiza-
tion operators, where each solution in the population is evolved
using the three TRIZ principles: dynamization, segmentation, and
local quality. The proposed method is evaluated using Microarray
data including nine datasets of different sizes and characteristics.
The results of the proposed algorithm are measured based on the
number of genes and classification accuracy. The results produced
by rMRMR-GWO and rMRMR-MGWO are compared to show the
impact of the TRIZ operations on the convergence behavior of
rMRMR-GWO. Finally, the proposed rMRMR-MGWO is compared
against seven state-of-the-art methods using the same Microar-

ray datasets. The comparative evaluation proves the viability and
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fficiency of the TRIZ principle when used in GWO. The proposed
ethod is able to outperform the state-of-the-art methods in four
ut of nine Microarray datasets. In sum, the proposed approach
s a very efficient addition to the classification problem with
uge amounts of data and can be applied to other optimization
ethods to tackle similar problems in different domains.
The remaining part of this paper consist of the following

ections: Section 2 presents the related work, Section 3 elabo-
ates on the research background about GWO and Triz concepts
nd principles. The proposed method which describes how the
WO is Incorporated with TRIZ operations for gene selection is
resented in Section 4. The evaluation of the proposed method is
onducted in the experiment and result section (Section 5). The
aper is concluded and future work is recommended in Section 6.

. Related works

Recently many wrapper and hybrid filter-wrapper approaches
re proposed to solve gene selection in order to improve the
uality of cancer classification. Most of the aforementioned ap-
roaches depend on Metaheuristic algorithms due to its excellent
erformance in the selection of the most promising and informa-
ive gene subsets for cancer microarray data. In Hu et al. [45],
he shuffled frog leaping algorithm (ISFLA) is enhanced by im-
lementing an absolute balance group strategy and updating
he strategy of chaos memory weight factor (CMWF). ISFLA is
wrapper-based feature selection approach that enhanced the
FLA search capabilities. High-dimensional biomedical datasets
ave been used to demonstrate that ISFLA can achieve remark-
ble quality. In particular, for Lung-Cancer-Ontario and Nervous-
ystem datasets, ISFLA achieved an average accuracy of 75.06%
nd 81.67% with 14.33 and 32.33 features, respectively. Yan
t al. [46] implemented an improved binary clonal flower pol-
ination algorithm (IBCFPA) to improve the search capability of
riginal BCFPA and achieved a higher accuracy of classification by
ntegrating absolute balance group strategy and Gaussian Muta-
ion. The superior capacity of IBCFPA was confirmed by the exper-
mental results of six publicly biological datasets. Yan et al. [47]
mplemented the Coral Reefs Optimization algorithm with the
imulated Annealing and Tournament Selection (BCROSAT) to
olve the feature selection problem. The proposed algorithm is
pplied for Nervous System datasets and Colon Tumor datasets
nd it achieved an average accuracy of 82.00% and 92.31% with
1.4 and 20.5 features, respectively. Preeja et al. [48] propose
Binary Krill Herd algorithm (BKH). The efficiency of the BKH

s measured using time and accuracy when it selects features
sing one dataset from UCI datasets. For example, the BKH al-
orithm achieved 94% classification accuracy with ten features,
hile the FAST algorithm achieved only 56% classification ac-
uracy using the same dataset and with the same number of
eatures. Moreover, hybrid filter-wrapper approaches have at-
racted much attention from the researchers in solving the gene
election problem. These approaches can leverage the benefits
f both filter and wrapper approaches. In practice, initially, the
ilter is running on the experimented data and start ranking the
enes according to its own metrics. Thereafter, the highly ranked
enes are passed to the wrapper approach to seek for further
nformative genes. Yang et al. [49] proposed a gene selection
ethod for microarray data classification based on Information
ain (IG) as a filter approach and genetic algorithm (GA) as a
rapper approach, namely (IG–GA). This hybrid approach starts

ts gene selection procedure by applying IG on the experimented
ata and measuring each gene relevancy score with a class label.
he gene is sorted based on their relevancy and the top-ranked
enes are subject to further pruning procedure driven by the
A, where the GA generates candidate gene subsets and eval-
ates them using KNN machine learning algorithm. The results
 i

3

Fig. 1. Gray wolves domination levels.

demonstrate that IG–GA can produce promising results on some
microarray data, such as brain-tumor. Alomari et al. [22] proposed
MRMR-BA gene selection method for microarray data classifi-
cation, which combined MRMR as a filtering approach and Bat
algorithm as a wrapper approach. Experimental results show
that the MRMR-BA is able to provide promising solutions for
microarray data. Sahu [50] introduced an approach for gene
selection problem using IG and Improved particle swarm op-
timization, called (IG-IPSO). Experimental results demonstrated
the superiority of IG-IPSO in minimizing the number of genes
and simultaneously maximizing the classification accuracy. For
instance, IG-IPSO managed to achieve 98.37% classification ac-
curacy with 34 genes on Leukemia1 dataset. Zhang et al. [51]
introduced a novel hybrid strategy with the IG as the filter
phase and the improved binary krill herd (MBKH) as a wrapper
phase. The modifications applied to the MBHA led to deeper
search and effective exploration of the gene search space. The
results reveal that the proposed method can yield improvement
in the convergence rate, classification accuracy, and a number of
selected genes comparing to the BKH and other several new gene
selection algorithms.

3. Research background

3.1. Gray Wolf Optimizer (GWO)

GWO is a swarm-based optimization algorithm that mimics
the lifestyle of gray wolves in nature, particularly in hunting and
social leadership mechanism. GWO algorithm was proposed and
mathematically formulated by Mirjalili in 2014 [28].

3.1.1. Gray wolves domination and inspiration
The pack of gray wolves contains four types of wolve mem-

bers, including alpha (α), beta (β), delta (δ), and omega (ω) wolfs.
These members are distributed based on their domination levels,
where α is at the highest level and ω is at the lowest level of the
wolves pack, as shown in Fig. 1.

The α wolf is the wisest in the pack, where it has high expe-
iences in managing and making decisions for the pack, such as
ontrolling the hunting mechanism and choosing a habitat. The
wolves are at the second domination level of the hierarchy.

he β wolves usually stand behind the α wolf to support him
n managing and controlling the pack. The third domination level
f the hierarchy contains the δ wolves. The wolves belonging to
his level are in charge of helping, supporting, and guarding the
lderly and weak wolves. The ω wolves are the rest of the wolves

n the pack.
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Table 1
A list of 40 inventive principles extracted from TRIZ inventive solution.
1. Segmentation 2. Taking Out 3. Local Quality 4. Asymmetry
5. Merging 6. Universality 7. ‘‘Nested Doll’’ 8. Anti-Weight
9. Preliminary Anti-Action 10. Preliminary Action 11. Beforehand Cushioning 12. Equipotentiality
13. Another Dimension 14. Mechanical Vibration 15. Periodic Action 16. Continuity of Useful Action
17. ‘‘The Other way round’’ 18. Spheroidality-Curvature 19. ‘‘Dynamisation’’ 20. Partial or Excessive Actions
21. Skipping 22. ‘‘Blessing in Disguise’’ 23. Feedback 24. ‘‘Intermediary’’
25. Self-Service 26. Copying 27. Cheap Short-Living Objects 28. Mechanics Substitution
29. Pneumatics and Hydraulics 30. Flexible Shells and Tin Films 31. Porous Materials 32. Color Changes
33. Homogeneity 34. Discarding and Recovering 35. Parameter Changes 36. Phase Transitions
37. Thermal Expansion 38. Strong Oxidants 39. Inert Atmosphere 40. Composite Materials
The gray wolves hierarchy is the basis of their life style in the
ack, where it manages their transactions, hunting mechanisms,
nd daily life. The primary benefit of this hierarchy is leading the
unting of prey. Once the prey found, the α wolf commands the
thers to encircle it and leads β and δ wolves to attack it.

.2. Gray wolf optimizer algorithm

In GWO, the same inspiration and social hierarchy of gray
olves are used along with their domination levels. Each wolf is
onsidered as a candidate solution for a particular optimization
roblem. Each level of the first three domination levels (i.e., α,
, and δ levels) contains only one solution, where the α level

contains the best solution, and β , and δ levels contain the second
and third best solutions, respectively. The rest of the solutions are
placed in the ω level. The wolves in ω level must assist the wolves
in α, β , and δ levels by encircling them using the formulation
below.
−→
D = |

−→
C ×
−→
X p(t)−

−→
X (t)|, (1)

−→
X (t + 1) =

−→
X p(t)−

−→
A ×
−→
D , (2)

−→
A = 2×−→a ×−→r 1 −

−→a , (3)
−→
C = 2×−→r 2, (4)

a = 2− t ×
2
I
, (5)

where
−→
X p(t) is the prey position at tth iteration,

−→
X (t) are the

wolves position at tth and (t + 1)th iterations, respectively, −→r 1

and −→r 2 are two random vectors,
−→
A and

−→
C are two coefficient

vectors, and I is the maximum number of iterations. The primary
goal of

−→
C and

−→
A is to avoid local optima stagnation and balance

between exploration and exploitation, respectively. GWO is able
to avoid stagnation in local optima by changing the value of

−→
C

randomly, and also able to exploit and explore a particular search
space if |

−→
A | < 1 and |

−→
A | > 1, respectively.

The solutions in ω level should be updated at each iteration
based on the solution in α, β , and δ levels using the formulation
below.
−→
D α = |

−→
C 1 ×

−→
X α −

−→
X |, (6)

−→
D β = |

−→
C 2 ×

−→
X β −

−→
X |, (7)

−→
D δ = |

−→
C 3 ×

−→
X δ −

−→
X |, (8)

−→
X 1 =

−→
X α −

−→
A 1 ×

−→
D α, (9)

−→
X 2 =

−→
X β −

−→
A 2 ×

−→
D β , (10)

−→
X 3 =

−→
X δ −

−→
A 3 ×

−→
D δ, (11)

−→
X (t + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
, (12)
4

3.3. Theory of Inventive Problem Solving (TRIZ)

Theory of Inventive Problem Solving (TRIZ) is a technique
that relies on identifying and coding how creative innovations
are processed to make them more predictable. Using this prin-
ciple, a TRIZ technical contradictions matrix is developed with 39
features for improving and declining features, and 40 inventive
principles are to make creativity an exact science [43]. This list is
presented in Table 1.

The TRIZ principle is utilized to address problems in different
domains such as software development [52], service quality [53],
export packing of Persian Lime [54], and engineering [44,55,56].
In addition, several metaheuristic algorithms use principles of
TRIZ to tackle different types of problems.

Duran-Novoa et al. [43] proposes an evolutionary algorithm
(EA) that build solutions using TRIZ-inventive concept to solve
inventive problems based on dialectical negation. The method
presents new dialectical operators that stimulates the principles
of TRIZ. The proposed method demonstrates the capability of
using TRIZ toward better convergence.

Mei et al. [42] present a bees algorithm that is hybridized with
TRIZ-based optimization operators to improve the steps of solving
the problem of task sequencing of moving-board-with-time-delay
(MBTD) assembly machine. The TRIZ pillars of Dynamisation, Seg-
mentation, and Local Quality are developed to improve the search
of bees algorithm, specifically after rewarding bees for picking
the sites. The results show that this algorithm outperforms other
comparable methods, including the original bees algorithm.

In another work Mei et al. [44] proposes updating the bees
algorithm based on TRIZ principles by embedding new oper-
ators to solve the problem of the assembly of printed circuit
boards (PCBs) using a machine of the moving-board-with-time-
delay (MBTD) type. The proposed algorithm outperforms other
comparable methods from the literature.

Recently, Al-Betar et al. [6] tackle the problem of gene selec-
tion. The proposed method used robust Minimum Redundancy
Maximum Relevancy (rMRMR) as a filter to prune the genes and
choose the favorable genes based on the interaction between
them, along with a modified Bat Algorithm (MBA) as a wrapper
technique to search for a small group of distinct genes. The
method is named rMRMR-MBA. In MBA, new optimization op-
erators based on TRIZ inventive solution are coupled with MBA
to empower its searching process, and effectively explore the
interaction between genes. The evaluation outcomes prove that
rMRMR-MBA outperforms other ten comparative methods ac-
cording to the classification accuracy and the number of selected
genes in two out of ten datasets. It also generates competitive
results for the remaining datasets.

4. Proposed method for gene selection

The blueprint of the proposed gene selection method lies
on two consecutive processes: (i) filtering process where the
rMRMR is utilized to reduce the gene search space dimension
and (ii) wrapper process where the Triz-inspired concepts are
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ncorporated with GWO coupled with SVM classifier to improve
he final classification accuracy as well as minimize the number of
epresentative genes. The gene selection representation and the
bjective function are given in Sections 4.2 and 4.3, respectively.
The main motivation behind the hybridization of filter-wrapper

s based on the success attributes of each method. To elaborate,
he idea behind the utilizing rMRMR filtering approach in the
roposed method is due to the fact that the rMRMR revealed
he best filtering performance in comparison other filtering-based
ethod in same dataset as studied in [12]. The wrapper approach

s normally used optimization method coupled with efficient
lassifier for gene selection. As mentioned earlier, GWO is the
ost successful swarm-based optimization algorithm over other
ptimization methods due to its impressive advantages such as
t is easy-to-use, simple in concepts, derivative free, flexible and
calable, robust, and sound-and-complete. Therefore, GWO has
een growth exponentially over the years [29]. In spite of GWO
dvantages, there is a chronic premature convergence dilemma
trike on its performance due to the lack of exploration power.
herefore, Triz-inspired optimization operator come to the fore
o handle such issue. Due to its robustness classification perfor-
ance in highly dimension datasets, SVM is almost used as a
lassifier for all methods used for microarray data [57–59].
The rMRMR-MGWO steps are thoroughly discussed subse-

uently. The flowchart of rMRMR-MGWO is provided in Fig. 2.

.1. Robust minimum redundancy maximum relevancy

Robust minimum redundancy maximum relevancy is an im-
roved version of MRMR [12], known as rMRMR. rMRMR is
ultivariate filter algorithm ranks gene subset by measuring
ene-to-gene redundancy and gene-to-class relevancy. The main
arget of rMRMR filter algorithm is to provide a distinguished
ubset of genes that embeds insights and robust genes correlation
ble to classify class categories accurately. This is to overcome
he computational barriers induced by using high dimensional
ata in classification. The relevancy and redundancy calculations
n MRMR only rely on mutual information. However, rMRMR is
ifferent than basic MRMR in the metrics used for calculating
he gene-to-target relevancy, as it involves ensembling of filters
rom various characteristics (information theory, distance, prob-
bility distribution, etc.) in calculating gene-to-target relevancy
core. Regarding the redundancy computations, rMRMR follows
he same computations of basic MRMR. The main purpose of
he modification applied in relevancy computation is to subject
he gene relevancy score to various filter methods from different
haracteristics. The reason is to overcome the high variability in
he classification performance induced by applying single filter
pproach since it only relies on one metric, which makes it
ensitive to the characteristics of the experimented dataset. In
ther words, rMRMR is designed to promote the robustness and
he stability of MRMR. The main procedure of rMRMR is discussed
ubsequently. Moreover, the pseudo-code of rMRMR is provided
n Algorithm 1.

tep1: Initialization.
In the initialization step, three well-regarded filter algo-
rithms are selected to form the ensemble method which
are ReliefF, Chi-Square and Kullback–Liebler. In practical
implementation, the three filter algorithms are carried
out independently, they evaluate all genes in each exper-
imented dataset based on its discriminative power. For
each experimented dataset, the genes scores estimated
by each single filter are aggregated into one ranked gene
list through ‘‘Mean of the scores’’ (lines 6 to 12 in Algo-
rithm 1).
5

Step 2: Hybridization.
The hybridization in this step is done by combining the
gene ranking list obtained from the previous step with
relevancy computations in MRMR, as follows. Firstly, it-
eratively for each gene in the experimented dataset, two
relevancy scores will be calculated based on mutual in-
formation (i.e, the current gene and the target) and the
mean score for the same gene in the gene ranking list
(lines 16 to 18 in Algorithm 1). Secondly, a new factor
(i.e, gene mean score) has been added to the relevancy
computation, where the final gene score is estimated by
multiplying gene relevancy score I(Gx, c) with mean gene
score R(Gi) (lines 26 in Algorithm 1). The main purpose of
this hybridization is to avoid bias results of single-based re-
sults and to introduce diversity in the measurements used
for calculating the gene relevancy score which eventually
leads to improve the robustness and stability of MRMR.

tep 2: Filtering process outcomes.
Eventually, according to the predefined threshold for the
number of selected genes, the filtered gene subset will be
passed to the wrapper approach to find a further smaller
set of high relevancy and informative genes.

Algorithm 1 Hybrid MRMR with ensemble of filter methods
1: Input:
2: D(G1 , G2 ,....,Gm) Dataset with m genes.
3: class c, no of genes to select n.
4: k: number of selected filters.
5: k selected filters F ∈ [Chi-Square, ReliefF, Kullback–Liebler]

Ensemble of filters
6: for i ∈ {1, . . . , k} do
7: for j ∈ {1, . . . ,m} do
8: Employ Fi to compute score of gene Gi
9: end for
10: Rank genes according to the score of Gi , and get new ranking Fi(Gj), j =

1, .....,m
11: end for
12: Create gene ranking list R by combining k different filters Fi(Gj), i = 1, ...., k ∀j

with arithmetic mean.
MRMR

13: SALL ← 1,2, .... G
14: S ← φ

15: Sa ← φ

16: for each G ∈ {1, . . . ,m} do
7: I(Gi, c) = R(Gi)
8: end for
9: MAX = Min(Length(SALL), 1000) //length(SALL) return the number of elements in

SALL
0: for i = 1 to MAX do
1: Sa ← Sa ∪ argmax

i∈SALL\Sa
I(Gi, c)

2: end for
3: S ← argmax

i∈SALL
I(Gi, c)

4: while Length(S) < n do
5: for each x ∈ Sa \ S do
6: Relv(Gx) = I(Gx, c) ∗ R(Gi) // Enhance Relevancy computing

27: Red(Gx) = 1
Length(S)

∑
y∈S I(Gx,Gy)

28: end for
29: S ← S ∪ argmaxx (Relv(Gx)− Red(Gx))
30: end while

Output
31: The resulting gene subset is fed to subsequent stage (i.e, wrapper approach ).

4.2. Solution representation

The gene selection is classified as a combinatorial optimization
problem. The solution representation in this problem is com-
prised of candidate gene subset [60,61]. The navigation process in
gene search space for finding a desired and acceptable candidate
gene subset becomes more challenging by increasing the number
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Fig. 2. Flowchart of rMRMR-MGWO method.
f selected genes in the experimented data. In order to formulate
he problem mathematically, the number of genes is (symbolized
s N), and the number of possible candidate gene subsets is
symbolized as [2N

]). Each candidate solution is symbolized as x,
and it is composed of binary strings x = (x1, x2, . . . , xN ), where
the N represents the length of a string or the size of gene subset.
Moreover, in the binary string, the bit ‘1’ implies that the gene is
selected, while ‘0’ implied that the gene is ignored.

4.3. Fitness function

The main purpose of gene selection methods is to reduce
the number of genes and simultaneously boost the classifica-
tion accuracy. To achieve this purpose, many studies combined
classification accuracy and the size of gene subset into a single
weighted function and use it as fitness function to assess each
candidate gene subset as in Eq. (13) below:

fitness = α × acc(classifier)+ β × (1−
s
p
) (13)

where p stands for the number of genes in the experimented
dataset, and s stands for the size of the candidate gene subset.
The value of the two weighting factors related to classification
accuracy (α) and the size of the candidate gene subset (β) are
1 and 0.001, respectively [45,51]. In this study, the classification
accuracy is estimated by performing 10-fold cross-validation with
SVM classifier. Note that the 10-fold cross-validation is widely
used in the gene selection domain to validate the classification
due to its consistency, and less results variability with regard to
input data [62]. Note that the almost all comparative methods
used k-fold CV for validation purpose.

4.4. Implementation process of the proposed rMRMR-MGWOmethod

A new gene selection method rMRMR-MGWO is introduced in
this section. In this method, rMRMR is played a vital role by prun-
ing the original genes in the cancer microarray data and selected
the most biologically relevant genes. In each experimented data,
the genes by rMRMR are used as inputs for further gene selection
optimization process driven by MGWO. MGWO is composed of
four main steps, which will be thoroughly discussed below. The
flow chart and pseudocode of rMRMR-MGWO are illustrated in
Fig. 2 and Algorithm 3.
6

Step 1: Initialization.
In this step, the number of iterations (Maxitr ) is initialized,
and each wolf is denoted as a solution of the gene selection
problem, where each solution is a binary vector of length D,
as shown in Eq. (14). In other words, the decision variable
in the solution is only accepting 0 or 1, called position in
GWO. GWO searching processes are lunched by generating
n wolves as random binary vectors.

GWOP =

⎡⎢⎢⎢⎢⎣
x11 x12 · · · x1D
x21 x22 · · · x2D
...

... · · ·
...

xn1 xn2 · · · xnD

⎤⎥⎥⎥⎥⎦ (14)

subject to:

x ∈ {0, 1}

Step2: Evaluation.
In this step, the wolves are mainly evaluated according to
their positions. For example, if the current wolf has 5 posi-
tions equal to 1 and the remaining positions are equal to 0
then the biological genes data mapped to the 1’s positions
(i.e., selected genes) will be fetched and represented as a
new reduced data. Afterward, 10-fold-cross-validation will
only be applied using SVM on this reduced data. Practically,
the reduced data will be divided into 10 folds, where the
first fold is testing data, and the other 9 folds are repre-
sented as the training data. An SVM model is constructed
based on the training data and the model is used on eval-
uating the testing data. This process is repeated 10 times
and on each time classification accuracy is estimated and
a different fold is assigned to the subsequent evaluation.
Eventually, the average classification accuracy is computed
over the ten testing folds. In the GWO, the evaluation of
each wolf is mainly depending on average classification
accuracy and the size of the gene subset as introduced
in Eq. (13). The fittest solution is assigned to Xα , and the
second and third best solutions are assigned to Xβ , and Xδ ,
respectively. Algorithm 2 exhibits the pseudo-code for the

social hierarchy of the proposed MGWO.
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Fig. 3. The segmentation operator.
S

Algorithm 2 Pseudo code for the social hierarchy of the proposed
MGWO
while (itr < Maxitr ) do
for each solution (j) do
Calculate the fitness of the solution
Xα = the fittest solution
Xβ = the second best solution
Xδ = the third best solution

end for
t = t + 1

end while
Return Xα, Xβ , Xδ;

Step3: Update MGWO population

In this step, MGWO follows the same operations as that of
the original GWO; i.e. encircling prey, searching for prey
(exploration), attacking prey (exploitation), and hunting
mechanism. This is implemented for navigating the gene
search space and updating the MGWO population, as dis-
cussed in Section 3.1. Updating the solutions in the MGWO
population can be done through Equations from (1) to (12).
Conventionally, the updating mechanism is operated by
measuring the distance between each wolf/solution in the
population and social hierarchy-based solutions (i.e., Xα ,
Xβ , and Xδ). The current wolf/solution updates its posi-
tions/decision variables according to

−→
Xα ,
−→
Xβ , and

−→
Xδ . Con-

sequently, a new solution is generated (
−→
X1 ) on the basis of

−→
Xα using Eqs. (6), (3), (4), and (9). These steps are repeated
to generate two new solutions

−→
X2 and

−→
X3 , where

−→
X2 is

generated based on
−→
Xβ using Eqs. (7), (3), (4), and (10), and

X3 is generated based on Xδ using Eqs. (8), (3), (4), and (11).
Eventually, the solutions

−→
X1 ,
−→
X2 , and

−→
X3 are aggregated

using the mean to produce a new solution
−→
X (t + 1). It

should be noted that since the
−→
X (t+1) positions have real

values, they are transferred as binary vector using Eqs. (15)
and (16).

sigmoid(
−→
X (t + 1)) =

1

1+ e−
−→
X (t+1)

(15)

−→
X (t + 1) =

{
1 if sigmoid(

−→
X (t + 1)) > U(0, 1), (16)
0 Otherwise

7

Moreover, the new solution
−−−−−→
X(t + 1) is produced at each it-

eration and evaluated using the fitness function as given in
Eq. (13). In the subsequent step, the new solution

−−−−−→
X(t + 1)

is passed for further optimization of search operators to
produce more quality solutions.

tep4: Update GWO population using TRIZ-inspired operators
In this step, new optimization operators inspired by TRIZ
inventive solution are incorporated in the basic GWO search
process to maintain the population’s diversity in order to
explore the interactions between the genes effectively for
the purpose of accessing and defining the most promising
regions in the gene search space. This, in turn, improves the
gene selection outcomes. TRIZ is a problem-solving method
that is comprised of 40 inventive principles (as shown
in Table 1) extracted from analyzing 1 million patents
records. Due to its value and significance, this research is
motivated to formulate some principles as its optimiza-
tion search operators. In this work, the descriptions of
these principles are investigated to check its feasibility
and suitability to be formulated as optimization search
operators. As a result, three principles (i.e., dynamization,
segmentation, and local quality) are selected and used as
extra optimization operators within the GWO search pro-
cedure. Based on the MGWO method flowchart, after the
current solutions are updated by the original mechanism
of GWO (as discussed in the previous step), these solutions
will be prone to other updating mechanism driven by dy-
namization, segmentation, and local quality optimization
operators as discussed below.

Dynamization Operator In this operator, there is no al-
ternation to the positions (i.e., decision variables) in
the current wolf. However, the solution represen-
tation of the gray wolf will be split into smaller
groups by the segmentation operator. In the mean-
time, dynamization plays the role of identifying the
number of elements in each group. It should be noted
that the number of elements in each individual is
generated arbitrarily based on this number and the
total number of groups is determined. These settings
will be mainly used by the segmentation operator to
reorganize the wolf’s solution representation.

Segmentation Operator Within this operator, the solu-
tion vector of the current wolf is reorganized into

groups and the number of elements (N) in each group
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is already set by the dynamization operator. In case
the length of the solution is dividable by (N) then
the all group size is even, otherwise; it is uneven.
For further clarification, the process of segmentation
operator is illustrated in Fig. 3.

Local Quality Operator In the previous operations, the
current wolf position vector is divided into smaller
groups without any permutations or alterations ap-
plied to the wolf’s position vector. However, the local
quality operator will be altered using neighborhood
search operators including three operators: mutation,
2-opt operation, and swapping to provide diversity
in each group. Note that the local quality operator in
this research is proceeded into two modes: (1) intra-
group mode (changes are applied inside the groups);
and (2) inter-group mode (changes are applied in the
order of the groups). For Intra-group mode, mutation
and 2-opt operations are applied for each group as
follows. Initially, the mutation operator generates a
random position between 0 and N−1, and its value is
flipped to ‘‘1’’ in case the original position value is ‘‘0’’
and visa versa. While in the 2-Opt operation, every
single group is split into two sub-groups. One of the
two sub-groups will be maintained and the other
one is selected to be altered by the 2-opt operation.
The 2-opt operation is applied to the selected sub-
group by reversing the order of the positions’ values.
For example, ‘‘0010101’’ to ‘‘1010100’’. Afterward,
the separated sub-groups are merged to become one
group again. Fig. 4 illustrates the entire process of
intra-group mode. In the inter-group mode, a swap
operator is applied in the solution groups by generat-
ing two random group indexes and their contents are
swapped in the group sequence. The entire process
is applied in inter-group mode and it is presented in
Fig. 5.

Step 5: Check the stop criterion The steps 3 and 4 are itera-
tively carried out until the stop criterion (i.e., the maximum
number of iterations) is satisfied. In case the condition is
satisfied, the MGWO would have delivered the best fitness
wolf for the gene selection problem which carries the most
relevant biomarker-genes able to classify cancer diseases
accurately. Algorithm 3 presents the pseudo-code of the
five steps of the proposed MGWO.

5. Experimental setup and results

The features of the PC used in these experiments are : Intel
Core Quad 2,66 GHz CPU with 4 GB of RAM, Win 10 operat-
ing system. In our experiments, filter approaches (i.e., ReliefF,
Chi-Square, and Kullback–Liebler) were implemented using an
open-source machine learning platform, called Weka [63], while
rMRMR was implemented based on Matlab. In the wrapper ap-
proach, GWO, modified GWO, and SVM were implemented based
on Java. The SVM classifier was implemented in the open-source
LIBSVM [64].

5.1. Dataset

The MGWO was tested on nine public microarray benchmark
datasets. These de facto datasets are widely used in pattern recog-
nition applications that are composed of evolutionary algorithms
and machine learning to recognize patterns in genes to classify
cancer samples from healthy samples [51]. These experimented
datasets are different in dimension. The number of genes between
8

Algorithm 3 Pseudo code of the proposed MGWO
1: Step1: Initialization.
2: Genes= {g1, g2, . . . , gD}
3: Initialize MGWO parameters (n, Maxitr ).
4: while (itr ≤ Maxitr ) do
5: for each solution (j) do
6: Step2: Evaluation.
7: Calculate the fitness of the solution
8:

−→
Xα = the fittest solution

9:
−→
Xβ = the second best solution

0:
−→
Xδ = the third best solution

1: end for
2: Step3: Update MGWO population
3: for each solution (j) do
4: Update r1, r2
5: Update the value of A1 (Eq. (3))
6: Update the value of C1 (Eq. (4))
7: Calculate

−→
X1 (Eqs. (6), (9))

8: Update r1, r2
9: Update the value of A2 (Eq. (3))
0: Update the value of C2 (Eq. (4))
1: Calculate

−→
X2 (Eqs. (7), (10))

2: Update r1, r2
3: Update the value of A3 (Eq. (3))
4: Update the value of C3 (Eq. (4))
5: Calculate

−→
X3 (Eqs. (8), (11))

6: Generate a new solution
−→
X (t + 1) (Eq. (12))

7: Transfer
−→
X (t + 1) to binary vector using sigmoid function (Eq. (15))

8: end for
9: Start Running TRIZ inspired optimization operators

30: x′′ = Split (X(t + 1))
31: x′′′= Mutation(x′′)
32: x′′′′= 2-Opt(x′′′)
33: x′=Swap(x′′′′)
34: End Running TRIZ inspired optimization operators
35: Step 5: Check the stop criterion
36: if The maximum number of the iteration is not reached then
37: itr = itr + 1
38: end if
39: end while
40: Return Xα

Table 2
Datasets characteristic.
Datasets # Genes # Samples # Classes

Colon Tumor 2000 62 2
CNS 7129 60 2
ALL-AML 7129 72 2
Ovarian Cancer 15154 253 2
Lung Cancer 12601 203 5
ALL-AML-3C 7129 72 3
ALL-AML-4C 7129 72 4
MLL 12582 72 3
SRBCT 2308 83 4

2000 to 15154 including irrelevant or poor prognostic genes.
While the number of patient samples is between 60 to 235. Ta-
ble 2 shows the main characteristics of the experimented datasets
in terms of the number of samples, the number of genes, and class
categories.

5.2. Parameter settings

The setting of parameters for both filter and wrapper ap-
proaches are illustrated in this section. In filter approach, for
parameter top-ranked genes, M = 50 has been adopted accord-
ing to previous studies [5,25,57,65]. In the wrapper approach
for MGWO, the number of wolves and the maximum amount
of iterations are set to 100 based on experimental evaluation
and the related studies in the literature [5,12,22,57]. The other
parameters related to the machine learning algorithm are set as
follows: 10-fold-CV schema, which has been widely adopted to
evaluate the performance of the machine learning algorithm, is
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Fig. 4. The local quality operator in the intra-group mode.
Fig. 5. The local quality operator in the inter-group mode.
sed in this research. Moreover, for the SVM kernel and the values
f its parameters selection, Radial Basis Function (RBF) kernel is
hosen to carry out the classification task, as well as, the grid
earch is harnessed to optimize the plenty parameter C and the
ernel parameter Gamma.

.3. Effect of Triz-inspired operators on the performance of MGWO

The performance of basic GWO and GWO coupled with TRIZ-
nspired operators (MGWO) is examined in this section. Since
oth algorithms are stochastic algorithms, they were performed
n 30 independent runs. The results of classification accuracy
9

(ACC), precision, recall, F1score, MCC, number of selected genes
(|#G|), and Wilcoxon signed-rank statistical test are exposed in
Table 3. Note: the best results of ACC, |#G| are marked in bold.
The interpretation of the results of Wilcoxon signed-rank statistic
is that if the probability range of α ≤ 0.05, the results of MGWO
are significantly better than GWO, and the symbol ‘∗‘ is displayed
in the corresponding dataset. In case of the probability range α

condition is not satisfied, it implies that there is no significant
statistical results were found.

From Table 3, it can be observed that MGWO achieves better
or similar results on most evaluation measurements (i.e., clas-
sification accuracy, Precision, Recall, F1score, and MCC) on all
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able 3
he performance of the proposed Triz-based GWO using different evaluation measures.

Dataset Colon CNS AL-AML Ovarian Lung All-Aml-3c All-AML-4c MLL SRBCT

rMRMR-MGWO ACC 0.9586 0.9938 1 1 0.9791 1 0.9990 1 1
Precision 0.9683 0.9974 1 1 1 1 0.9989 1 1
Recall 0.9409 0.9873 1 1 1 1 0.9996 1 1
F1score 0.968 0.9953 1 1 1 1 0.9991 1 1
MCC 0.9052 0.9757 1 1 1 1 0.9962 1 1
No_Of_genes 9.8 17.46 5.06 3.56 15.8 6.7 11.36 8.4 12.3

GWO ACC 0.9413 0.9738 1 1 0.9752 0.9986 0.9884 0.9990 1
Precision 0.9533 0.9829 1 1 0.9445 0.9982 0.9911 0.9989 1
Recall 0.9197 0.9571 1 1 0.9882 0.9994 0.9962 0.9995 1
F1score 0.9546 0.98 1 1 0.9579 0.9977 0.9863 0.999 1
MCC 0.86397 0.9611 1 1 0.92 0.92 0.93 0.98 1
No_Of_genes 5.5 16.1 5.5 16.76 4.033 10.06 10.8 11.466 14.53

T-Sig. * – – – * – * * –
datasets compared to GWO. Conventionally, both methods tend
to find fewer number of genes with high classification accuracy.
In comparison, MGWO resulted in better classification accuracy
with a lower number of selected genes for six datasets (i.e., ALL-
AML, Ovarian Cancer, Lung Cancer, ALL-AML-3c, MLL, and SRBCT).
In term of number of selected genes, MGWO managed to select
fewer number of genes than GWO on six datasets (i.e., AL-AML,
Ovarian, Lung, All-Aml-3c, MLL, and SRBCT), while GWO select
fewer number of genes compared to MGWO on three datasets
(i.e., Colon, CNS, and ALL-AML-4c). Table 3 also demonstrates
the results of Wilcoxon signed-rank statistical test between the
MGWO and the MGWO. It can be inferred that MGWO achieves
statistically significant results on four datasets (i.e., Colon, Lung,
All-AML-3c, and MLL).

Moreover, the convergence curve is plotted in Fig. 6 to inves-
igate the search process of GWO and MGWO while optimizing
he gene search space. The graph shows that MGWO converges
igher (i.e., better) than GWO for almost all datasets. However,
or ALL-AML, Ovarian, and SRBCT, GWO and MGWO have similar
onvergence behavior.
To further evaluate the effectiveness of the proposed method,

he results of the proposed methods are compared against em-
edded gene/feature selection methods, as depicted in Table 4.
lease note that the best results are highlighted in bold. The
mbedded methods involved in this comparison are : LASSO [66],
andom Forest [67], Elastic Nets [68], and Decision tree [69]. It
an be seen from the table that the proposed method (rMRMR-
GWO) outperform all other embedded gene selection methods,
xcept Elastic Nets. rMRMR-MGWO outperforms Elastic Nets on
our datasets (i.e, Colon Tumor, ALL-AML-3c, ALL-AML-4c, and
LL) , while Elastic produces better results than rMRMR-MGWO
n two datasets (i.e., CNS and Lung Cancer). Both methods achieve
imilar result on the remaining datasets.
In sum, the experimental results proved that the MGWO is

ble to produce the best compromise in the trade-off between
he classification accuracy and number of selected genes. This
utstanding result is a credit of the incorporation of TRIZ-inspired
ptimization operators with MGWO that helps in exploring the
nteractions between the genes effectively by maintaining the di-
ersity of the population, accessing and defining the most promis-
ng regions in the gene search space.

According to the study [23], the average number of the se-
ected genes obtained by optimization algorithms cannot be uti-
ized for biological analysis. Because of that, the results of pro-
osed method in multiple independent runs were ordered by the
itness function that involved classification accuracy and number
f selected genes, as shown in Table 3, and in previous methods as
een in Table 7. In this study, for getting insight on the biological
enes related to the cancer, the obtained genes for each dataset
s listed in Table 5. The description of each gene can be found
rom the Gene database of National Center for Biotechnology
nformation (NCBI).
10
5.4. Comparative evaluations

In this section and to further assess the performance of the
proposed method, its results are compared with state-of-art gene
selection methods in the literature. These methods are tabulated
in Table 6. The performance measures are used for the evaluation
including: the average classification accuracy and the average of
selected genes, which appear between parentheses, as shown in
Table 6.

It can be seen from Table 7 and Fig. 7 that the results of
rMRMR-MGWO produced a similar or superior classification per-
formance on six datasets. Meanwhile, the proposed rMRMR-
MGWO managed to efficiently minimize the number of genes
for each experimented dataset and simultaneously obtain high
classification accuracy. In terms of classification accuracy and
number of selected genes solely, rMRMR-MGWO achieved the
best results on 2 datasets (i.e., ALL-AML-4c, and MLL). In term
of number of the selected genes, IG-MBKH achieves the best
result, where it manage to select the lowest number of selected
genes on three datasets (CNS, ALL-AML, and Ovarian). rMRMR-
MGWO selected the lowest number of selected genes on two
datasets (i.e., ALL-AML-4c and MLL). Furthermore, each of SARA-
SVM and ABCD selected the lowest number of selected genes
on two dataset. SARA-SVM achieves the best result on Lung and
SRBCT datasets, while ABCD provides the best result for Colon
and ALL-AML-3c datasets. In sum, rMRMR-MGWO appears to be
competitive and in some cases superior against state-of-arts in
gene selection problem.

6. Conclusions an further directions

Building a classification system using gene expression data is
an active research area in bioinformatics. It has been proposed
to be used as an early tool for diagnosing cancer as it can differ-
entiate between healthy and cancerous patients samples. In this
paper, an efficient filter-wrapper gene selection method was pro-
posed to identify the biological-relevant genes that work collab-
oratively for cancer distinction. The proposed method combines
robust Minimum Redundancy Maximum Relevancy (rMRMR) as
a filter approach and Modified Gray Wolf Optimizer (MGWO) as
a wrapper approach. In MGWO, the performance of GWO, which
is used as the search engine, is improved by incorporating the
TRIZ-inspired concepts as a new operator to the evolution loop
of GWO. Utilizing this operator, the diversity control of MGWO is
enriched where the generated solution from the original GWO op-
erator is entered to TRIZ operator for further improvement. This
is to help MGWO in exploring interesting regions in the search
space. Nine high dimensional benchmark datasets are used in the
experiments to test the performance of the proposed method.
These benchmark datasets vary in terms of the number of genes,
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Table 4
The results of the selected genes by embedded gene selection methods and rMRMR-MGWO.
Dataset Measure rMRMR-MGWO LASSO Random Forest Elastic Nets Decision tree

Colon Tumor

ACC 0.9414 0.5694 0.7903 0.8548 0.7903
Precision 0.9533 0.54206 0.85 0.9 0.775
Recall 0.9197 0.78307 0.6818 0.7727 0.8181
F1score 0.9546 0.50997 0.83950 0.8888 0.8266
MCC 0.8639 0.3370 0.5376 0.68010 0.5724

CNS

ACC 97.3889 0.6666 0.7166 1 0.6666
Precision 0.9829 0.74358 0.8461 1 0.7692
Recall 0.9571 0.5238 0.4761 1 0.47619
F1score 0.98 0.7435 0.79518 1 0.75
MCC 0.9611 0.2673 0.3476 1 0.5016

All-AML

ACC 1 0.7083 0.9722 1 0.9305
Precision 1 0.9574 0.9787 1 0.9787
Recall 1 0.24 0.96 1 0.84
F1score 1 0.8108 0.9787 1 0.9484
MCC 1 0.2991 0.9387 1 0.8461

Ovarian Cancer

ACC 1 0.9841 0.9960 1 0.9960
Precision 1 1 1 1 1
Recall 1 0.9560 0.9890 1 0.9890
F1score 1 0.9878 0.9969 1 0.9969
MCC 1 0.9659 0.99143 1 0.99143

Lung Cancer

ACC 0.9752 0.7931 0.9162 0.9753 0.8768
Precision 0.9445 0.5064 0.8461 0.9537 0.6674
Recall 0.9882 0.8810 0.9632 0.9883 0.9502
F1score 0.9579 0.5402 0.8678 0.9665 0.6626
MCC 0.92 0.5 0.8357 0.9564 0.6566

All-AML-3c

ACC 0.9986 0.4861 87.5 0.9861 0.8333
Precision 0.9982 0.3298 0.8225 0.9629 0.6357
Recall 0.9994 0.6670 0.9469 0.9929 0.9121
F1score 0.9977 0.2940 0.8034 0.9738 0.5866
MCC 0.97 0.3 0.7477 0.9685 0.6088

All-AML-4c

ACC 0.9884 0.5278 0.7777 0.9167 0.7639
Precision 0.9911 0.3991 0.7856 0.8886 0.8137
Recall 0.9962 0.7954 0.9068 0.9641 0.8933
F1score 0.9863 0.3876 0.81532 0.9044 0.8022
MCC 0.93 0.2522 0.7254 0.8729 0.7032

MLL

ACC 0.9990 0.5694 0.9027 0.9861 0.6388
Precision 0.9989 0.5420 0.8908 0.9833 0.5833
Recall 0.9995 0.7830 0.9499 0.9924 0.8030
F1score 0.999 0.5099 0.8947 0.9856 0.5133
MCC 0.98 0.3370 0.8492 0.9789 0.5522

SRBCT

ACC 1 0.3493 0.9879 1 0.3614
Precision 1 0.25 0.9913 1 0.26
Recall 1 0.75 0.9956 1 0.7546
F1score 1 0.1294 0.9907 1 0.1498
MCC 1 0.2 0.9864 1 0.2033
Table 5
Genes selected by the proposed method.
Dataset Ngenes Gene ID in dataset

Colon Tumor 10 H08393, M76378, M76378, M59807, T47377, M80815, X61118, M82919, Z50753, U09564

CNS 17 U43747_s_at, M27492_at, S71824_at, U41737_at, M13194_at, M63962_rna1_at, U17566_at,
L40396_at, L48513_at, M96739_at, U21936_at, M13207_at, S78296_at, S66541_at, L33799_at,
J04760_at, U49928_at

ALL-AML 5 Y07604_at, M31303_rna_at, U77604_at, M84371_rna1_s_at, U82759_at

Ovarian Cancer 4 MZ2.7921478, MZ435.07512, MZ2.8234234, MZ435.46452

Lung Cancer 16 gene9134, gene12097, gene9170, gene4452, gene8766, gene9733, gene10892, gene8472, gene8882,
gene9672, gene4788, gene9840, gene3227, gene10139, gene11300, gene4244

ALL-AML-3c 7 M31303_rna1_at, J03473_at, X58072_at, M27891_at, D00749_s_at, X76223_s_at, X00274_at

ALL-AML-4c 11 D00749_s_at, M23197_at, X69398_at, X77094_at, U70063_at, M80254_at, M63138_at, D30756_at,
X66401_cds1_at, M96326_rna1_at, U57721_at

MLL 8 36553_at ,37710_at, 37933_at, 1535_at, 34699_at, 1065_at, 35588_at, 32541_at

SRBCT 12 gene1955, gene509, gene1386, gene545, gene1613, gene2046, gene246, gene2162, gene153,
gene1327, gene1389, gene1003
samples, and classes. Two well-known measurements in the gene
selection research field are used for the evaluations, which are
11
the number of selected genes and classification accuracy. Initially,
the proposed method is evaluated using two phases. In the first



O.A. Alomari, S.N. Makhadmeh, M.A. Al-Betar et al. Knowledge-Based Systems 223 (2021) 107034

p

t

o

r

Fig. 6. The convergence behavior of the proposed method rMRMR-MGWO for all datasets.
hase, the results of MGWO (i.e., with TRIZ-inspired optimiza-

ion operators) and GWO (without TRIZ-inspired optimization

perators) are compared. According to the classification accuracy

esults, the proposed method rMRMR-MGWO achieved higher
12
or similar classification results on all datasets against rMRMR-
GWO. To elaborate, rMRMR-MGWO and rMRMR-GWO have the
same classification accuracy results for ALL-AML, Lung Cancer,
and SRBCT datasets. Other datasets (i.e., Colon, CNS, Ovarian, ALL-
AML-3c, ALL-AML-4c, and MLL), the rMRMR-MGWO can achieve
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Fig. 7. Compared the experimental results of rMRMR-MGWO with other methods.
etter results. According to both, the number of genes and clas-
ification accuracy results, the rMRMR-MGWO can yield better
esults than GWO in 6 out of 9 datasets while for the other
hree datasets, the number of genes yielded by rMRMR-GWO are
ess than the rMRMR-MGWO, although the classification accuracy
esults are better in favor of rMRMR-MGWO. In the second phase,
MRMR-MGWO is also compared against nine state-of-the-art
13
methods using the same benchmark datasets. In terms of classifi-
cation accuracy results, the rMRMR-MGWO is able to outperform
the comparative methods in three out of nine comparative results
while it is able to achieve five better results for other datasets
achieved by other comparative methods. In terms of both the
number of genes and classification accuracy results, rMRMR-
MGWO achieves the best results on 4 datasets (i.e., Lung Cancer,



O.A. Alomari, S.N. Makhadmeh, M.A. Al-Betar et al. Knowledge-Based Systems 223 (2021) 107034
Table 6
Key to comparative methods.
Key Method name Reference

IG-MBKH Information Gain and a Modified Binary Krill Herd Algorithm [51]
GA-IG Information gain and search strategy based on genetic algorithm (GA) [49]
IPSO-IG Information Gain and improved binary particle swarm optimization [50]
IBCFPA Absolute balance group strategy to the original binary clonal flower pollination algorithm [46]
EBWSA Elite Binary Wolf Search Algorithm [70]
BCROSAT Simulated Annealing and Tournament Selection to Coral Reefs Optimization algorithm [47]
ISFLA improved shuffled frog leaping algorithm [45]
MIM-mMFA Mutual Information Maximization-modified Moth Flame Algorithm [71]
DE − Fspm Permutational-based Differential Evolution algorithm [71]
SARA-SVM Simulated Annealing and Rao algorithm [59]
ABCD Artificial Bee Colony based on Dominance [23]
BGWOCMALOL GWO variant enhanced with a covariance matrix adaptation evolution strategy CMAES), levy flight

mechanism, and orthogonal learning (OL) strategy
[72]
Table 7
Comparison results of the competitive algorithms.
Algorithm Colon Tumor CNS ALL-AML Lung Cancer Ovarian Cancer

rMRMR-MGWO 95.87(9.80) 99.39(17.47) 100 (5.06) 97.9(15.80) 100.00(3.57)
IG-MBKH 96.47(17.10) 90.34(14.70) 100.00(4.20) 96.12(23.80) 100.00(3.40)
IPSO-IG 90.31(26.90) 76.63(24.00) 99.36(25.20) 90.31(24.40) 99.98(22.20)
GA-IG 83.55(24.00) 64.67(25.40) 96.33(24.20) 83.55(26.20) 99.72(24.20)
IBCFPA 92.16(25.90) 84.82(25.20) 99.37(29.90) 94.44(82.20) 99.06(48.80)
EBWAS 80.56(16.20) 67.69(52.50) 90.90(53.10) 85.37(89.10) 64.25(82.60)
BCROSAT 91.81(30.90) 81.17(29.30) 98.64(28.30) 91.81(22.50) 98.35(30.50)
ISFLA 89.56(37.10) 77.46(41.10) 96.34(35.80) 89.56(40.30) 97.29(33.30)
MIM-mMFA 100(31.00) 100(24.70) 100(7.50) 100(35.30) 98.42(35.90)
DE − Fspm 97.2(27.1) – 100 (7.50) – 100(90)
SARA-SVM 97.02(9 ) – 97.65 (7) 90.22 (5) 99.15(6)
ABCD 99.23(6.32) – – 100(11.28) –
BGWOCMALOL 100(29.5) 100(210) 100(96.5) 100(380) –

Algorithm ALL_AML_3c ALL_AML_4c MLL SRBCT

rMRMR-MGWO 100(6.70) 99.91(11.37) 100(8.40) 100(12.30)
IG-MBKH 100.00(8.80) 99.44(15.80) 99.72(11.10) 100(6.30)
IPSO-IG 98.54(23.70) 94.07(25.30) 93.86(26.80) 99.17(26.10)
GA-IG 96.29(24.10) 89.89(25.00) 88.68(27.30) 97.18(23.60)
IBCFPA 97.97(49.60) 94.35(45.60) 96.51(47.21) 98.02(40.80)
EBWAS 84.11(49.00) 78.54(47.20) 83.16(86.30) 79.37(17.50)
BCROSAT 94.52(33.60) 88.94(38.20) 96.04(35.60) 95.76(33.00)
ISFLA 94.00(40.00) 90.91(32.20) 92.59(40.70) 93.72(43.10)
MIM-mMFA 100(18.70) – 100(33) 100(27.30)
DE − Fspm 95.7(212.3) – – 99.9(821.4)
SARA-SVM 98.02(7) – – 99.81(5 )
ABCD 100(3.12 ) – – 100(5.04 )
BGWOCMALOL – – – 100(37.5)
ALL-AML-3c, ALL-AML-4c, and MLL). In a nutshell, the proposed
method reveals a high efficiency by being able to maximize clas-
sification accuracy while minimizing the number of genes. This
can be considered as an outstanding contribution pregnant with
a plethora of future developments for research communities. As
rMRMR-MGWO provides very successful outcomes for the gene
selection problem, in the future, it can be further enhanced in
different perspectives:

1. Hybridization with other local search-based algorithms to
empower its exploitation.

2. Application to different realistic datasets or bioinformatics
problems such as protein tertiary structure prediction [73].

3. Using other advanced machine learning algorithms in the
classification part such as conventional neural networks.
(CNN) [74].
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