
Electrical Power and Energy Systems 125 (2021) 106529

Available online 7 October 2020
0142-0615/© 2020 Elsevier Ltd. All rights reserved.

Correcting “PALK: Password-based anonymous lightweight key agreement
framework for smart grid”

Shehzad Ashraf Chaudhry
Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, Istanbul, Turkey

A R T I C L E I N F O

Keywords:
Smart grid authentication
Anonymity
Elliptic curve cryptography
Security
Smart meter
Authenticated Key agreement
Incorrectness

A B S T R A C T

Very recently in 2020, Khan et al. proposed an authentication scheme (PALK) for the smart grid infrastructure.
Based on elliptic curve cryptography (ECC), symmetric hash functions and block cipher based encryption/
decryption operations, the scheme was argued to work efficiently and securely in smart grid based infrastructure.
However, in this paper, we prove that PALK has incorrect login and authentication phase; mainly, due to a
superficial ECC operation involving the multiplication of two points over the curve. Moreover, in the scheme of
Khan et al. the responding entity without knowing any clue of the initiator, uses the public key of the initiator for
the completion of the authentication process, which is also not possible in the presence of multiple communi-
cating devices. These design flaws lead to the situation, where the smart grid entities are unable to complete even
a single cycle of authentication. Finally, we propose a quick solution to fix the pertinent flaws of the PALK. The
security and correctness of the proposed solution iPALK is proved using formal BAN logic, automated tool
ProVerif along with a brief discussion on the correctness of the scheme. The performance comparisons also show
that the iPALK not only provides the correctness, but it is more efficient in terms of computation and commu-
nication costs.

1. Introduction

In recent times, the smart grid (SG) technology has gained much
attention and it is expected to replace the conventional grid soon [2].
With bidirectional communication, the SG can manage the demand
response in an efficient way and under consumer supervision. The
consumer can directly adjust the power requirements for optimal usage
[3,4,8]. The security and privacy are, however, the main concerns for
the revolution of SG [5–7]. Very recently, in 2020 Khan et al. [1] pro-
posed a new scheme PALK: Password-based anonymous lightweight key
agreement framework for smart grid. PALK is proposed to secure
communication between two SG entities (say Ua, Ub). Using elliptic
curve cryptography and symmetric key operations, PALK supports the
establishment of a secure channel between both the initiating and the
responding entities (Ua,Ub). They proved the security of their scheme
using multiple formal methods and AVISPA based automated methods.
Moreover, they provided a discussion on many security features and
attack resilience provision of PALK [1]. Khan et al. also compared PALK
with ten related schemes in terms of efficiency and security. They sub-
stantiated the arguments of both the invincible security and perfor-
mance efficiency of PALK. However, the discussion in this paper refutes
Khan et al.’s claim of security and efficiency as the later part of this
paper proves that Khan et al.’s scheme cannot even complete an
authentication cycle owing to the critical design flaws. The rest of the

paper is organized as follows: Section 2 provides a brief revisit of ECC.
The revisit of the scheme of Khan et al. is provided in Section 3. Section 4
explains our arguments on the incorrectness of the scheme of Khan et al.
In Section 5, we put forward a quick solution in terms of improved PALK
to the pertinent flaws of the PALK. Section 6 proves the correctness and
security of the proposed iPALK through formal, informal, and automated
tools. The performance analysis and compassion of the proposed iPALK
with original PALK are performed in Section 7. Finally, Section 8 con-
cludes the paper.

2. Fundamentals of Elliptic Curve Cryptography

In this section, we briefly revisit ECC related concepts. The ECC is
proved as more efficient as compared with RSA, DSA, and Diffie-
Hellman cryptographic protocols and is defined by a curve Eq(α, β) :
y2 = x3 + αx+ β mod q, where the pair {α, β} ∈ Zq. The pair {α, β} is
chosen carefully to satisfy 4α3 + 27β2 mod q ∕= 0, where q is a prime
number such that |q|⩾160 bits. ECC curve Eq(α, β) consists of several
points (xi,yi), including a point ℴ as the point on infinity, which serves
as an identity element while Eq(α, β) forms an abelian group. The ECC
has only two operations:

Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

https://doi.org/10.1016/j.ijepes.2020.106529
Received 22 June 2020; Received in revised form 8 September 2020; Accepted 11 September 2020

www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2020.106529
https://doi.org/10.1016/j.ijepes.2020.106529
https://doi.org/10.1016/j.ijepes.2020.106529
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2020.106529&domain=pdf

International Journal of Electrical Power and Energy Systems 125 (2021) 106529

2

• ECC Point addition: Given two points A = (xa, ya) and B = (xb,yb),
the addition of A and B returns another point C = A+B on the same
curve. As C is a point over the curve, so it also consists of two co-
ordinates (xc, yc), where xc = λ2 − xa − xb and yc = (λ(xa − xc) − ya).
The λ is defined in the following ways:

λ =

3x2
a + α
2ya

mod q if A = B,

yb − ya

xb − xa
mod q if A ∕= B

• ECC Point Scalar Multiplication: Given an integer k ∈ Zq and a
point A = (xa,ya), the scalar multiplication produces a point on the
same curve (D = kA) through repeated addition of A, thus D = kA =

A + A + A + … + A (k times). As D is a point, so it is represented by
two coordinate i.e. D = (xd,yd).

Except for the two operations: (1) Point addition and (2) Point scalar
multiplication, no other operation can be performed on ECC point/s.
Specifically, for the two points A and B (whether A = B or A ∕= B), no
such method exists which can find multiplication (A.B) of these points.

3. Revisit of the PALK by Khan et al.

In the following subsections, we revisit the “PALK” proposed by Khan
et al. to provide secure smart grid access to users. PALK consists of two
types of entities (1) Trusted Authority (TA), responsible for construction
and publication of system parameters and registration of communi-
cating entities (2) Users/SG devices (UA/UB), to authenticate each other
through the establishment of a secure channel.

3.1. Initialization

For the successful execution of this phase, the TA chooses an elliptic
curve (EC) Eq(α, β) along with P ∈ Eq(α, β) as a public base point and a
hash function h(..). The TA chooses xT as it’s own private key and an-
nounces {Eq(α,β),q,P,h(..)}.

3.2. Registration

Each user/device (Ui) initiates this phase and gets registers with the
TA by selecting it’s credentials i.e. identity IDi and password PWi. Ui

then selects xi ∈ Z*
q and computes Ai = h(PWi||xi||IDi),Xi = Ai.P and

PWIi = PWi ⊕ h(IDi||Xi). Then Ui sends M1 = {PWIi, IDi,Xi,TR1} to TA
using private channel, where TR1 is the current timestamp at Ui side. The
TA receives M1 and after checking the validity of TR2 − TR1⩽ΔT, chooses
xT ∈ z*

q and computes: PW*
i = PWIi ⊕ h(IDi||Xi), Bi = h

(
PW*

i
⃒
⃒
⃒
⃒xT

⃒
⃒
⃒
⃒IDi

)
,

Yi = Bi.P,Wi = Xi + Yi, Si = h(IDi||Wi||PWIi), S’
i = Si ⊕ h(Wi||Xi). The TA

sends M2 = {Wi, Bi, S′

i}. The Ui receives M2 and computes S*
i =

S′

i ⊕ h(Wi
⃒
⃒
⃒
⃒Xi), SKi = Ai +Bi +S*

i ,PKi = SKi.P and verifies

PKi =
?
(Wi +S*

i .P) and on success, Ui keeps {SKi,PKi} as it’s secret and
public key pair, respectively and stores {S*

i ,Wi} in it’s database.

3.3. Login and key agreement

The following steps are executed between the initiating entity UA and
responding entity UB to perform mutual authentication and to establish
a session key:

PALK 1 The UA being initiator submits {IDi, PWi} pair and computes
PWIA = PWA ⊕ h(IDA||XA),RA = h(IDA||WA||PWIA) and checks

the equality RA =
? S*

A. On success, UA chooses a ∈ Z*
q and com-

putes: IDA1 = IDA ⊕ h(XA||PWIA||WA), L1 = h(a.P||IDA||XA),

KA1 = h((T1 ⊕ aP)||aP, E1 = EKA1 (IDA1, L1,WA,PWIA,XA) where
T1 denotes current timestamp and EKA1 denotes symmetric
encryption. UA then computes Z = a.P,C′

= a ⊕ h(Z.SKA.P||T1)

and sends M1 = {E1,T1,C
′

, Z} to UB.
PALK 2 The UB receives M1, checks timestamp freshness through

following relation T2 − T1⩽ΔT and on success, UB computes
C = C′

⊕ h(Z.PKA||T1) and KB1 = h((T1 ⊕ CP)||CP). Now UB
decrypts E1 using KB1 and extracts (IDA1, L1,WA, PWIA,XA)

and computes ID*
A = IDA1 ⊕ h(XA

⃒
⃒
⃒
⃒PWIA

⃒
⃒
⃒
⃒WA), L*

1 = h(a.

P
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒WA) and checks L*

1 =
? L1. If the equality holds, UB

chooses b ∈ Z*
q and computes L2 = h

(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

)
,

MACB = h
(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒XA

⃒
⃒
⃒
⃒XB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒T3

)
, session key

SKBA = h
(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L2

⃒
⃒
⃒
⃒MACB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒b.a.P

⃒
⃒
⃒
⃒T3

)
, KB2 =

h
(
L*

1
⃒
⃒
⃒
⃒ID*

A
⃒
⃒
⃒
⃒T1

⃒
⃒
⃒
⃒C
)
, IDB1 = IDB ⊕ h

(
XB

⃒
⃒
⃒
⃒IDA1

⃒
⃒
⃒
⃒L*

1
)
, E2 =

EKB2 (IDB1,WB,XB,MACB, b.P, L2), where EKB2 denotes sym-
metric encryption. UB then sends M2 = {E2,T3} to UA.

PALK 3 The UA receives M2, checks timestamp freshness through
following relation T4 − T3⩽ΔT and on success, UA computes
KA2 = h(L1||IDA||T1||a.P). Now UA decrypts E2 using KA2 and
extracts (IDB1, WB, XB, MACB, b.P, L2). The UA now computes
ID*

B = IDB1 ⊕ h(XB
⃒
⃒
⃒
⃒IDA1

⃒
⃒
⃒
⃒L1), L*

2 = h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB) and

checks L*
2 =

? L2. If the equality holds, UA computes MACA =

h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒XA

⃒
⃒
⃒
⃒XB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒T3) and checks MACA =

? MACB. If
the equality holds, UA computes the session key SKAB =

h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒L*

2
⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.b.P

⃒
⃒
⃒
⃒T3).

4. Incorrectness of the PALK by Khan et al.

In this section, it is to argue that the scheme of Khan et al. entails
incorrectness and may be stuck into the computation of an operation
without any defined solution. Specifically, during login and authenti-
cation phase the initiator UA computes Z = a.P and C′

=

a ⊕ h(Z.SKA.P||T1). Now, UA along with the other parameter E1 sends
{E1,T1,Z,C

′

} to responder entity UB. The UB upon receiving {E1,T1,Z,
C′

} and after verifying freshness of the message, computes C = C′

⊕ h(Z.
PKA||T1) after then UB proceeds with the rest of the steps as mentioned in
the original paper of Khan et al. Two ambiguities/flaws arise here:

1. Z = a.P is a point over curve Eq(α,β), the private key SKA (of UA) is an
integer and P is also a point over Eq(α, β). The computation of C′

=

a ⊕ h(Z.SKA.P||T1), requires computing Z.SKA.P. The Z.SKA.P is
supposed to be computed in any of the following two ways:
(a) First SKA is multiplied with Z, which results in another point Ẑ =

Z.SKA and now Ẑ.P is supposed to be computed for getting the
result of Z.SKA.P. Here, we are left with a multiplication of two
points Ẑ and P.

(b) Likewise, if SKA is first multiplied with P, it also results in
another point PKA = SKA.P (the public key of UA). Now Z.PKA is
supposed to be computed for getting the result of Z.SKA.P. This
case is also similar to the above one and we are again left with
the multiplication of two points Z and PKA.

Both the above-explained cases to compute Z.SKA.P results
into a multiplication of two points and no method/algorithm
exists to compute multiplication of two points over an elliptic
curve. Hence, the scheme cannot proceed further and a halt
position may occur. Similarly, on responding side UA during
computation of C = C′

⊕ h(Z.PKA||T1), again tries to multiply a
point Z with another point PKA (where PKA = SKA.P is the public
key of UA). This situation is also a halt. Hence, the scheme is
incorrect and cannot complete execution normally to provide
authentication and key agreement between two SG entities.

S.A. Chaudhry

International Journal of Electrical Power and Energy Systems 125 (2021) 106529

3

2. Secondly, the responding entity UB is using public key PKA of the
initiating entity UA for the computation of C = C′

⊕ h(Z.PKA||T1);
whereas, UB received {E1,T1,Z,C

′

} tuple from UA. The received tuple
does not give any clue to identify the initiator. As SG is a commu-
nication infrastructure of multiple entities, therefore, if the
responding entity knows who has sent a request, it can use the public
key of that specific initiator for the computation of C =

C′

⊕ h(Z.PKA||T1). Here, the responding entity has no information
about the initiator. This ambiguity leads towards the total failure
scenario of the PALK by Khan et al. for normal completion.

Hence, two above argued flaws in the PALK (scheme of Khan et al.),
render the scheme as incorrect and cannot be deployed in any
infrastructure.

5. iPALK-improved scheme

The existing Khan et al.’s PALK scheme incorporates two design
flaws: (1) superficial ECC operation involving multiplication of two
points, and (2) unknown sender identification. Therefore, the
improvement consists of amending the steps to remove both of these
flaws. Our improvement keeps initialization and registration phases of
the PALK as it is and the following are the modified steps executed
among two entities UA and UB during login and authentication phase:

iPALK 1 The UA being initiator submits {IDi, PWi} pair and computes
PWIA = PWA ⊕ h(IDA||XA), RA = h(IDA||WA||PWIA) and checks

the equality RA =
? S*

A. On success, UA chooses a ∈ Z*
q and com-

putes Z1 = a.P, L1 = h(Z1||IDA||XA), KA1 = h((T1 ⊕ Z1)||Z1),
E1 = EKA1 (IDA, L1,WA,XA), where T1 denotes current time-
stamp and EKA1 denotes symmetric encryption. UA then com-
putes Z2 = a.PKB = a.SKBP and sends M1 = {E1,T1, Z2} to UB.

iPALK 2 The UB receives M1, checks timestamp freshness through
following relation T2 − T1⩽ΔT and on success, UB computes
Z1 = Z2.SK− 1

B , and KB1 = h((T1 ⊕ Z1)||Z1). Now UB decrypts E1

using KB1 and extracts (IDA,L1,WA,XA). UB now computes L*
1 =

h(Z1
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒XA) and checks L*

1 =
? L1. If the equality holds, UB

chooses b ∈ Z*
q and computes L2 = h(IDA||IDB||WA||WB),

MACB = h(IDA||IDB||XA||XB||WA||WB||T3), session key SKBA =

h(IDA||IDB||L2||MACB||WA||WB||b.Z1||T3),
KB2 = h

(
L*

1
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒T1

⃒
⃒
⃒
⃒Z1

)
, Z3 = b.P, E2 =

EKB2 (IDB,WB,XB,MACB, Z3, L2), where EKB2 denotes symmetric
encryption. UB then sends M2 = {E2,T3} to UA.

iPALK 3 The UA receives M2, checks timestamp freshness through
following relation T4 − T3⩽ΔT and on success, UA computes
KA2 = h(L1||IDA||T1||Z1). Now UA decrypts E2 using KA2 and
extracts (IDB,WB,XB,MACB,Z3,L2). The UA now computes L*

2 =

h(IDA
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB) and checks L*

2 =
? L2. If the equality holds,

UA computes MACA = h(IDA||IDB||XA||XB||WA||WB||T3) and

checks MACA =
? MACB. If the equality holds, UA computes the

session key SKAB = h(IDA
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L*

2
⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.Z3

⃒
⃒
⃒
⃒T3).

6. Correctness/security proofs

This section solicits the correctness and/or security of the proposed
iPALK through informal discussion, formal and automated methods.

6.1. Discussion on correctness

The PALK scheme proposed by Khan et al. entails two design flaws:
(1) multiplication of two ECC points, and (2) unknown sender identifi-
cation. To remove both these flaws, in the proposed iPALK, we used the
pubic key of the receiver to compute Z2 = a.PKB = a.SKBP. Moreover,

the parameter PWIA was also unnecessary because it is not stored in the
memory of the receiving device. Hence, sending PWIA in E1 is useless
and only the secret parameters Z1,XA and the public identity IDA can
serve the purpose. So, we just keep these values in the computation of L1
and the value of L1 is verified on the receiver side using these values.
Similarly, in iPALK the computation and transmission of incorrect
parameter C′ are also avoided, which saves significant computation and
communication costs. When UB receives the message M1 = {E1,T1,Z2},
using the multiplicative inverse of its’ own private key SKB,UB computes
Z1 = Z2.SK− 1

B and based on computed Z1, computes the decryption key
KB1 = h((T1 ⊕ Z1)||Z1). Now computed KB1 is used to decrypt E1 and rest
of the procedure continues. Likewise, when UA receives M2 = {E2,T3}, it
computes decryption key KA2 = h(L1||IDA||T1||Z1) correctly using the
secret L1 and Z1 parameters and then continues for the rest of the pro-
cedure. Therefore, the proposed iPALK is free of such design flaws and
uses only the correct procedure to complete the authentication among
two entities of a smart grid environment.

6.2. Correctness of shared session key

In this subsection, we prove that the session key shared on both sides
(UA and UB) is the same. During a successful cycle of authentication
procedure the initiating entity UA computes session key as follows:

SKBA = h(IDA||IDB||L2||MACB||WA||WB||b.Z1||T3) (1)

The receiving entity UB computes the session key as follows:

SKAB = h
(
IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L*

2

⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.Z3

⃒
⃒
⃒
⃒T3

)
(2)

Now we show that the session key computed in Eq. 1 is the same as
computed in Eq. 2. Per discussion in Section 6.1, the receiver UB com-
putes accurate KB1 and using this key decrypts E1 and extracts (IDA,L1,

WA,XA). Likewise, when the initiator UA receives the reply, it generates
correct KA2 = h(L1||IDA||T1||Z1) and using this, UB extracts (IDB,WB,XB,

MACB,Z3, L2) from E2. Now, both the initiating and responding entities
know the parameters {IDA, IDB, WA, WB, T3}. UB computes MACB =

h(IDA||IDB||XA||XB||WA||WB||T3) and UA computes the same MACA =

h(IDA||IDB||XA||XB||WA||WB||T3). It can seen that both MACB = MACA
are same. Additionally, UB computes L2 = h(IDA||IDB||WA||WB) and UA

verifies this value after computing L*
2 = h(IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB), both of

these values L2 = L*
2 are also same. Following relationship also proves

that b.Z1 = a.Z3:

b.Z1 = b.a.P (3)

= a.b.p
(4)

= a.Z3
(5)

Therefore, all values in the computation of session key on both
initiator and responder sides are the same and the session key is shared
correctly among two smart grid devices.

6.3. Formal proof of correctness using BAN logic

In this section, we evaluate the security properties of the contributed
model in consideration with Burrows-Abadi-Needham logic (BAN) logic
[9]. The set of logics in BAN logic help us to evaluate the authentication
protocol on the grounds of mutual authenticity and confidentiality of the
session key as established among the legal participants. In this analysis,
the principals (p and p’) are the agents interacting in an authentication
protocol. The employed notations are illustrated in Table 1. Moreover,
few postulates or rules are defined in Table 2 to support the analysis.

The goals which are followed for proving the mutual authenticity in
this analysis, are as follows:

S.A. Chaudhry

International Journal of Electrical Power and Energy Systems 125 (2021) 106529

4

G1: UB| ≡ UA ↔ SKUB

G2: UB| ≡ UA| ≡ UA ↔ SKUB

G3: UA| ≡ UA ↔ SKUB

G4: UA| ≡ UB| ≡ UA ↔ SKUB

Our protocol may be generically characterized as.

m1 : UA→UB : E1,T1,Z2
m2 : UB→UA : E2,T3

We represent the generic protocol in idealized form as:

m1 : UA→UB : E1, T1, Z2 : 〈IDA, (IDA,XA)Z1
, WA, PWIA, XA〉KAI

, T1,

{Z1}PKB

m2 : UB→UA : E2, T3 : 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)
, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3

The premises to support the analysis are delineated as:

φ1 : UA| ≡ #a,T1
φ2 : UB| ≡ #b,T3

φ3 : UA| ≡ UB ↔ SKab UA

φ4 : UB| ≡ UB ↔ SKab UA

φ5 : UA| ≡ UB|⇒b.P ≈ Z3
φ6 : UB| ≡ UA|⇒a.P ≈ Z1

After employing the above illustrated idealizations, symbols, pre-
mises and rules, we have the undermentioned derivations.

6.3.1. Correctness/accuracy based on mutual authentication
In order to verify the mutual authenticity-related properties between

UA and UB, we envisage the m1 and m2 messages into idealized forms as:

m1 : UA→UB : 〈IDA, (IDA,XA)Z1
,WA,PWIA,XA〉KAI

,T1,{Z1}PKB

m2 : UB→UA : 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)
, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3

Lemma 1. UB can prove the legitimacy of login request generated from UA.

Proof. UA generates m1 = (E1,T1,Z2) and submits towards UB that
verifies the authenticity of the source of the message as given below:

On the application of seeing rule, we have the following derivation,
ℱ1 : UB◃〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB

Applying ℱ1,φ4,Γ1,
ℱ2 : UB

⃒
⃒ ≡ UÃ〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB

Using φ1,φ6 and Γ4,
ℱ3 : UB

⃒
⃒ ≡ #〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB

Using ℱ2,ℱ3 and Γ2, we have.
ℱ4 : UB

⃒
⃒ ≡ UA

⃒
⃒ ≡ 〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB

Using φ4,ℱ4 and the application of Γ3, we have.
ℱ5 : UB| ≡ a.P ≈ Z1
Thus, after having verified the freshness of timestamp T1,UBproves

the authenticity of source of that message. □

Lemma 2. UA can suitably prove the legitimacy of the received response
from UB.

Proof. In our contributed scheme, UB constructs (E2,T3) message and
submits to UA besides timestamp T3, in the response of login request
from UA. Then, UA verifies the genuineness of UB through monitoring
the freshness of parameters as given below.

On the application of seeing rule, we have the derivation as: ℱ6 :

UB◃〈IDB,WB,XB, (IDA,WA,XA)(IDB ||XB ||WB)
,Z3, (IDA,WA)(IDB ||WB)

〉KBI
,T3.

Using ℱ6,φ3 and Γ1,

ℱ7 : UA

⃒
⃒
⃒ ≡ UB̃〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3

Using φ2,φ5, and Γ4.

ℱ8 : UA

⃒
⃒
⃒ ≡ #〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3

Using ℱ7,ℱ8 and Γ2, we have.

ℱ9 : UA

⃒
⃒
⃒ ≡ UB

⃒
⃒
⃒ ≡ 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3

Using φ3,ℱ9 and applying Γ3, we have.
ℱ10 : UA| ≡ b.P ≡ Z3
Consequently, after having verified the freshness of timestamp, UA

validates the accuracy of source of the message.□

Theorem 1. UA and UB can mutually authenticate each other.

Proof. In consideration with Lemma 1, UB may suitably prove the
legitimacy of the login request from UA. Likewise, referring to Lemma 2,
UA may also validate the genuineness of the response as received from
UB. Consequently, we can infer that UA and UB mutually authenticate
each other. □

6.3.2. Session key agreement
A single session key, SK = h(IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L2

⃒
⃒
⃒
⃒MACA/B

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒abP,

T3), could be agreed upon among the legal participants in the scheme.
This mutual agreement in relation to session key among the members
may be reached as:

Using φ2,ℱ4, and Γ2, we have.
ℱ11 : UB| ≡ UA| ≡ UB ↔ SKUA (G2)
Using φ2,ℱ11, and Γ6.
ℱ12 : UB| ≡ UB ↔ SKUi (G1)

Table 1
BAN logic notations.

Symbols Representations

p| ≡ Φ p believes the statement Φ
p◃Φ p sees Φ
p|̃Φ p once said Φ. Previously, the agent p had submitted Φ

p|⇒Φ p bears jurisdiction over Φ
#(Φ) Φ is fresh

{Φ,Φ′

}ϑ Φ and Φ′ are encrypted through public key ϑ

(Φ,Φ′

) Φ and Φ′ depict the parts of message (Φ,Φ′)

〈Φ,Φ′

〉ϑ Φ and Φ′ are encrypted with the symmetric key ϑ

(Φ,Φ′

)ϑ Φ and Φ′ are hashed with a key ϑ

p ↔ ϑp′ p and p′ exchange the messages using a secure key ϑ

Table 2
BAN logic postulates.

Symbols Representations

Γ1. Message meaning rule p| ≡ p ↔ ϑp′

, p◃ < Φ>Φ

p| ≡ p′
|̃Φ

Γ2. Nonce verification rule p| ≡ #(Φ), p| ≡ p′

|̃Φ
p| ≡ p′

|̃Φ
Γ3. Jurisdiction rule p| ≡ p′ ⇒Φ, p| ≡ p′

| ≡ Φ
p| ≡ Φ

Γ4. Freshness conjuncatenation rule p| ≡ #(Φ)

p| ≡ #(Φ,Φ′

)
Γ5. Belief rule p| ≡ (Φ), p| ≡ (Φ′

)

p| ≡ (Φ,Φ′

)
Γ6. Session key rule p| ≡ #(Φ), p| ≡ p′

| ≡ Φ
p| ≡ p′ ↔ ϑp′

Γ7. Public key encryption rule p|≡ϑ↦→ p′

, p◃{Φ}ϑ − 1
p| ≡ p′

|̃p′

S.A. Chaudhry

International Journal of Electrical Power and Energy Systems 125 (2021) 106529

5

Using φ1,ℱ9, and Γ2, we have.
ℱ13 : UA| ≡ UB| ≡ UB ↔ SKUA (G4)
Using φ1,ℱ13, and Γ6.
ℱ14 : UA| ≡ UB ↔ SKUA (G3)
Thus, the above set of logical statements with respect to BAN logic

analysis adequately affirms the fact that the demonstrated scheme may
genuinely attain mutual authenticity and key agreement between the
legal members (UA and UB).

6.4. Automated verification through ProVerif

We used ProVerif [10] to verify the correctness and security of the
improved scheme. The ProVerif is an applied π calculus-based auto-
mated tool and can verify: (1) Correctness, (2) Secrecy, and (3) Ano-
nymity. ProVerif models cryptographic operations as constructors and
equations. To verify the correctness, secrecy, and anonymity properties
of the proposed scheme, we modeled the steps as explained in Section 5.
The ProVerif’s formal model for verification consisting of declaration,
processes, and events/main part, we define the variables, constants, and
public/private channels as well as constructors and equations in Fig. 1,
while the processes and events are defined in Fig. 2. The two processes
UA and UB are defined to exchange a session key among each other;
whereas, we have also defined start and end events of both UA and UB.
To verify the correctness of the improved scheme, to test the secrecy of
the session key, and to verify the anonymity, we applied four queries as
illustrated in Fig. 1. The results are as follows:

1. Query inj-event(end_UA(IDUA[])) ==> inj-event(start_UA(IDUA[]))
is true.

2. Query inj-event(end_UB(IDUB[])) ==> inj-event(start_UB(IDUB[]))
is true.

3. Query not attacker(IDA[]) is true.
4. Query not attacker(SKAB[]) is true.

The result 1 and result 2 attest that both the process UA and UB
initiated and terminated successfully. This confirms the correctness of

the proposed scheme; while result 3 confirms that IDi is not revealed to
the attacker. This confirms the anonymity property. The result 4 con-
firms that SKAB is not revealed to the attacker.

7. Performance comparisons

This section provides a brief analysis/comparison of the efficiency of
the improved iPALK and original PALK protocols in terms of storage,
communication, computation, and respective running times. The iPALK
is an improvement of the original PALK protocol to provide correctness
by eliminating the design flaws and in the improved iPALK, we took the
registration phase of the PALK as it is. Therefore, the storage costs of
both the schemes (PALK and iPALK) are exactly same. Therefore, it is not
being considered for comparison purposes. The iPALK completes
authentication procedure by performing 5Tpm + 4Ted + 14Thm opera-
tions, where Tpm denotes point multiplication over an elliptic curve, Ted

stands for symmetric encryption and decryption operations; whereas,
Thm represents a oneway hash/mac function. For simplicity, we consider
the same running time for each of the operations as was considered in
the original article proposing PALK [1]. Therefore, Tpm ≈ 2.226 ms,
Ted ≈ 0.0046 and Thm ≈ 0.0023. The iPALK completes authentication in
11.1806 ms as a contrast to PALK which is 17.8701 ms.

Similarly, except for encryption operations, we consider same as-
sumptions of PALK protocol for computing communication costs of each
of the PALK and iPALK, which are as follows: the ECC point is considered
as 320 bit long, the oneway hash/mac is kept as 160 bit long, identity is
kept as 64 bit and timestamp as 32 bit of length; whereas, random
numbers are assumed to be of 128 bit long. For encryption/decryption
operations, we consider advanced encryption standard (AES) with
128 bit block size, as the consideration of 320 bit block size (as consid-
ered by Khan et al. in original PALK protocol) seems impractical because
AES limits the block size to 128 bits. The original PALK protocol com-
pletes authentication in two messages M1 = {E1,T1,C

′

,Z} transmitted
Fig. 1. ProVerif-Declarations.

Fig. 2. ProVerif-Processes and Events.

S.A. Chaudhry

International Journal of Electrical Power and Energy Systems 125 (2021) 106529

6

from UA to UB and M2 = {E2,T3} sent from UB to UA. For M1, {E1,T1,C
′

,

Z} are sent, the length in bits of T1 = 32,C′

= 320 and Z = 320;
whereas, E1 = EKA1 (IDA1, L1,WA,PWIA,XA) and the length of IDA1 = 64,
L1 = 160,WA = 320,PWIA = 160,XA = 320. Therefore, total length of
E1 = 1024 bit and considering 128 bit block size, it requires to send 8
block =128× 8 = 1024 bits. Therefore, total bits transmitted for M1 =

{1024 + 32 + 320 + 320 = 1696}. Likewise, M2 = {E2,T3} takes
1440 bits for transmission, where T3 = 32 bits and the size of E2 =

EKB2 (IDB1,WB,XB,MACB, b.P, L2) is {64+320+320+160+320+160 =

1344} and to carry 1344 bits, we need 11, 128 bit long blocks, accu-
mulating the bit size of E2 to 128× 11 = 1408. Therefore, M2 =

{1408+32 = 1440} bits long. Hence, the total communication cost of
PALK is 1696 + 1440 = 3136 bits. The iPALK completes authentication
by exchanging two messages M1 = {E1,T1,Z2} and M2 = {E2,T3}. For
transmission of M1, the E1 = EKA1 (IDA, L1,WA,XA) has accumulative size
{64+160+320+320 = 864} and total blocks needed to encrypt E1 are
7 and the size for transmission is 128× 7 = 896. Therefore, total
communication cost for transmission of M1 is {1024 + 320 + 64 =

1248}. Similarly, the size of E2 = EKB2 (IDB,WB,XB,MACB,Z3, L2) in
M2 = {E2,T3} is {64+320+320+160+320+160 = 1344} and it needs
11 blocks each of 128 bits length for encryption. Therefore total
encrypted size of E2 = 128 × 11 = 1408 and total size of M2 = 1408 +

32 = 1440 bits. Hence, the total communication cost of iPALK is =
1248 + 1440 = 2688. The comparison of proposed iPALK with original
PALK demonstrates that iPALK has reduced 14.2% communication and
37.4% computation overhead as compared to Khan et al.’s PALK pro-
tocol.Table 3 depicts the performance comparisons of the proposed iPalk
with PALK.

8. Conclusion

This paper unveils the incorrectness of the scheme of Khan et al. It
has been shown in this paper that the login and authentication phase of
Khan et al.’s PALK scheme is faulty owing to the extraneousness oper-
ation of the multiplication of two ECC points. Moreover, it is also shown
that the receiving entity uses the public key of the initiator without
recognizing the initiator. Consequently, it is proved in this paper that
Khan et al.’s authentication scheme for the smart grid cannot complete a
single authentication cycle. Therefore, the scheme cannot be deployed
in any sort of infrastructure including the smart grid. Finally, we pro-
posed improvements to remove the design flaws of Khan et al.’s PALK
scheme with an aim to avoid such crucial mistakes in the future. The
proposed improvements (iPALK) not only provides correctness but also
reduces over 14% communication and 37% computation costs as
compared with the original PALK protocol.

Author Statement

S.A. Chaudhry is the sole author of this paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ijepes.2020.106529.

References

[1] Khan AA, Kumar V, Ahmad M, Rana S, Mishra D. PALK: Password-based
anonymous lightweight key agreement framework for smart grid. Int J Electrical
Power Energy Syst 2020;121:106121.

[2] Kabalci Y. A survey on smart metering and smart grid communication. Renew
Sustain Energy Rev 2016;57:302–18.

[3] Fang X, Misra S, Xue G, Yang D. Smart grid – the new and improved power grid: a
survey. IEEE Commun Surv Tutor 2012;14:944–80.

[4] DeBlasio R, Tom C. Standards for the smart grid. In: Proceedings of the IEEE energy
2030 conference (ENERGY). Abu Dhabi; 4–5 November 2008. p. 1–7.

[5] Mahmood K, Arshad J, Chaudhry SA, Kumari S. An enhanced anonymous identity-
based key agreement protocol for smart grid advanced metering infrastructure. Int
J Commun Syst 2019;32:e4137. https://doi.org/10.1002/dac.4137.

[6] He D, Kumar N, Zeadally S, Wang H. Certificateless provable data possession
scheme for cloud-based smart grid data management systems. IEEE Trans Industr
Inf 2018;14(3):1232–41. https://doi.org/10.1109/TII.2017.2761806. March.

[7] He Debiao, Wang Huaqun, Khan Muhammad Khurram, Wang Lina. Lightweight
anonymous key distribution scheme for smart grid using elliptic curve
cryptography. IET Commun 2016;10(14):1795–802. https://doi.org/10.1049/iet-
com.2016.0091 IET.

[8] Chaudhry SA, Alhakami H, Baz A, Al-Turjman F. Securing demand response
management: a certificate-based access control in smart grid edge computing
infrastructure. IEEE Access 2020;8:101235–43. https://doi.org/10.1109/
ACCESS.2020.2996093.

[9] Burrow M, Abadi M, Needham R. A logic of authentication. ACM Trans Comput
Syst 1990;8:18–36. https://doi.org/10.1145/77648.77649.

[10] Blanchet Bruno, et al. ProVerif 2.00: automatic cryptographic protocol verifier,
user manual and tutorial. Version from 2018:05–16.

Shehzad Ashraf Chaudhry received the master’s and Ph.D.
degrees (with Distinction) from International Islamic Univer-
sity Islamabad, Pakistan, in 2009 and 2016, respectively. He is
currently working as an Associate Professor with the Depart-
ment of Computer Engineering, Faculty of Engineering and
Architecture, Istanbul Gelisim University, Istanbul, Turkey. He
has authored over 100 scientific publications appeared in
different international journals and proceedings, including 76
in SCI/E journals. With an H-index of 24 and an I-10 index 51,
his work has been cited over 1900 times. He has also supervised
over 35 graduate students in their research. His current
research interests include lightweight cryptography, elliptic/
hyper elliptic curve cryptography, multimedia security, E-
payment systems, MANETs, SIP authentication, smart grid se-
curity, IP multimedia subsystem, and next generation networks.
He occasionally writes on issues of higher education in
Pakistan.

Dr. Chaudhry was a recipient of the Gold Medal for
achieving 4.0/4.0 CGPA in his Masters. Considering his
research, Pakistan Council for Science and Technology granted
him the Prestigious Research Productivity Award, while
affirming him among Top Productive Computer Scientist in
Pakistan. He has served as a TPC member of various interna-
tional conferences and is an Active Reviewer of many ISI
indexed journals. He also serves as guest editor in some pres-
tigeous journals.

Table 3
Performance comparisons.

Scheme PALK iPALK

C1 8Tpm + 4Ted + 19Thm 5Tpm + 4Ted + 14Thm

C2 17.8701 11.1806
C3 3136 2688

Note: ECC Point Multiplication: Tpm; Symmetric Encryption/Decryption: Ted;
One way Hash/MAC function: Thm. C1: Computation Cost; C2: Running time in
ms; C3: Communication cost in bits.

S.A. Chaudhry

https://doi.org/10.1016/j.ijepes.2020.106529
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0005
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0005
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0005
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0010
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0010
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0015
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0015
https://doi.org/10.1002/dac.4137
https://doi.org/10.1109/TII.2017.2761806
https://doi.org/10.1049/iet-com.2016.0091 IET
https://doi.org/10.1049/iet-com.2016.0091 IET
https://doi.org/10.1109/ACCESS.2020.2996093
https://doi.org/10.1109/ACCESS.2020.2996093
https://doi.org/10.1145/77648.77649
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0050
http://refhub.elsevier.com/S0142-0615(20)32299-7/h0050

	Correcting “PALK: Password-based anonymous lightweight key agreement framework for smart grid”
	1 Introduction
	2 Fundamentals of Elliptic Curve Cryptography
	3 Revisit of the PALK by Khan et al.
	3.1 Initialization
	3.2 Registration
	3.3 Login and key agreement

	4 Incorrectness of the PALK by Khan et al.
	5 iPALK-improved scheme
	6 Correctness/security proofs
	6.1 Discussion on correctness
	6.2 Correctness of shared session key
	6.3 Formal proof of correctness using BAN logic
	6.3.1 Correctness/accuracy based on mutual authentication
	6.3.2 Session key agreement

	6.4 Automated verification through ProVerif

	7 Performance comparisons
	8 Conclusion
	Author Statement
	Declaration of Competing Interest
	Appendix A Supplementary material
	References

