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A B S T R A C T   

Very recently in 2020, Khan et al. proposed an authentication scheme (PALK) for the smart grid infrastructure. 
Based on elliptic curve cryptography (ECC), symmetric hash functions and block cipher based encryption/ 
decryption operations, the scheme was argued to work efficiently and securely in smart grid based infrastructure. 
However, in this paper, we prove that PALK has incorrect login and authentication phase; mainly, due to a 
superficial ECC operation involving the multiplication of two points over the curve. Moreover, in the scheme of 
Khan et al. the responding entity without knowing any clue of the initiator, uses the public key of the initiator for 
the completion of the authentication process, which is also not possible in the presence of multiple communi-
cating devices. These design flaws lead to the situation, where the smart grid entities are unable to complete even 
a single cycle of authentication. Finally, we propose a quick solution to fix the pertinent flaws of the PALK. The 
security and correctness of the proposed solution iPALK is proved using formal BAN logic, automated tool 
ProVerif along with a brief discussion on the correctness of the scheme. The performance comparisons also show 
that the iPALK not only provides the correctness, but it is more efficient in terms of computation and commu-
nication costs.   

1. Introduction 

In recent times, the smart grid (SG) technology has gained much 
attention and it is expected to replace the conventional grid soon [2]. 
With bidirectional communication, the SG can manage the demand 
response in an efficient way and under consumer supervision. The 
consumer can directly adjust the power requirements for optimal usage 
[3,4,8]. The security and privacy are, however, the main concerns for 
the revolution of SG [5–7]. Very recently, in 2020 Khan et al. [1] pro-
posed a new scheme PALK: Password-based anonymous lightweight key 
agreement framework for smart grid. PALK is proposed to secure 
communication between two SG entities (say Ua, Ub). Using elliptic 
curve cryptography and symmetric key operations, PALK supports the 
establishment of a secure channel between both the initiating and the 
responding entities (Ua,Ub). They proved the security of their scheme 
using multiple formal methods and AVISPA based automated methods. 
Moreover, they provided a discussion on many security features and 
attack resilience provision of PALK [1]. Khan et al. also compared PALK 
with ten related schemes in terms of efficiency and security. They sub-
stantiated the arguments of both the invincible security and perfor-
mance efficiency of PALK. However, the discussion in this paper refutes 
Khan et al.’s claim of security and efficiency as the later part of this 
paper proves that Khan et al.’s scheme cannot even complete an 
authentication cycle owing to the critical design flaws. The rest of the 

paper is organized as follows: Section 2 provides a brief revisit of ECC. 
The revisit of the scheme of Khan et al. is provided in Section 3. Section 4 
explains our arguments on the incorrectness of the scheme of Khan et al. 
In Section 5, we put forward a quick solution in terms of improved PALK 
to the pertinent flaws of the PALK. Section 6 proves the correctness and 
security of the proposed iPALK through formal, informal, and automated 
tools. The performance analysis and compassion of the proposed iPALK 
with original PALK are performed in Section 7. Finally, Section 8 con-
cludes the paper. 

2. Fundamentals of Elliptic Curve Cryptography 

In this section, we briefly revisit ECC related concepts. The ECC is 
proved as more efficient as compared with RSA, DSA, and Diffie- 
Hellman cryptographic protocols and is defined by a curve Eq(α, β) :
y2 = x3 + αx+ β mod q, where the pair {α, β} ∈ Zq. The pair {α, β} is 
chosen carefully to satisfy 4α3 + 27β2 mod q ∕= 0, where q is a prime 
number such that |q|⩾160 bits. ECC curve Eq(α, β) consists of several 
points (xi,yi), including a point ℴ as the point on infinity, which serves 
as an identity element while Eq(α, β) forms an abelian group. The ECC 
has only two operations: 
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• ECC Point addition: Given two points A = (xa, ya) and B = (xb,yb), 
the addition of A and B returns another point C = A+B on the same 
curve. As C is a point over the curve, so it also consists of two co-
ordinates (xc, yc), where xc = λ2 − xa − xb and yc = (λ(xa − xc) − ya). 
The λ is defined in the following ways: 

λ =

3x2
a + α
2ya

mod q if A = B,

yb − ya

xb − xa
mod q if A ∕= B    

• ECC Point Scalar Multiplication: Given an integer k ∈ Zq and a 
point A = (xa,ya), the scalar multiplication produces a point on the 
same curve (D = kA) through repeated addition of A, thus D = kA =

A + A + A + … + A (k times). As D is a point, so it is represented by 
two coordinate i.e. D = (xd,yd). 

Except for the two operations: (1) Point addition and (2) Point scalar 
multiplication, no other operation can be performed on ECC point/s. 
Specifically, for the two points A and B (whether A = B or A ∕= B), no 
such method exists which can find multiplication (A.B) of these points. 

3. Revisit of the PALK by Khan et al. 

In the following subsections, we revisit the “PALK” proposed by Khan 
et al. to provide secure smart grid access to users. PALK consists of two 
types of entities (1) Trusted Authority (TA), responsible for construction 
and publication of system parameters and registration of communi-
cating entities (2) Users/SG devices (UA/UB), to authenticate each other 
through the establishment of a secure channel. 

3.1. Initialization 

For the successful execution of this phase, the TA chooses an elliptic 
curve (EC) Eq(α, β) along with P ∈ Eq(α, β) as a public base point and a 
hash function h(..). The TA chooses xT as it’s own private key and an-
nounces {Eq(α,β),q,P,h(..)}. 

3.2. Registration 

Each user/device (Ui) initiates this phase and gets registers with the 
TA by selecting it’s credentials i.e. identity IDi and password PWi. Ui 

then selects xi ∈ Z*
q and computes Ai = h(PWi||xi||IDi),Xi = Ai.P and 

PWIi = PWi ⊕ h(IDi||Xi). Then Ui sends M1 = {PWIi, IDi,Xi,TR1} to TA 
using private channel, where TR1 is the current timestamp at Ui side. The 
TA receives M1 and after checking the validity of TR2 − TR1⩽ΔT, chooses 
xT ∈ z*

q and computes: PW*
i = PWIi ⊕ h(IDi||Xi), Bi = h

(
PW*

i
⃒
⃒
⃒
⃒xT

⃒
⃒
⃒
⃒IDi

)
, 

Yi = Bi.P,Wi = Xi + Yi, Si = h(IDi||Wi||PWIi), S’
i = Si ⊕ h(Wi||Xi). The TA 

sends M2 = {Wi, Bi, S′

i}. The Ui receives M2 and computes S*
i =

S′

i ⊕ h(Wi
⃒
⃒
⃒
⃒Xi), SKi = Ai +Bi +S*

i ,PKi = SKi.P and verifies 

PKi =
?
(Wi +S*

i .P) and on success, Ui keeps {SKi,PKi} as it’s secret and 
public key pair, respectively and stores {S*

i ,Wi} in it’s database. 

3.3. Login and key agreement 

The following steps are executed between the initiating entity UA and 
responding entity UB to perform mutual authentication and to establish 
a session key:  

PALK 1 The UA being initiator submits {IDi, PWi} pair and computes 
PWIA = PWA ⊕ h(IDA||XA),RA = h(IDA||WA||PWIA) and checks 

the equality RA =
? S*

A. On success, UA chooses a ∈ Z*
q and com-

putes: IDA1 = IDA ⊕ h(XA||PWIA||WA), L1 = h(a.P||IDA||XA), 

KA1 = h((T1 ⊕ aP)||aP, E1 = EKA1 (IDA1, L1,WA,PWIA,XA) where 
T1 denotes current timestamp and EKA1 denotes symmetric 
encryption. UA then computes Z = a.P,C′

= a ⊕ h(Z.SKA.P||T1)

and sends M1 = {E1,T1,C
′

, Z} to UB.  
PALK 2 The UB receives M1, checks timestamp freshness through 

following relation T2 − T1⩽ΔT and on success, UB computes 
C = C′

⊕ h(Z.PKA||T1) and KB1 = h((T1 ⊕ CP)||CP). Now UB 
decrypts E1 using KB1 and extracts (IDA1, L1,WA, PWIA,XA)

and computes ID*
A = IDA1 ⊕ h(XA

⃒
⃒
⃒
⃒PWIA

⃒
⃒
⃒
⃒WA), L*

1 = h(a.

P
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒WA) and checks L*

1 =
? L1. If the equality holds, UB 

chooses b ∈ Z*
q and computes L2 = h

(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

)
, 

MACB = h
(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒XA

⃒
⃒
⃒
⃒XB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒T3

)
, session key 

SKBA = h
(
ID*

A
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L2

⃒
⃒
⃒
⃒MACB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒b.a.P

⃒
⃒
⃒
⃒T3

)
, KB2 =

h
(
L*

1
⃒
⃒
⃒
⃒ID*

A
⃒
⃒
⃒
⃒T1

⃒
⃒
⃒
⃒C
)
, IDB1 = IDB ⊕ h

(
XB

⃒
⃒
⃒
⃒IDA1

⃒
⃒
⃒
⃒L*

1
)
, E2 =

EKB2 (IDB1,WB,XB,MACB, b.P, L2), where EKB2 denotes sym-
metric encryption. UB then sends M2 = {E2,T3} to UA.  

PALK 3 The UA receives M2, checks timestamp freshness through 
following relation T4 − T3⩽ΔT and on success, UA computes 
KA2 = h(L1||IDA||T1||a.P). Now UA decrypts E2 using KA2 and 
extracts (IDB1, WB, XB, MACB, b.P, L2). The UA now computes 
ID*

B = IDB1 ⊕ h(XB
⃒
⃒
⃒
⃒IDA1

⃒
⃒
⃒
⃒L1), L*

2 = h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB) and 

checks L*
2 =

? L2. If the equality holds, UA computes MACA =

h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒XA

⃒
⃒
⃒
⃒XB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒T3) and checks MACA =

? MACB. If 
the equality holds, UA computes the session key SKAB =

h(IDA
⃒
⃒
⃒
⃒ID*

B
⃒
⃒
⃒
⃒L*

2
⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.b.P

⃒
⃒
⃒
⃒T3). 

4. Incorrectness of the PALK by Khan et al. 

In this section, it is to argue that the scheme of Khan et al. entails 
incorrectness and may be stuck into the computation of an operation 
without any defined solution. Specifically, during login and authenti-
cation phase the initiator UA computes Z = a.P and C′

=

a ⊕ h(Z.SKA.P||T1). Now, UA along with the other parameter E1 sends 
{E1,T1,Z,C

′

} to responder entity UB. The UB upon receiving {E1,T1,Z,
C′

} and after verifying freshness of the message, computes C = C′

⊕ h(Z.
PKA||T1) after then UB proceeds with the rest of the steps as mentioned in 
the original paper of Khan et al. Two ambiguities/flaws arise here:  

1. Z = a.P is a point over curve Eq(α,β), the private key SKA (of UA) is an 
integer and P is also a point over Eq(α, β). The computation of C′

=

a ⊕ h(Z.SKA.P||T1), requires computing Z.SKA.P. The Z.SKA.P is 
supposed to be computed in any of the following two ways:  
(a) First SKA is multiplied with Z, which results in another point Ẑ =

Z.SKA and now Ẑ.P is supposed to be computed for getting the 
result of Z.SKA.P. Here, we are left with a multiplication of two 
points Ẑ and P.  

(b) Likewise, if SKA is first multiplied with P, it also results in 
another point PKA = SKA.P (the public key of UA). Now Z.PKA is 
supposed to be computed for getting the result of Z.SKA.P. This 
case is also similar to the above one and we are again left with 
the multiplication of two points Z and PKA. 

Both the above-explained cases to compute Z.SKA.P results 
into a multiplication of two points and no method/algorithm 
exists to compute multiplication of two points over an elliptic 
curve. Hence, the scheme cannot proceed further and a halt 
position may occur. Similarly, on responding side UA during 
computation of C = C′

⊕ h(Z.PKA||T1), again tries to multiply a 
point Z with another point PKA (where PKA = SKA.P is the public 
key of UA). This situation is also a halt. Hence, the scheme is 
incorrect and cannot complete execution normally to provide 
authentication and key agreement between two SG entities. 
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2. Secondly, the responding entity UB is using public key PKA of the 
initiating entity UA for the computation of C = C′

⊕ h(Z.PKA||T1); 
whereas, UB received {E1,T1,Z,C

′

} tuple from UA. The received tuple 
does not give any clue to identify the initiator. As SG is a commu-
nication infrastructure of multiple entities, therefore, if the 
responding entity knows who has sent a request, it can use the public 
key of that specific initiator for the computation of C =

C′

⊕ h(Z.PKA||T1). Here, the responding entity has no information 
about the initiator. This ambiguity leads towards the total failure 
scenario of the PALK by Khan et al. for normal completion. 

Hence, two above argued flaws in the PALK (scheme of Khan et al.), 
render the scheme as incorrect and cannot be deployed in any 
infrastructure. 

5. iPALK-improved scheme 

The existing Khan et al.’s PALK scheme incorporates two design 
flaws: (1) superficial ECC operation involving multiplication of two 
points, and (2) unknown sender identification. Therefore, the 
improvement consists of amending the steps to remove both of these 
flaws. Our improvement keeps initialization and registration phases of 
the PALK as it is and the following are the modified steps executed 
among two entities UA and UB during login and authentication phase:  

iPALK 1 The UA being initiator submits {IDi, PWi} pair and computes 
PWIA = PWA ⊕ h(IDA||XA), RA = h(IDA||WA||PWIA) and checks 

the equality RA =
? S*

A. On success, UA chooses a ∈ Z*
q and com-

putes Z1 = a.P, L1 = h(Z1||IDA||XA), KA1 = h((T1 ⊕ Z1)||Z1 ), 
E1 = EKA1 (IDA, L1,WA,XA), where T1 denotes current time-
stamp and EKA1 denotes symmetric encryption. UA then com-
putes Z2 = a.PKB = a.SKBP and sends M1 = {E1,T1, Z2} to UB.  

iPALK 2 The UB receives M1, checks timestamp freshness through 
following relation T2 − T1⩽ΔT and on success, UB computes 
Z1 = Z2.SK− 1

B , and KB1 = h((T1 ⊕ Z1)||Z1). Now UB decrypts E1 

using KB1 and extracts (IDA,L1,WA,XA). UB now computes L*
1 =

h(Z1
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒XA) and checks L*

1 =
? L1. If the equality holds, UB 

chooses b ∈ Z*
q and computes L2 = h(IDA||IDB||WA||WB), 

MACB = h(IDA||IDB||XA||XB||WA||WB||T3), session key SKBA =

h(IDA||IDB||L2||MACB||WA||WB||b.Z1||T3),  
KB2 = h

(
L*

1
⃒
⃒
⃒
⃒IDA

⃒
⃒
⃒
⃒T1

⃒
⃒
⃒
⃒Z1

)
, Z3 = b.P, E2 =

EKB2 (IDB,WB,XB,MACB, Z3, L2), where EKB2 denotes symmetric 
encryption. UB then sends M2 = {E2,T3} to UA.  

iPALK 3 The UA receives M2, checks timestamp freshness through 
following relation T4 − T3⩽ΔT and on success, UA computes 
KA2 = h(L1||IDA||T1||Z1). Now UA decrypts E2 using KA2 and 
extracts (IDB,WB,XB,MACB,Z3,L2). The UA now computes L*

2 =

h(IDA
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB) and checks L*

2 =
? L2. If the equality holds, 

UA computes MACA = h(IDA||IDB||XA||XB||WA||WB||T3) and 

checks MACA =
? MACB. If the equality holds, UA computes the 

session key SKAB = h(IDA
⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L*

2
⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.Z3

⃒
⃒
⃒
⃒T3). 

6. Correctness/security proofs 

This section solicits the correctness and/or security of the proposed 
iPALK through informal discussion, formal and automated methods. 

6.1. Discussion on correctness 

The PALK scheme proposed by Khan et al. entails two design flaws: 
(1) multiplication of two ECC points, and (2) unknown sender identifi-
cation. To remove both these flaws, in the proposed iPALK, we used the 
pubic key of the receiver to compute Z2 = a.PKB = a.SKBP. Moreover, 

the parameter PWIA was also unnecessary because it is not stored in the 
memory of the receiving device. Hence, sending PWIA in E1 is useless 
and only the secret parameters Z1,XA and the public identity IDA can 
serve the purpose. So, we just keep these values in the computation of L1 
and the value of L1 is verified on the receiver side using these values. 
Similarly, in iPALK the computation and transmission of incorrect 
parameter C′ are also avoided, which saves significant computation and 
communication costs. When UB receives the message M1 = {E1,T1,Z2}, 
using the multiplicative inverse of its’ own private key SKB,UB computes 
Z1 = Z2.SK− 1

B and based on computed Z1, computes the decryption key 
KB1 = h((T1 ⊕ Z1)||Z1). Now computed KB1 is used to decrypt E1 and rest 
of the procedure continues. Likewise, when UA receives M2 = {E2,T3}, it 
computes decryption key KA2 = h(L1||IDA||T1||Z1) correctly using the 
secret L1 and Z1 parameters and then continues for the rest of the pro-
cedure. Therefore, the proposed iPALK is free of such design flaws and 
uses only the correct procedure to complete the authentication among 
two entities of a smart grid environment. 

6.2. Correctness of shared session key 

In this subsection, we prove that the session key shared on both sides 
(UA and UB) is the same. During a successful cycle of authentication 
procedure the initiating entity UA computes session key as follows: 

SKBA = h(IDA||IDB||L2||MACB||WA||WB||b.Z1||T3) (1)  

The receiving entity UB computes the session key as follows: 

SKAB = h
(
IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L*

2

⃒
⃒
⃒
⃒MACA

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒a.Z3

⃒
⃒
⃒
⃒T3

)
(2)  

Now we show that the session key computed in Eq. 1 is the same as 
computed in Eq. 2. Per discussion in Section 6.1, the receiver UB com-
putes accurate KB1 and using this key decrypts E1 and extracts (IDA,L1,

WA,XA). Likewise, when the initiator UA receives the reply, it generates 
correct KA2 = h(L1||IDA||T1||Z1) and using this, UB extracts (IDB,WB,XB,

MACB,Z3, L2) from E2. Now, both the initiating and responding entities 
know the parameters {IDA, IDB, WA, WB, T3}. UB computes MACB =

h(IDA||IDB||XA||XB||WA||WB||T3) and UA computes the same MACA =

h(IDA||IDB||XA||XB||WA||WB||T3). It can seen that both MACB = MACA 
are same. Additionally, UB computes L2 = h(IDA||IDB||WA||WB) and UA 

verifies this value after computing L*
2 = h(IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB), both of 

these values L2 = L*
2 are also same. Following relationship also proves 

that b.Z1 = a.Z3: 

b.Z1 = b.a.P (3)  

= a.b.p
(4)  

= a.Z3
(5) 

Therefore, all values in the computation of session key on both 
initiator and responder sides are the same and the session key is shared 
correctly among two smart grid devices. 

6.3. Formal proof of correctness using BAN logic 

In this section, we evaluate the security properties of the contributed 
model in consideration with Burrows-Abadi-Needham logic (BAN) logic 
[9]. The set of logics in BAN logic help us to evaluate the authentication 
protocol on the grounds of mutual authenticity and confidentiality of the 
session key as established among the legal participants. In this analysis, 
the principals (p and p’) are the agents interacting in an authentication 
protocol. The employed notations are illustrated in Table 1. Moreover, 
few postulates or rules are defined in Table 2 to support the analysis. 

The goals which are followed for proving the mutual authenticity in 
this analysis, are as follows: 
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G1: UB| ≡ UA ↔ SKUB 

G2: UB| ≡ UA| ≡ UA ↔ SKUB 

G3: UA| ≡ UA ↔ SKUB 

G4: UA| ≡ UB| ≡ UA ↔ SKUB 

Our protocol may be generically characterized as. 

m1 : UA→UB : E1,T1,Z2 
m2 : UB→UA : E2,T3 

We represent the generic protocol in idealized form as: 

m1 : UA→UB : E1, T1, Z2 : 〈IDA, (IDA,XA)Z1
, WA, PWIA, XA〉KAI

, T1,

{Z1}PKB 

m2 : UB→UA : E2, T3 : 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)
, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3 

The premises to support the analysis are delineated as: 

φ1 : UA| ≡ #a,T1 
φ2 : UB| ≡ #b,T3 

φ3 : UA| ≡ UB ↔ SKab UA 

φ4 : UB| ≡ UB ↔ SKab UA 

φ5 : UA| ≡ UB|⇒b.P ≈ Z3 
φ6 : UB| ≡ UA|⇒a.P ≈ Z1 

After employing the above illustrated idealizations, symbols, pre-
mises and rules, we have the undermentioned derivations. 

6.3.1. Correctness/accuracy based on mutual authentication 
In order to verify the mutual authenticity-related properties between 

UA and UB, we envisage the m1 and m2 messages into idealized forms as: 

m1 : UA→UB : 〈IDA, (IDA,XA)Z1
,WA,PWIA,XA〉KAI

,T1,{Z1}PKB 

m2 : UB→UA : 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)
, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3  

Lemma 1. UB can prove the legitimacy of login request generated from UA. 

Proof. UA generates m1 = (E1,T1,Z2) and submits towards UB that 
verifies the authenticity of the source of the message as given below: 

On the application of seeing rule, we have the following derivation, 
ℱ1 : UB◃〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB 

Applying ℱ1,φ4,Γ1, 
ℱ2 : UB

⃒
⃒ ≡ UÃ〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB 

Using φ1,φ6 and Γ4, 
ℱ3 : UB

⃒
⃒ ≡ #〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB 

Using ℱ2,ℱ3 and Γ2, we have. 
ℱ4 : UB

⃒
⃒ ≡ UA

⃒
⃒ ≡ 〈IDA, (IDA,XA)Z1

,WA,PWIA,XA〉KAI
,T1,{Z1}PKB 

Using φ4,ℱ4 and the application of Γ3, we have. 
ℱ5 : UB| ≡ a.P ≈ Z1 
Thus, after having verified the freshness of timestamp T1,UBproves 

the authenticity of source of that message. □ 

Lemma 2. UA can suitably prove the legitimacy of the received response 
from UB. 

Proof. In our contributed scheme, UB constructs (E2,T3) message and 
submits to UA besides timestamp T3, in the response of login request 
from UA. Then, UA verifies the genuineness of UB through monitoring 
the freshness of parameters as given below. 

On the application of seeing rule, we have the derivation as: ℱ6 :

UB◃〈IDB,WB,XB, (IDA,WA,XA)(IDB ||XB ||WB)
,Z3, (IDA,WA)(IDB ||WB)

〉KBI
,T3. 

Using ℱ6,φ3 and Γ1, 

ℱ7 : UA

⃒
⃒
⃒ ≡ UB̃〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3 

Using φ2,φ5, and Γ4. 

ℱ8 : UA

⃒
⃒
⃒ ≡ #〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3 

Using ℱ7,ℱ8 and Γ2, we have. 

ℱ9 : UA

⃒
⃒
⃒ ≡ UB

⃒
⃒
⃒ ≡ 〈IDB, WB, XB, (IDA,WA,XA)(IDB ||XB ||WB)

, Z3,

(IDA,WA)(IDB ||WB)
〉KBI

,T3 

Using φ3,ℱ9 and applying Γ3, we have. 
ℱ10 : UA| ≡ b.P ≡ Z3 
Consequently, after having verified the freshness of timestamp, UA 

validates the accuracy of source of the message.□ 

Theorem 1. UA and UB can mutually authenticate each other. 

Proof. In consideration with Lemma 1, UB may suitably prove the 
legitimacy of the login request from UA. Likewise, referring to Lemma 2, 
UA may also validate the genuineness of the response as received from 
UB. Consequently, we can infer that UA and UB mutually authenticate 
each other. □ 

6.3.2. Session key agreement 
A single session key, SK = h(IDA

⃒
⃒
⃒
⃒IDB

⃒
⃒
⃒
⃒L2

⃒
⃒
⃒
⃒MACA/B

⃒
⃒
⃒
⃒WA

⃒
⃒
⃒
⃒WB

⃒
⃒
⃒
⃒abP,

T3), could be agreed upon among the legal participants in the scheme. 
This mutual agreement in relation to session key among the members 
may be reached as: 

Using φ2,ℱ4, and Γ2, we have. 
ℱ11 : UB| ≡ UA| ≡ UB ↔ SKUA (G2) 
Using φ2,ℱ11, and Γ6. 
ℱ12 : UB| ≡ UB ↔ SKUi (G1) 

Table 1 
BAN logic notations.  

Symbols Representations 

p| ≡ Φ  p believes the statement Φ  
p◃Φ  p sees Φ  
p|̃Φ  p once said Φ. Previously, the agent p had submitted Φ  

p|⇒Φ  p bears jurisdiction over Φ  
#(Φ) Φ is fresh  

{Φ,Φ′

}ϑ  Φ and Φ′ are encrypted through public key ϑ  

(Φ,Φ′

) Φ and Φ′ depict the parts of message (Φ,Φ′ )  

〈Φ,Φ′

〉ϑ  Φ and Φ′ are encrypted with the symmetric key ϑ  

(Φ,Φ′

)ϑ  Φ and Φ′ are hashed with a key ϑ  

p ↔ ϑp′ p and p′ exchange the messages using a secure key ϑ   

Table 2 
BAN logic postulates.  

Symbols Representations 

Γ1. Message meaning rule  p| ≡ p ↔ ϑp′

, p◃ < Φ>Φ

p| ≡ p′
|̃Φ  

Γ2. Nonce verification rule  p| ≡ #(Φ), p| ≡ p′

|̃Φ
p| ≡ p′

|̃Φ  
Γ3. Jurisdiction rule  p| ≡ p′ ⇒Φ, p| ≡ p′

| ≡ Φ
p| ≡ Φ  

Γ4. Freshness conjuncatenation rule  p| ≡ #(Φ)

p| ≡ #(Φ,Φ′

)
Γ5. Belief rule  p| ≡ (Φ), p| ≡ (Φ′

)

p| ≡ (Φ,Φ′

)
Γ6. Session key rule  p| ≡ #(Φ), p| ≡ p′

| ≡ Φ
p| ≡ p′ ↔ ϑp′

Γ7. Public key encryption rule  p|≡ϑ↦→ p′

, p◃{Φ}ϑ − 1
p| ≡ p′

|̃p′
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Using φ1,ℱ9, and Γ2, we have. 
ℱ13 : UA| ≡ UB| ≡ UB ↔ SKUA (G4) 
Using φ1,ℱ13, and Γ6. 
ℱ14 : UA| ≡ UB ↔ SKUA (G3) 
Thus, the above set of logical statements with respect to BAN logic 

analysis adequately affirms the fact that the demonstrated scheme may 
genuinely attain mutual authenticity and key agreement between the 
legal members (UA and UB). 

6.4. Automated verification through ProVerif 

We used ProVerif [10] to verify the correctness and security of the 
improved scheme. The ProVerif is an applied π calculus-based auto-
mated tool and can verify: (1) Correctness, (2) Secrecy, and (3) Ano-
nymity. ProVerif models cryptographic operations as constructors and 
equations. To verify the correctness, secrecy, and anonymity properties 
of the proposed scheme, we modeled the steps as explained in Section 5. 
The ProVerif’s formal model for verification consisting of declaration, 
processes, and events/main part, we define the variables, constants, and 
public/private channels as well as constructors and equations in Fig. 1, 
while the processes and events are defined in Fig. 2. The two processes 
UA and UB are defined to exchange a session key among each other; 
whereas, we have also defined start and end events of both UA and UB. 
To verify the correctness of the improved scheme, to test the secrecy of 
the session key, and to verify the anonymity, we applied four queries as 
illustrated in Fig. 1. The results are as follows:  

1. Query inj-event(end_UA(IDUA[])) ==> inj-event(start_UA(IDUA[])) 
is true.  

2. Query inj-event(end_UB(IDUB[])) ==> inj-event(start_UB(IDUB[])) 
is true.  

3. Query not attacker(IDA[]) is true.  
4. Query not attacker(SKAB[]) is true. 

The result 1 and result 2 attest that both the process UA and UB 
initiated and terminated successfully. This confirms the correctness of 

the proposed scheme; while result 3 confirms that IDi is not revealed to 
the attacker. This confirms the anonymity property. The result 4 con-
firms that SKAB is not revealed to the attacker. 

7. Performance comparisons 

This section provides a brief analysis/comparison of the efficiency of 
the improved iPALK and original PALK protocols in terms of storage, 
communication, computation, and respective running times. The iPALK 
is an improvement of the original PALK protocol to provide correctness 
by eliminating the design flaws and in the improved iPALK, we took the 
registration phase of the PALK as it is. Therefore, the storage costs of 
both the schemes (PALK and iPALK) are exactly same. Therefore, it is not 
being considered for comparison purposes. The iPALK completes 
authentication procedure by performing 5Tpm + 4Ted + 14Thm opera-
tions, where Tpm denotes point multiplication over an elliptic curve, Ted 

stands for symmetric encryption and decryption operations; whereas, 
Thm represents a oneway hash/mac function. For simplicity, we consider 
the same running time for each of the operations as was considered in 
the original article proposing PALK [1]. Therefore, Tpm ≈ 2.226 ms,
Ted ≈ 0.0046 and Thm ≈ 0.0023. The iPALK completes authentication in 
11.1806 ms as a contrast to PALK which is 17.8701 ms. 

Similarly, except for encryption operations, we consider same as-
sumptions of PALK protocol for computing communication costs of each 
of the PALK and iPALK, which are as follows: the ECC point is considered 
as 320 bit long, the oneway hash/mac is kept as 160 bit long, identity is 
kept as 64 bit and timestamp as 32 bit of length; whereas, random 
numbers are assumed to be of 128 bit long. For encryption/decryption 
operations, we consider advanced encryption standard (AES) with 
128 bit block size, as the consideration of 320 bit block size (as consid-
ered by Khan et al. in original PALK protocol) seems impractical because 
AES limits the block size to 128 bits. The original PALK protocol com-
pletes authentication in two messages M1 = {E1,T1,C

′

,Z} transmitted 
Fig. 1. ProVerif-Declarations.  

Fig. 2. ProVerif-Processes and Events.  
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from UA to UB and M2 = {E2,T3} sent from UB to UA. For M1, {E1,T1,C
′

,

Z} are sent, the length in bits of T1 = 32,C′

= 320 and Z = 320; 
whereas, E1 = EKA1 (IDA1, L1,WA,PWIA,XA) and the length of IDA1 = 64,
L1 = 160,WA = 320,PWIA = 160,XA = 320. Therefore, total length of 
E1 = 1024 bit and considering 128 bit block size, it requires to send 8 
block =128× 8 = 1024 bits. Therefore, total bits transmitted for M1 =

{1024 + 32 + 320 + 320 = 1696}. Likewise, M2 = {E2,T3} takes 
1440 bits for transmission, where T3 = 32 bits and the size of E2 =

EKB2 (IDB1,WB,XB,MACB, b.P, L2) is {64+320+320+160+320+160 =

1344} and to carry 1344 bits, we need 11, 128 bit long blocks, accu-
mulating the bit size of E2 to 128× 11 = 1408. Therefore, M2 =

{1408+32 = 1440} bits long. Hence, the total communication cost of 
PALK is 1696 + 1440 = 3136 bits. The iPALK completes authentication 
by exchanging two messages M1 = {E1,T1,Z2} and M2 = {E2,T3}. For 
transmission of M1, the E1 = EKA1 (IDA, L1,WA,XA) has accumulative size 
{64+160+320+320 = 864} and total blocks needed to encrypt E1 are 
7 and the size for transmission is 128× 7 = 896. Therefore, total 
communication cost for transmission of M1 is {1024 + 320 + 64 =

1248}. Similarly, the size of E2 = EKB2 (IDB,WB,XB,MACB,Z3, L2) in 
M2 = {E2,T3} is {64+320+320+160+320+160 = 1344} and it needs 
11 blocks each of 128 bits length for encryption. Therefore total 
encrypted size of E2 = 128 × 11 = 1408 and total size of M2 = 1408 +

32 = 1440 bits. Hence, the total communication cost of iPALK is =
1248 + 1440 = 2688. The comparison of proposed iPALK with original 
PALK demonstrates that iPALK has reduced 14.2% communication and 
37.4% computation overhead as compared to Khan et al.’s PALK pro-
tocol.Table 3 depicts the performance comparisons of the proposed iPalk 
with PALK. 

8. Conclusion 

This paper unveils the incorrectness of the scheme of Khan et al. It 
has been shown in this paper that the login and authentication phase of 
Khan et al.’s PALK scheme is faulty owing to the extraneousness oper-
ation of the multiplication of two ECC points. Moreover, it is also shown 
that the receiving entity uses the public key of the initiator without 
recognizing the initiator. Consequently, it is proved in this paper that 
Khan et al.’s authentication scheme for the smart grid cannot complete a 
single authentication cycle. Therefore, the scheme cannot be deployed 
in any sort of infrastructure including the smart grid. Finally, we pro-
posed improvements to remove the design flaws of Khan et al.’s PALK 
scheme with an aim to avoid such crucial mistakes in the future. The 
proposed improvements (iPALK) not only provides correctness but also 
reduces over 14% communication and 37% computation costs as 
compared with the original PALK protocol. 
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Table 3 
Performance comparisons.  

Scheme PALK iPALK 

C1  8Tpm + 4Ted + 19Thm  5Tpm + 4Ted + 14Thm  

C2  17.8701  11.1806  
C3  3136 2688 

Note: ECC Point Multiplication: Tpm; Symmetric Encryption/Decryption: Ted; 
One way Hash/MAC function: Thm. C1: Computation Cost; C2: Running time in 
ms; C3: Communication cost in bits. 
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