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I 

 

SUMMARY 

A partial discharge (PD), according to IEC 60270, is a localized electrical 

discharge that only partially bridges the insulation between conductors. Medium 

voltage power lines transport electricity over long distances; as a result, officials 

have a difficult time monitoring and early detecting the PD of the cables in these 

areas. The challenge is to detect PDs early enough to prevent long-term damage; 

hence, early PD detection is essential to prevent costly repairs and substantial power 

outages. There are numerous approaches for measuring PDs online, but the most 

common method is done offline and includes an expert manually identifying 

acceptable features to classify PD type and severity, thus, it is essential to have a 

detection mechanism that can extract features and classify them automatically to 

predict PDs rapidly and accurately. The dataset was collected from kaggle.com. The 

Technical University of Ostrava (VSB) has designed a specialized meter to 

determine the voltage signal of stray electrical fields and insulated overhead cables. 

The fast Fourier transform technique was used to de-noise the signals as a 

preprocessing step before building the classification models. Four classification 

models were built and compared with each other; the models are CNN-KNN, CNN, 

CNN-LSTM, and KNN. The Adam optimization algorithm was used to update the 

weights to reduce the error between actual output and predicted output, and the 

sigmoid function was used in the output layer to keep the output within the range 0–

1, and used dropout technique between layers to prevent overfitting during training 

of the model. Model performance was measured using several metrics: F-score, 

recall, precision, accuracy, and confusion matrix; the results show that the hybrid 

model (CNN-KNN) gives higher performance than the other models (CNN, CNN-

LSTM, and KNN). 

 

Keywords : Convolutional neural network (CNN), K-nearest neighbor 

algorithm (KNN), partial discharge (PD), and fast Fourier 

transform (FFT). 
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ÖZET 

Kısmi Deşarj, IEC-60270 standardına göre " İletkenler arasındaki yalıtımı 

kısmen kapatan ve bir iletkenin yakınında meydana gelebilecek veya oluşamayacak 

yerel bir elektrik boşalması" olarak tanımlanabilir. Orta gerilim elektrik hatları 

elektriği uzun mesafelere taşır, bunun sonucunda yetkililer bu alanlardaki kabloların 

kısmi boşalmasını izlemekte ve erken tespit etmekte zorlanırlar. Zorluk, uzun vadeli 

hasarı önlemek için kısmi deşarjları yeterince erken tespit etmektir, bu nedenle 

maliyetli onarımları ve önemli elektrik kesintilerini önlemek için erken kısmi deşarj 

tespiti önemlidir. Kısmi Deşarjın sınıflandırılması ve tanınması için geleneksel 

yöntemler, özelliklerin manuel olarak çıkarılmasına ve bir elektrik akımındaki çok 

özel darbeleri tanımlama uzmanlığına bağlıdır, bu nedenle, kısmi deşarjı yeterince 

hızlı tahmin etmek için özellikleri çıkarabilen ve bunları otomatik olarak 

sınıflandırabilen bir algılama mekanizmasına sahip olmak esastır. Veri seti 

kaggle.com'dan toplanmıştır. Ostrava Teknik Üniversitesi (VSB) ve Ostrava Teknik 

Üniversitesi, başıboş elektrik alanlarının ve yalıtılmış havai kabloların voltaj 

sinyalini belirlemek için özel bir sayaç tasarladı. Sınıflandırma modellerini 

oluşturmadan önce sinyaller için ön işleme adımı olarak gürültüyü gidermek için 

hızlı fourier transformatör tekniği kullanılmıştır. Dört sınıflandırma modeli 

oluşturulmuş ve birbirleriyle karşılaştırılarak modeller CNN-KNN, CNN, 

CNN+LSTM ve KNN, ağırlıkları güncellemek için Adam optimizasyon algoritması 

ve çıktıyı aralık içinde tutmak için sigmoid işlevi kullanılmıştır. 0_1, çünkü modelin 

eğitimi sırasında aşırı sığmayı önlemek için katmanlar arasında ikili sınıflandırma ve 

bırakma tekniği. Model performansı birkaç metrik kullanılarak ölçüldü: F-score, 

recall, presision, accuracy ve confusion matrix, sonuçlar modellerin (CNN-KNN) 

modellerden (CNN, CNN-LSTM ve KNN) daha yüksek performans verdiğini 

gösteriyor. 

 

Anahtar Kelimeler 

 

: evrişimli sinir ağı (CNN), KNN en yakın komşu algoritması 

(KNN), kısmi deşarj (PD), Hızlı Fourier dönüşümü (FFT). 
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INTRODUCTION 

A Partial discharge (PD) is defined as "A localized electrical discharge that just 

part-way bridges the insulation between conductors and can or cannot occur near to a 

conductor," according to the standard IEC-60270. PDs are caused by localized 

electrical stress concentrations in the insulation or on the insulation's surface. PDs 

can occur in overhead lines, underground cables, and transformers. In Northern 

Europe, fault classifications in medium voltage (MV) overhead distribution networks 

are classified into snow load 35%, trees falling on the lines 27%, tree branches on 

pole transformers 9%, lightning 6%, diggers 6%, and animals (Hanninen, Lehtonen, 

& Hakola, 2002). PD monitoring provides a caution for a power system component 

to be removed from service before a disastrous failure occurs because PD usually 

occurs before the total breakdown (Babnik, et al. 2003). The capacity to detect 

defects and act accordingly is essential for maintaining the electrical network system 

(Shafiq, et al. 2014). The detection of PDs is important because electrical energy has 

become an essential part of the global industrial revolution; hence, protecting and 

maintaining power sources is vital to ensure the sustainability and continuity of 

electrical energy reaching factories and cities. The most common causes of PDs are 

voids and cavities within solid insulators, bubbles within liquid insulators, and 

surface damage to insulators; PDs occur when these weaknesses are exposed to high 

voltages. Therefore, PD detection is essential because if the PD is ignored and 

allowed to continue, it will gradually have a cumulative harmful effect on the 

insulation material and eventually lead to the breakdown of the insulation material, 

resulting in service interruption (Babnik, et al. 2003). Several techniques are used for 

the online detection of PDs, including ultrasonic, ultraviolet, and radiofrequency 

methods; but the basic classification and recognition techniques are employed offline 

and require experts to manually extract features from the data and then utilize them 

to determine the type and severity of the PD. However, these techniques are 

incomplete and have drawbacks because they lack the necessary accuracy to ensure 

immediate repair and they place the user near potentially dangerous equipment. 

Machine learning, deep learning, and data analytics have opened up new possibilities 

for improving maintenance scheduling and system reliability (Kong, et al. 2020). 
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CHAPTER ONE 

PURPOSE OF THE THESIS 

 

1.1.  LITERATURE REVIEW  

Many researchers have used artificial intelligence including machine learning 

and deep learning models to address the problem of PD detection. Some of the 

studies are listed below: 

Catterson and Sheng (2015) proposed deep neural networks (DNNs) for the 

diagnosis of phase-resolved partial discharge (PRPD) data. An ultra-high-frequency 

(UHF) sensor was used to collect data from fault samples in oil. Roughly 250–300 

PRPD patterns were measured using the UHF sensor. The goal was to categorize the 

PD faults in oil into 6 categories. The number of layers used in these tests ranged 

from one to seven. They found that five hidden layers is a good number and 

increased the accuracy from (81%) to (86%) by using the rectified linear activation 

function (ReLU). The ReLU function was compared with the sigmoid function, as 

shown in the following table 1. 

 

Table 1. Accuracy of sigmoid and RELU in deep networks (Catterson and Sheng 

2015) 

Number of hidden layers 1 2 3   4 5 6 

Sigmoid accuracy 72% 41% 17% 18% 17% 18% 

RELU accuracy 81% 80% 83% 84% 86% 81% 

 

Lu et al. (2016) proposed a convolutional NN-based transient earth voltage 

sensor (TEV) detection method that eliminates the need for humans to create signal 

features and solves detection issues caused by a poorly selected feature. A five-layer 

convolutional NN was used with a softmax output function. Switchgear 

measurements were recorded as sound clips and then translated into an image using 

the TEV sensor data represented by time-frequency spectra. Three thousand pictures 
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with five hundred PD signals were used to train the CNN. The accuracy of the model 

was 95.58%. 

Tang et al. (2017) developed a deep-learning NN model called a stacked sparse 

auto-encoder (SSAE) and used it to extract features from the intermediate layer with 

a limited number of nodes. The model produces an output feature that is nearly 

identical to the input PD data. The collected features from the PD data are then fed 

into a soft-max classifier, which classifies the features into one of four PD severity 

levels. The data came from experimental cells in a gas-insulated switchgear (GIS) 

enclosure that simulated four different forms of PD defects. The UHF PD signals 

were captured with an antenna, and a PRPD representation was obtained for each PD 

type at various voltages to illustrate its development. Also, nine statistical features 

were calculated and compared to the SSAE method as input for a support vector 

machine (SVM) algorithm, as shown in table 2. The SSAE method was accurate in 

recognizing the four defects. 

 

Table 2. Accuracy results comparison between SSAE model and SVM technique  

(Tang et al. 2017) 

 Defect            SSAE(%)         SVM(%) 

Protrusion                  88                       77 

Particle                       93                       81 

Contamination            88                      80 

Gap                             90                      83 

  

 

Li et al. (2018) proposed a deep-learning-based PD classification algorithm 

that uses a multi-column conventional neural network (CNN), coupled with long 

short-term memory (LSTM) for PD detection. The input data type is a waveform 

spectrogram of artificial PD signals in a GIS tank recorded using UHF sensors. The 

proposed architecture includes three essential models: CNN, LSTM, and fully 

connected layers; for each UHF signal three separate short-time Fourier transforms 

were generated, each with various window lengths to represent the signal in three 

different spectrograms. These three spectrograms fed into three independent sub-
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networks, merged using a fully-connected layer. Figure 1 depicts the planned multi-

resolution network. Single-resolution embedding, multi-resolution fusion, and multi-

sensor fusion are the three main components. The LSTM network merges the 

information signals that have been recorded by the sensors. The accuracy of the 

model is 98.2%. 

 

 

Figure 1. LSTM fusion and the multi-resolution CNN (Li et al. 2018) 

Nguyen et al. (2018) proposed a recurrent neural network (RNN) structure with 

LSTM; the proposed model efficiently learns low-level characteristics and temporal 

dependencies of PRPDs using training data, based on a sequence of PRPDs in a GIS. 

Finally, a softmax layer was utilized to categorize four different PD types and an 

artificial noise source. The PD types (corona, floating, free particle, and void defect) 

were artificially created in the laboratory using pre-constructed cells mounted in a 

345 kV GIS chamber. A data set for PRPD was collected and split into three sets 

using data augmentation. These three sets were used to establish training goals, 

conduct cross-validation, and evaluate performance. For categorizing PRPD in GIS, 

the suggested model is better than standard ANN and SVM techniques. The accuracy 

of this model was 96.62%. 

Wang et al. (2018) proposed generative adversarial networks (GNA) that 

provide a unique data-generating model to improve PD Pattern recognition. For the 

GAN to categorize three PD sources, the artificial NN was trained with actual data 

and artificially created data, and then evaluated with real data only. When the model 

is trained with the same amount of real and fake data, the classification accuracy 
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improves, but when the fake data is larger than the actual data, the classification 

accuracy declines. 

Duan, et al. (2019) proposed a deep learning network based on a sparse auto-

encoder (SAE) and softmax that achieves a suitable classification result of more than 

96 percent. Following a thorough selection of parameters. Furthermore, altering from 

sigmoid to the ReLU activation function increased the accuracy to 99.7 percent. 

Dong, Sun, & Wang, (2019) used two main techniques in their proposed 

pattern recognition method: seasonal and trend decomposition (STL), and SVM. To 

recognize PD activities on insulated overhead conductors (IOCs), a new method was 

designed based on STL and SVM. STL is a technique for decomposing time series. 

SVM was used as a binary classifier, and various SVM kernels were evaluated and 

compared. The employment of a Gaussian radial basis kernel resulted in satisfactory 

classification rates on the VSB power line fault detection dataset. Actual PD signals 

may be recognized in 88 percent of cases, and 68 percent of observed PD signals are 

actual PD signals. 

Qu, et al. (2020) proposed a method for fault detection on IOCs using a 

discrete wavelet transform (DWT) and LSTM. The original signal was de-noised by 

DWT. Next, DWT was employed to decompose the de-noised signal and extract 

characteristics on separate layers. Finally, the LSTM was used to detect the IOC 

problem; the VSB dataset of kaggle.com was used. 

Samaitis et al. (2020) proposed a non-invasive PD detection and localization 

system that combines ultrasonic signal processing with machine learning to filter PD 

signals from background noise. Three machine learning classes were implemented 

and tested: SVM with a radial basis function kernel (RBF), naive Bayes (NB), and 

linear discriminant analysis. The partial discharge was recognized using CNNs after 

a dataset of discharge-induced signals had been collected using a laboratory corona 

discharge simulator. 

Michau, Hsu, & Fink, (2021) proposed interpretable detection of PD in power 

lines with deep learning using the VSB dataset. Their proposed NN consisted of two 

blocks, the first block contains two convolutional layers with a filter length of 16. 

The second block contains two convolutional layers with 8 filter. A maximum 1D 

time-pooling layer follows each block, and then the global average pooling layer 
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with a size of 32 was calculated to determine which part of the input leads to the 

categorization results of the networks. The ReLU layer is the activation function 

except for the last output. Each phase is handled independently, and a high-pass filter 

processes the signal to reduce signal noise. The accuracy of the model has reached 

0.967. 

 

1.2. PROBLEM STATEMENT 

A PD may occur in a power line because of a defect in the manufacture of the 

insulator or contact with a tree branch, for example. A PD will slowly damage the 

power line, so ignoring or not detecting this discharge and leaving it unrepaired will 

eventually destroy the insulator and cause a power outage. PD has been a very 

prevalent problem in recent years. This prompts us to focus on developing models 

for PD detection, using machine learning and deep learning classifiers to overcome 

the following problems: 

- Medium-voltage power lines transmit power over long distances to supply 

electric power to factories and cities. Therefore, it is difficult for officials to 

monitor the cables in these areas. 

- PD classification and recognition traditionally rely on manual and domain 

expertise extracting the features to recognize extremely precise pulses in an 

electrical current. 

1.3. PURPOSE OF THE STUDY 

The goal of this thesis is to provide a model for high-accuracy prediction of 

PDs, to detect PDs in three-phase MV overhead power lines using the hybrid CNN-

KNN, and to compare the new model with other models that were implemented on 

the same dataset to understand the prediction performance of other models. The 

prediction performance of the models is evaluated using different hyper-parameters 

in several layers of the CNN until the optimized results are obtained. The scope of 

the thesis is: 
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- Using the FFT technique to reduce the noise of the original signal. 

- Analyzing and classifying the data using machine learning and deep learning 

classifiers (CNN, CNN-LSTM, CNN-KNN, and KNN). 

- Using the dropout technique to prevent overfitting during network training. 

- Using Adam's optimization algorithm to update the network's weights to 

obtain high accuracy in prediction. 

- Testing and evaluating the models to obtain the best implementation for the 

PD detection models. 

 

 1.4 THE STUDY ORGANIZATION:    

This study consists of the following chapters: 

- Chapter One: presents previous studies related to our topic, the statement of the 

problem, and the goal of the thesis. 

- Chapter Two: presents a theoretical background for the topic. The first part 

sheds light on the partial discharge phenomenon. The second part deals with deep 

learning fundamentals, machine learning, strategies, classes, regulation, and 

optimization. The third part focuses on various performance measures to evaluate 

the performance of models. 

- Chapter Three: presents the dependent methodology for the models. 

- Chapter Four: presents the evaluation of models with experimental results. 

- Chapter Five: presents the conclusions and future work.  
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CHAPTER TWO 

THEORETICAL BACKGROUND 

 

2.1 PARTIAL DISCHARGE (PD) 

PD occurs because of robust and inhomogeneous electrical fields (Hashmi,  

2008), if left without proper maintenance or repairs, PD problems can eventually 

develop into significant service interruptions and serious safety problems. The 

detection of this discharge provides information about the state of equipment 

insulation, which can aid in locating the source of the problem; therefore, detection 

of the PD with proper diagnosis of the problem is considered very important. Sensors 

based on inductive, electromagnetic detection, and capacitive methods, as well as 

near-field antennas, are used to measure the PD. The sensor's output signals are high-

frequency damped oscillating pulses, and each PD pulse waveform can be 

represented in the time domain, as shown in the figure 2. Studies show that more 

than 85% of high-voltage (HV) and MV equipment faults are due to PD, and PDs 

eventually lead to failure. A PD can also be defined as a localized electrical 

discharge in a small insulator. A PD can occur at any point in the insulating system 

when the electric field strength exceeds the breakdown strength of that part of the 

insulator. A PD can also occur on the surface of the insulating material, within gas 

bubbles in liquid insulation materials, in voids within solid insulation materials, or 

around carriers when corona appears (Majidi, et al. 2015). Corona discharge is the 

result of the ionization of the air surrounding the transmission lines as a result of the 

presence of an irregular electric field in these lines or as a result of the ionization of 

air near the HV electrode (Shafiq, et al. 2014). Surface discharge occurs on the 

surface of a dielectric material or between two materials. In cables, especially cables 

made of several rigid insulating materials, internal PD can occur inside the 

insulation. During a PD, energy is emitted as electromagnetic emissions, acoustic 

emissions, or as ozone and oxides. 
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Figure 2. The waveform of a partial discharge in the time domain (Barrios, et al. 

2019). 

Several detection techniques are used to detect PDs: 

- The ultrasonic wave technique depends on detecting the sound 

emissions resulting from the discharge; using equipment to convert the 

ultrasonic frequency into a comfortable, audible frequency; and then 

sending it to headphones and measuring its 

intensity.                                                                                                    

                    

- The capacitive coupling technique is used for internal discharges. 

Energy is detected at the outer surface of the surrounding metal using 

the principle of capacitive coupling. 

 

2.2 AUTOMATIC ONLINE PD DETECTION BY DEEP LEARNING 

  Automatic detection is now achievable because of new sensing techniques 

and data analytics methods. Online PD testing is less expensive than offline testing, 

which requires service and production interruption. Detection and interpretation of 

PD signals are the two main steps in online PD measurement (Stone, 2013). This 

testing can be implemented with various sensors. The PD signal is processed using 
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hardware and software methods. This includes signal processing with hardware and 

signal de-noising with software techniques, PD source identification by feature 

extraction, and pattern recognition techniques (Wu, et al. 2015). The rising 

popularity of automatic detection is due to improvements in detecting capabilities 

(Stone, 2013), along with the advancement of DSP techniques, such as software-

based de-noising methods that improve the dependability of the measurement by 

overcoming noise and disturbances. 

Furthermore, advances in feature extraction and single PD source 

categorization have been achieved rapidly (Wu, et al. 2015). It has been found that 

AI—specifically deep NN models—is much better than a traditional diagnosis for 

early detection and diagnosis of defects in terms of improving maintenance 

scheduling and improving system reliability. Figure 3 presents some of the signals 

that PD detection experts depend on as they manually search thousands of signals to 

identify the defect. Moreover, applying ultrasonic PD detection and diagnosis 

technologies includes manual labor and expertise from experts. Human experts in PD 

diagnosis, in particular, rely on FFT features to assist them in classifying ultrasonic 

signals (Kong, et al 2020). However, with the development of science and AI in 

partial discharge detection and fault type diagnosis, the problem of partial discharge 

is detected and diagnosed online using deep NNs where features can be extracted. 

The type of defect is detected and diagnosed through these NNs, which can reduce 

the cost of searching for PD defects. 
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Figure 3. Ultrasonic signals (Kong, et al., 2020) 

2.3. SIGNALS PROCESSING 

It is impossible to remove all noise using conventional hardware-based noise 

reduction techniques. Improvements in computer science, combined with recent 

advances in signal processing methods, have resulted in a wide range of software-

based noise reduction techniques being explored and developed (Wu, et al., 2015). 

De-noising the signal is the initial step before building the classifications model. The 

appearance of noise is a severe constraint during online PD testing. Furthermore, 

online monitoring suffers from significant electromagnetic interference, making it 

difficult to obtain a pure PD signal in real-world situations. A small, weak PD signal 
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can sometimes be drowned out by background noise. Recent advances in digital 

signal processing (DSP) have made it easy to extract PD signals. There are thirty-two 

different de-noising methods in common use, such as low-pass filtering, FFT 

filtering, wavelet de-noising, etc (Sriram, et al 2005). 

 

2.3.1 Savitzky-Golay Filter 

The Savitzky-Golay filter is a technique of smoothing curves (signals) that 

increases the signal-to-noise ratio (SNR) while retaining the peak value and other 

important characteristics of the original signal (Samarkhanov, et al 2019), as shown 

in the figure 4. Abraham Savitzky and Marcel J.E. Golay pioneered this technique in 

1964. The data utilized have been compared before and after using the least exponent 

technique. For example, assume the data contains n, xj, and yj points (j = 1,..., n). 

The independent variable is x, and the dependent variable is yj; if there are m 

convolution coefficients, the following equation applies: 

 

𝒀𝒋 = ∑  
𝒎 − 𝟏

𝟐
≤ 𝒋 ≤ 𝒏 −

𝒎 − 𝟏

𝟐

𝒎−𝟏
𝟐

𝒊=
𝒎−𝟏

𝟐

    (𝟏) 

 

 

Figure 4. The Savitzky-Golay filtering example (Samarkhanov, K et al. 2019) 

 

 



 

13 

 

2.3.2 Fast Fourier Transform (FFT) 

The FFT was first introduced in 1965 and is still considered an excellent 

method for de-noising signals (Santoso, Powers, & Grady, 1997). The concept of the 

FFT is to break the input signal into blocks, execute a FFT on each block, multiply 

by a frequency-domain filter function, and then return the filtered signal to the time 

domain using an inverse FFT (IFFT). The FFT converts the original time-domain 

signal to its frequency domain to differentiate between the desired signals and the 

noise signals by knowing the frequency bands of their respective spectra. To de-

noise, it is necessary to recognize the periodicity of the signal. The FFT is a set of 

algorithms used to increase the efficiency of computing a discrete Fourier transform 

(DFT) for a series of samples (Cochran, et al.1967); the DFT of a time series can be 

quickly computed using the FFT. This means that the FFT technique saves time 

when transforming large sequences. Its inverse FFT enables a one-to-one connection 

between the time and frequency domains (Cochran, et al.1967), as shown in Eq.(2): 

  

 

Assume that F(ω), as indicated in Eq.(3), is the FFT of the signal f(t). 

 

𝐹(𝜔) = ∬ 𝑓(𝑡)𝑒−𝑗𝜔𝑡
∞

−∞

 𝑑𝑡        (3) 

 

2.3.3 Low Pass Filter 

A low-pass filter is used to filter signals to obtain more precise results. A low-

pass filter was used to pass a signal with a lower frequency than the cut-off 

frequency (Africa, et al. 2020). A Low-pass filter is used in various applications, 

including audio hiss filters, digital data smoothing filters, acoustic barriers, and 

picture blurring. 
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 2.3.4 High Pass Filter 

Frequencies below a cutoff frequency (the stopband) are attenuated by a high-

pass filter, while signals above the cutoff frequency are allowed through (the 

passband). High-pass filters remove low-frequency noise from audio signals. Higher-

frequency signals can be routed to appropriate speakers in sound systems and low-

frequency trends can be removed from time-series data, accentuating the high-

frequency trends (Metwalli, et al. 2009). 

 

2.3.5 Power Spectral Density Analysis 

The PSD of a signal helps to separate the power distribution into different 

frequency components (McNamara, & Boaz, 2006). The PSD helps to analyze the 

distribution of frequency components of a signal, but unlike spectrograms, it does not 

provide time-resolved information. The PSD can be of particular interest when 

analyzing time-independent characteristics of music signals like timbre or chroma. 

PSD can be applied to stationary or quasi-stationary signals. 

 

2.4 DEEP LEARNING FUNDAMENTALS 

Since 1950, a small subset of AI has been referred to as Machine Learning 

(ML); moreover, neural networks (NNs) came to be regarded as a sub-field of ML. 

In turn, NNs gave rise to Deep Learning (DL) (Alom, et al 2019). Almost 

immediately, DL created massive disruptions in the technology because of its 

significant efficiency in most applications. Artificial NNs that closely mimic natural 

NNs are known as spiking NNs (SNNs). In addition to neuronal and synaptic states, 

SNNs incorporate the concept of time into their operating model. Figure 5 shows the 

Artificial Intelligence taxonomy. 
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Figure 5. Artificial Intelligence (AI) taxonomy (Alom, et al.2019). 

 

          DL applies hierarchical learning methods or deep architectures of learning; it is 

one of the ML classes primarily developed from 2006 onward. In addition, DL is a 

process that consists of evaluating the model; thus, the learned model (algorithm) 

will have the ability to execute a specified mission. For instance, in Artificial Neural 

Networks (ANNs), the parameters are weight matrices. At the same time, DL 

includes many layers between the output and input layers, allowing various stages 

that include nonlinear information processing units with hierarchical architecture 

types to exist; these can be used for pattern classification and feature learning 

(Bengio, Schmidhuber, 2015). The learning approaches based on data representations 

might be described as representation learning. The latest studies indicated that DL-

based representation learning includes a hierarchy of concepts or features, in which 

high-level concepts might evolve from concepts of low-level concepts (Bengio, et al 

2013). A few articles have described DL as a universal learning method to solve all 

issues in various application domains (Bengio, 2009). DL is a subtype of ML in 

which data is transported from input to output using NNs with multiple layers, as 

shown in the figure 6. 
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Figure 6. The difference between ML and DL (Bengio, 2009) 

2.5 DEEP LEARNING MODELS  

The models studied in this thesis are listed in the following sections: 

2.5.1. Convolutional Neural Network 

CNN is a kind of deep learning (Albawi, et al. 2017). However, the difference 

lies in what the network learns, how it builds, and the goal. ANN is described as a 

biologically-inspired programming paradigm that allows computers to learn from 

data. It includes many interconnected processing elements, neurons, and operations 

to solve problems. ANNs were tailored for a specific purpose, such as data 

classification or pattern recognition. Three layers are present in ANNs: the input 

layer, hidden layer, and output layer (Barrios, et al 2019), as shown in Figures (7) 

and (8). 

 

Figure 7. The basic structure of the artificial neural network (Ghosh, et al. 2014) 
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Figure 8. Architecture of a CNN (Barrios, et al. 2019) 

CNNs are comparable to traditional NNs. Also, they comprise neurons with 

learnable biases and weights. The difference between them is in the number of 

layers. In the case of NNs, each input neuron is connected to the output neurons in 

the next layer; this is referred to as a fully-connected layer structure. However, in 

CNNs, convolution layers are utilized different filters in each convolution layer to 

extract the features and compute the outputs, which leads to local connections. then 

results are combined using pooling layers, pooling layer is one of the significant 

features of a CNN; generally, the pooling layers follow the convolutional layers. 

There are significant reasons for performing the pooling one feature of pooling is that 

it reduces the dimensionality of the features map while maintaining the important 

salient features (Barrios, et al. 2019); each filter might be thought of as identifying 

particular features. Throughout the training phase, a CNN will learn (automatically) 

the values related to its filters according to the task it will perform. For instance, 

when used for image classification, a CNN learns to detect the edges from raw pixels 

in the first layer. After that, the edges are used to detect simple shapes in the second 

layer, and then the shapes will be utilized to detect high-level features, like facial 

shapes, in the highest layers. The final layer is a classifier that applies high-level 

features (Lopez, & Yu, 2017). 

 

2.5.2. Recurrent neural network (RNN) 

RNN is considered a class of NNs, that make use of sequential information, 

RNNs are referred to as recurrent since they perform the same set of operations in 

each element as shown in figure 9. The information that the RNN has seen 
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previously can be memorized in the same sequence. In practice, they can only look 

back on a few stages, making them ineffective for modeling long-term dependencies; 

they also have a problem with vanishing gradients. To overcome this limitation, a 

specially designed RNN called a LSTM network is used in most applications; 

LSTMs are far less susceptible to these issues (Bishop, & Nasrabadi, 2006). 

 

 

Figure 9. RNN architecture (Bhattacharyya, et al 2018) 

LSTM is a recently developed of RNN that is less susceptible to the vanishing 

gradient issue, while it is better able to model long-distance dependencies in 

sequence. LSTM is designed only to memorize a portion of the sequence shown thus 

far. LSTM cells are depicted in figure 10. The use of gates in the network enables 

this behavior, as the network determines what to keep in memory based on the 

current input and hidden state (Li, et al 2018). 
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Figure 10. Architectures of LSTM cell and RNN (Li, Wang, Yang & Rong, 

2018) 

The equations of the LSTM below: 

       (𝟒) 

   (5) 

               (6) 

            (7) 

                     (8) 

                                 (9) 

Where, ίt: input gate, ƒt: forget gate, οt: output gate, Cin: memory cell, and һt: 

output (Chatterjee, Gerdes, & Martinez, 2020). The gate values are based on the 

current input and output of the preceding cell. This indicates that it considers both 

previous information and the current information for making decisions about what to 

keep in memory. A new cell memory is formed in Eq.(8) by forgetting the portion of 

the present memory and entering some new input xt. The significance of Eq.(9) is 

that part of the new memory is output by the LSTM cell, while the final cell output is 

typically taken as the final output, representing the entire sequence. In a few 

applications, a variant related to LSTM has been utilized that is referred to as 
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peephole LSTM. The difference is that the gates function on the basis of the value of 

the last cell rather than the output of the previous cell (Verner, 2019). 

 

2.6. MACHINE LEARNING: 

        2.6.1. K-Nearest Neighbor 

The k-nearest neighbors (KNN) algorithm is a supervised machine learning 

approach that is straightforward to use that predicts the test point based on the 

surrounding training points. It is algorithm nonparametric; it saves the training data 

and uses it during the prediction process for the test point. The smaller the distance 

between two points, the more remarkable their similarity (Gou, et al 2019). The K-

Nearest Neighbor approach seeks to discover the shortest path between the data to be 

assessed and the k closest neighbors in the training data. The (k) stands for the 

number of closest neighbors, choosing the correct value for K is essential to get the 

best accuracy, as shown in figure 11. The k value is determined after trying several 

values and testing the classification result each time. The KNN is an example of a 

technique that, despite its simplicity, outperforms other methods on big training sets. 

 

Figure 11. Example of KNN classification task with k=5 (Cheng, et al. 2014). 

Several measures of distance can be used: 

Manhattan distance: (also known as the city-mass distance) is the distance 

between two points calculated by summing the absolute values of line segments, 

each of which is parallel to a Cartesian coordinate (Ranjitkar, & Karki, 2016), as in 

the equation: 
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𝑑(𝑥, 𝑦) = ∑ |(𝑥𝑖 − 𝑦𝑖)|

𝑛

𝑖=1

     (10) 

The total x and y distances are used to get a city block distance comparable to 

how we travel in a city (e.g. Manhattan) where you have to walk around buildings 

rather than go straight through. 

Euclidean distance: Euclidean distance is the direct line between 2 data points 

that calculates the root squared difference between the coordinates (Ranjitkar, & 

Karki, 2016), as in the equation: 

  𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

             (11) 

Manhattan distances as in the equation: 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|     

𝑘

𝑖=1

(12) 

In figure 12, the green line represents the Euclidean distance, while the blue, 

red, and yellow lines represent Manhattan distances. 

 

Figure 12. Euclidean distance and Manhattan distances (Ranjitkar, H. S., & 

Karki, S., 2016) 

 

Minkowski distance: The Minkowski distance is the general form of the 

Euclidean and Manhattan distances, as in the equation: 
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𝑑(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|𝑐𝑛
𝑖=1 )

1

𝑐      (13) 

 

Hamming distance: It is possible to compare a series of binary data using the 

Hamming distance statistic (Apostolico, Guerra, Landau, & Pizzi, 2016). To measure 

how far apart two binary strings are, the Hamming distance between them must be 

calculated.  

 

 2.7. TRAINING MODEL 

Training is the process of teaching a NN to perform the required task such as 

classification; the NN training with given a labeled dataset using supervised learning 

finds network parameters that minimize the error rate to enable more accurate 

predictions. The goal is that the learned function can be used for mapping additional 

unknown inputs; this is called generalization, and it requires the function to model 

the fundamental relationship in the labeled examples from the training dataset 

(Nguyen, 2020).  

 

 2.7.1 Loss Function  

A loss function known as the cost or objective function supports the 

capabilities of a ML prediction or statistical model. In a NN, the loss function 

quantifies the difference between the expected output and the output generated by the 

DL model. The output of the loss function should be minimized to obtain the best-

performing ML model. There are various types of loss functions, as listed below: 

 

Mean Squared Error (MSE):  is a commonly used loss function for 

determining the average squared difference between actual and projected target 

values: 

𝑀𝑆𝐸 ( ) =
1

𝑁
∑( )2

𝑁

𝑖=1

      (14) 
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Here, N represents the number of training samples, represents the output 

generated by the deep learning model, and 𝑦𝑖 represents the expected output. The 

MSE is commonly employed in conjunction with the hyperbolic tangent and linear 

activation functions. Furthermore, it is assumed that the errors are normally 

distributed. 

CE (Cross-Entropy): it is another loss function that is often used in statistical 

models to compute the error rate; this function is described by Eq.(15): 

𝐶𝐸 (  ) =  
1

𝑁
∑ 𝑦𝑖 log (  )         (15) 

 

Binary Cross-Entropy (BCE): compares each of the predicted values to the 

real category output, which can be 0 or 1.  

 

𝐵𝐶𝐸 ( ) = −
1

𝑁
∑(𝑦𝑖 𝑙𝑜𝑔 (

𝑁

𝑖=1

) + (1 − 𝑦𝑖)(1 − 𝑙𝑜𝑔( )))      (16) 

 

BCE is also known as loss of sigmoid entropy. Because it is used with the 

sigmoid activation function, in classification error rates, CE typically leads to faster 

convergence and better outcomes than MSE (Rysbek, 2019). 

 

2.7.2  Learning rate  

The learning rate (𝛼) is a tuning parameter in the optimization algorithm that selects 

the step size in each repetition as it moves toward the minimum loss function with a 

value that is typically in the range of 0 to 1. The learning rate determines how 

quickly the model adapts to the issue (Buduma & Locascio, 2017). Low learning 

rates require more training epochs, while higher learning rates require lesser training. 

Therefore, determining the learning rate is a challenge because too high a learning 

rate can cause the model to converge too quickly without reaching the goal, while too 

low a learning rate can cause training to stop. 
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2.7.3  Backpropagation 

Backpropagation is a supervised learning algorithm for NN training (Rysbek, 

2019). The backpropagation algorithm is used to modify the values of the weights to 

minimize the error rate between the predicted and the actual target values in the NN 

using the optimization algorithm, After randomly initializing the weights, the 

backpropagation algorithm consists of two steps: forward pass and backward pass; 

the forward pass process starts by computing the output and then ends in calculating 

the loss function. (Rysbek, 2019). The computed loss function is then reduced using 

derivatives throughout the backward pass procedure, then the weights are updated 

via optimization algorithms, and the forward propagation and backpropagation are 

repeated to increase the accuracy of NN predictions by optimizing weights. Gradient 

descent (GD) is one of the most commonly used optimization algorithms; it uses 

derivatives to follow the negative gradient of the loss function. Since this function is 

an activation function  y^ = 𝜎(𝜀), the chain rule is utilized for calculating the 

derivative of the loss function. The gradient of the loss function L, in terms of the 

specific weight wi is given by the following equation: 

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐿

𝜕𝑦^
 
𝜕𝑦^

𝜕Ɛ
 

𝜕Ɛ

𝜕𝑤𝑖
        (17) 

The following equation is used to update the weight: 

ẁ𝒊 = 𝒘𝒊 − 𝜶 
𝝏𝑳

𝝏𝒘𝒊
     (𝟏𝟖) 

Where (𝜶) is the learning rate. The central concept of this algorithm is used also in 

NNs with more hidden layers and many inputs (Kimashev,  2017). 

2.7.4. Optimization algorithm: Adaptive Moment Estimation (Adam) 

An optimization algorithm, as previously stated, is used to update the weights. 

Several optimization algorithms have been introduced, such as Adam, RMSProp, 

Adagrad, and others (Kingma, & Ba, 2014). The Adam optimizer will train the NN 

model because of its rapid convergence (Duchi, Hazan, & Singer, 2011). The 

empirical results show that Adam works effectively in practice and compares 

favorably to other stochastic optimizations (Kingma, & Ba, 2014). The Adam 
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algorithm can be defined as an extension of the traditional stochastic gradient descent 

algorithm. In stochastic gradient descent, there is just one learning rate that updates 

all weights and remains constant during the training phase (Zheng, et al 2019). In 

contrast, the Adam optimization algorithm calculates adaptive learning rates for all 

parameters. Along with storing exponentially decaying averages regarding 

previously squared gradients 𝑣𝑡 such as RMSprop, Adam keeps an exponentially 

decaying average of the previous gradients 𝑚𝑡, comparable to momentum as in the 

equation : 

𝑚𝑡 = 𝛽1𝑚𝑡 − 1 + (1 − 𝛽1)𝑔𝑡 𝑎𝑛𝑑 𝑣𝑡 = 𝛽2𝑣𝑡 − 1(1 − 𝛽2)𝑔𝑡2      (19) 

 

In which 𝑚𝑡 and 𝑣𝑡 estimate the first moment (mean) and second moment 

(uncentered variance), respectively, of the gradients (Ruder, 2016). The Adam 

algorithm has the advantages of AdaGrad, RMSProp, and momentum at the same 

time. The Adam algorithm updates weights according to the equation: 

𝜃𝑡 + 1 =  𝜃𝑡 −
ƞ

√𝑣𝑡+𝜖
𝑚𝑡          (20) 

2.8 CHALLENGES IN TRAINING DEEP NETWORKS   

2.8.1. Overfitting 

NNs are powerful computational models used extensively; nevertheless, 

nonlinear hidden layers make deep networks very expressive models, prone to 

overfitting. The foremost issue in deep learning is overfitting (Srivastava, 2013). It 

happens when the model memorizes data rather than learning from it (Srivastava, 

2013), if the training accuracy is much higher than the test accuracy, then it can be 

concluded that the model has overfitting. Several techniques have been developed 

that can be used in deep learning models to reduce overfitting, For example: 

 

- Early stopping 

Since it is difficult to determine when to stop training, this can lead to 

overfitting in the model if training does not stop at the correct point (Gençay, & 

Salih, 2003). The early stopping technique is an improvement technique used to 
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reduce overfitting without affecting model accuracy. Early stopping has been used 

primarily because it is simple to understand and implement. In most preliminary 

research regarding supervised NNs training, the purpose of this technique is to stop 

training before the overfitting begins, as shown in figure 13. 

 

 

Figure 13. The early stopping technique (Gençay & Salih 2003) 

 

- Dropout technique  

DNN consists of several hidden layers, complicating learning between inputs 

and outputs. A dropout is the regularized technique that randomly removes neurons 

during the model training process (Srivastava, et al. 2014), dropping a unit out means 

briefly separating, it from the network, as shown in figure 14. A dropout applies to a 

sample in a thinned network, and the thinned comprises the considerable number of 

units that survived from the dropout (Alom et al. 2019). This technique allows the 

deep model to adapt progressively robust attributes, which help with other neurons' 

random subsets (Srivastava et al. 2014). 
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Figure 14. Standard NN and after adding the dropout technique (Alom, et al. 

2019) 

 

Bernoulli's gate is the basis for the majority of DNN dropout techniques. 

Bernoulli distribution can be described as separate distribution, including two 

potential values, such as x=0 and x=1 in which x=1 represents success occurs that 

has probability P, and x=0 is failure occurs that has probability 1-p, surly 0≤p≤1. 

Then x is called a Bernoulli random variable, defined as x ~ Bernoulli (p), where p is 

a probability of success. It, therefore, has a probability density function. 

 

𝑝(𝑥) = {
1 − 𝑝 𝑓𝑜𝑟 𝑥 = 0
𝑝       𝑓𝑜𝑟 𝑥 = 1

   (21) 

 

Example: The probability of a disappointment is named on the x-axis as 0, and 

achievement is labelled 1. In the accompanying Bernoulli distribution, the 

probability of accomplishment (1) is 0.4, and the probability of disappointment (0) is 

0.6 (Starmans, et al. 2021(, as shown in figure 15. 
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Figure 15. Bernoulli distribution (Starmans, et al.  2021). 

2.8.2. Vanishing gradient 

All DNNs with an activation function, such as tanh, suffer from vanishing 

gradient problems. The vanishing gradient makes it extremely difficult to train and 

update parameters in the initial network layers. Such an issue will worsen with an 

increase in the number of layers. Back-propagation in NNs updates the parameters to 

reduce the network error while the actual output is getting closer to the target 

(Huang, et al 2019). Throughout the back-propagation, weights update utilizing 

gradient descents (rates of change in total error E in terms of weights (w)). In the 

case of deep networks, such gradients determine how much each of the weights 

might change. Also, the gradients will be small as they propagate via various layers. 

The sigmoid function equation is: 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
           (22) 

 

And the sigmoid function's derivative equation is: 

 

𝑓  (𝑥).
′ =

1

1 + 𝑒−𝑥
(1 −

1

1 + 𝑒−𝑥
)         (23) 
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2.9. TYPES OF ACTIVATION FUNCTION 

The activation function is of high importance in the model architecture of 

ANNs. Without an activation function, a NN is essentially just a linear regression 

model. The activation function performs a non-linear adjustment on the input, 

allowing it to learn and execute more difficult tasks. The most commonly used 

activation functions are sigmoid functions, the rectified linear unit (ReLU), and the 

hyperbolic tangent (tanh) (Nwankpa, et al. 2018). 

The Sigmoid Function, a widely used activation function known as the 

logistic function, is nonlinear. It exists in the range [0,1] as shown in figure 16, and it 

gives clear predictions for binary classifications. 

 

𝜎(𝑥) =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
      (24) 

 

Figure 16. Sigmoid function (Bahdanau et al. 2014) 

The domain of the sigmoid function is the set of all real numbers, and its range 

is (0, 1), as shown in figure 16. However, the vanishing of small gradient values at 

saturation points occurs because the sigmoid function saturates at (0) for large 

negative values and at (1) for large positive values.  
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Rectified Linear Unit (ReLU): as shown in figure 17, sets negative input 

values to zero (Nwankpa, et al, 2018), squashing the net input to a number larger 

than or equal to zero. ReLU computations are easier to calculate than those of the 

sigmoid function; there is no calculation of the exponential function in activations, 

and sparsity can be utilized. Because not all neurons are active, the network is sparse, 

making the function quick and efficient. The advantages of using reLU in NNs are 

that it converges faster and avoids gradient vanishing. 

 

𝜎(𝑥) =  𝑅𝑒𝐿𝑈(𝑥) =  𝑚𝑎𝑥(0, 𝑥)        (25) 

 

 

Figure 17. ReLU function (Rysbek, D. 2019) 

Softmax (i.e., exponential) function:  the softmax function is considered a 

logistic activation function that is more generalized and is utilized for multi-class 

classifications (Nwankpa, et al. 2018). This function is sometimes utilized in the 

output layer of NNs for classifications and is mathematically specified as: 

 

σ(xj) =
exj

∑ exkn
k=1

        (26) 

 

The softmax function is considered a logistic activation function that is generalized 

and can be utilized for multi-class classifications (Nwankpa, et al. 2018). 
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2.10. EVALUATION METRICS   

After building the model for the classification, it is essential to evaluate and 

test its accuracy and quality. 

 2.10.1 Confusion Matrix 

A confusion matrix is a technique by which model performance can be 

evaluated. Using the classification accuracy alone is not sufficient to evaluate a 

model, especially if we have more than two classes in the dataset  (Čeponis & 

Goranin, 2020). Computing the confusion matrix gives us a better idea of how to 

improve our model and shows the kinds of errors that the model generates, as shown 

in the Table  3. 

 

Table 3. The description parameters of the confusion matrix (Jehad & Yousif, 

2020) 

 

 

In a confusion matrix, each row and column represent one possible 

classification. N stands for the number of categories. The matrix is N × N in size, 

with N being the number of class values. Table 4 shows a confusion matrix. 
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Table 4. Confusion Matrix Description (Čeponis, D., & Goranin, N. 2020 ) 

 

 

 

 

2.10.2 The receiver operating characteristic (ROC) curve 

The ROC curve is a graph of sensitivity versus 1-specificity that is used to 

assess the diagnostic test's effectiveness (Woods & Bowyer 1997). When talking 

about the ROC curve, the subject is accompanied by a discussion of the area under 

the curve (AUC), which is an abbreviation for words that explain themselves. The 

area under the curve also reflects the quality of the test; the more the curve is close to 

the upper left corner, the more powerful, and the area under it is larger (close to 1); 

but, on the other hand, if the test is weak, the curve is close to the reference line and 

the area under it is close to 0.5, as shown in figure 18. On the ROC curve, two 

parameters are plotted: 
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- Rate of True Positives (TPR)   

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (27) 

 

- Rate of False Positives (FPR) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
            (28) 

 

 

Figure 18.  Roc curve (Woods & Bowyer 1997) 

 

2.10.3. Accuracy 

Accuracy is a measure that describes how the model performs in general across 

all classes. A classification accuracy rate is calculated by dividing the number of 

correct predictions by the total number (N) of predictions obtained (Gilda & 

Rumman, 2017) as in the equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑁
          (29) 
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2.10.4. Precision/Recall 

Precision and recall are metrics that allow evaluating the predicted 

performance of a classification model on a certain class of interest (Boyd, Eng, & 

Page, 2013), also known as the positive class Precision: how many are actual positive 

predictions from all positive predictions? Recall: how many are predicted positive 

from all actual positive cases? (Gilda, 2017). These concepts are expressed by the 

equations: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
        (30) 

𝑅𝑒𝑐𝑎𝑙𝑙. =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑁
       (31) 

 

 

2.10.5. F1-Score 

The F1-score is defined as the harmonic mean of precision and recall. It uses 

the following formula to combine precision and recall into a single number: It is 

worth noting that the F1-score considers both precision and recall, which implies it 

accounts for both FP and FN (Gilda, 2017). 

 

: 

𝐹1 = (
𝑟𝑒𝑐𝑎𝑙𝑙−1+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

2
)−1 = 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (32) 
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CHAPTER THREE 

METHODOLOGY 

 

3.1. SYSTEM OVERVIEW 

The data obtained from Kaggle.com was processed using the FFT technique, 

and then the important features of the signals were extracted by Using the data 

compression method and extracting the important features from it, and then used to 

train DL models for PD detection. The dropout method was used to prevent over-

allocation in the DL models. Furthermore, Adam optimization was used to update the 

weights of the backpropagation method. 

 

3.2. THE WORKFLOW 

The models were constructed in five steps, as shown in Figure 19. The first 

step was to choose the VSB dataset from kaggel.com and preprocess the dataset 

using the FFT filter. After that, the spectra method was applied to extract the features 

from the dataset. Then, the data set was split using the hold-out method, and the 

classification models (CNN-KNN, CNN-LSTM, CNN, and KNN) were constructed. 

In the last step, the actual performance of the model was evaluated using 

performance metrics. 

 

Figure 19. Model building workflow  
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3.3. DATASET 

Kaggle.com provided the data to detect the presence of the PD patterns. This 

data was acquired directly from the overhead power lines with the new meter 

designed at ENET Centre (ENET Centre at VSB, 2019). Therefore, this is real-life 

data and provides a viable solution to detect PD problems. 

 

 3.3.1. Signal data 

The signal data were obtained straight from the ENET Center's new meter. 

There are 800 000 floating-point data points in each signal; the training data contains 

8 712 signals, whereas the testing data contains 20 337 signals. The signal data is 

stored as a Parquet file, with each column representing a single signal. As a result, 

the training signal data is 800 000 × 8 712 in size. 

 

3.3.2. Metadata 

It consists of four columns: 

The signal ID: Each signal is identified by its signal ID, which is a unique 

number. Column '0' in the signal data corresponds to a signal ID of '0.' Three 

conductors carry electricity from one region to another in phase ID. Each conductor 

carries a signal with a different phase. 

The phase: Each signal has three phases (a problem on the line may or may 

not affect all of the phases). 

Measurement ID: the identification code for three signals recorded at the 

same time (The ID of different phases of the same signal is the same). 

Target: this parameter indicates whether or not a signal has a PD pattern. A 

value of 0 indicates that the PD pattern is not present, and a value of 1 indicates that 

the PD pattern is present for the relevant signal ID.         

 

𝑡𝑎𝑟𝑔𝑒𝑡 = {
0        No PD 
1              𝑃𝐷

        (33) 
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3.4 PREPROCESSING 

Signal data cannot be used because extracting any useful feature from a noisy 

signal is challenging. Noise removal is one of the most critical aspects of the 

problem. Therefore, the noise was removed from the signals by filters in our work. 

The FFT (Fast Fourier Transform) technique was used. This method, which detects 

peaks in the frequency domain, essentially removes sinusoidal noise. The FFT 

converts the noise-accompanied signal from the time domain to the frequency 

domain to separate the noise from the signal, then, by applying the inverse FFT, 

returns the filtered signal to the time domain; figure 20 shows a flowchart of the 

steps were used in the de-noising process. 

 

Figure 20. Denoising signals using the FFT technique 
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3.5. FEATURES EXTRACTION 

The term "features extraction" refers to the process of converting raw data into 

numerical features that may be processed while retaining the information of the 

original dataset. It yields better results than applying machine learning and deep 

learning directly to the raw data. Therefore feature extraction remains the first 

challenge that requires significant expertise before building effective predictive 

models. In our work, the features extraction method was used in the following steps: 

Step 1: The spectra, mean, and percentile for each signal were computed for 

each chunk of size 1000 (each signal was divided into equal parts with a size of 1000 

for data compression). 

Step2: The peak interval of width = 150 was computed which has the max 

deviation in the max-mean spectrum within the 800 chunks of the spectra. 

Step3: The features like mean and max were extracted from the peak interval 

calculated above. 

Step4: All three phases of a signal were merged instead of considering each 

phase separately. 

Step5: All features extracted from signals were saved in the form of a CSV 

file. 

 

3.6. CLASSIFICATION 

This section will illustrate the most critical part of the proposed models. It 

explains how to train models and develops these NNs to help in classifying the PD 

with high accuracy as shown in the figure 21. The following sections explain the 

proposed models (CNN-KNN, hybrid CNN-LSTM, CNN, and KNN). 
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Figure 21. The general diagram of the DL proposed models 

 

3.6.1. Construction of the CNN Model 

The CNN model in Figure 22 shows an overview of the convolution NN for 

PD detection. After the model had been constructed, samples of signals were trained 

and tested in phases. 
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Figure 22. Construction of the CNN Model 

Training phase: 

After processing the data, the feature extraction method was used to extract 

important features from the raw dataset, and all features extracted from signals were 

saved in the form of a  CSV file. The architecture of the model consists of an input 

layer followed by a convolutional layer. In the input layer, the inputs are multiplied 

by the weights; these weights are randomly initialized and then modified 

automatically during the training. In the convolutional layer, the extraction of 

features is implemented by passing filters over the input data; also in the 

convolutional layer, the ReLU function is used to  convert negative numbers in 

feature maps to zero while preserving positive values.  The resulting feature maps are 

then passed from the convolutional layer to the max-pooling layer. The purpose of 

the max-pooling layer is to reduce the size of the feature maps, reduce the number of 

computations, and prevent overfitting. Next, the output of the max-pooling layer is 

flattened to one vector and passes through a fully connected layer and the sigmoid 

function in the output layer is used to predict the final output results of 0 or 1. The 

drop-out technique is added between layers to avoid overfitting. Finally, the error 

between the predicted output and the actual output is calculated by using binary 

cross-entropy to check whether these errors are acceptable or not. The Adam 

optimization algorithm was used in the backpropagation step to reduce these errors 

and to update the weights. 
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Testing phase:  

When building the CNN model and optimizing its fit to the training dataset, the 

model is evaluated on the test dataset. The evaluation is based on the correct 

prediction of a PD (0 or 1). The evaluation metrics were used to determine the actual 

performance of the final model, relying on a trial and error method that does not stop 

trying to choose the best hyper-parameters until success has been achieved.  The 

following parameters were tested: several filters (64, 16, 256), learning rate (0.01, 

0.001), dropout rate (0.2, 0.4, 0.5), and epochs (40, 15, 50). 

 

3.6.2 Construction of the CNN-LSTM Model 

A CNN-LSTM model in Figure 23 shows an overview of the convolution 

neural network and LSTM for partial discharge detection. After the model had been 

constructed, samples of signals were trained and tested in phases. 

 

 

 

Figure 23. Construction of the CNN-LSTM Model 
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Training phase 

This section describes the second model of classification: hybrid (CNN-

LSTM). The CNN-LSTM model was trained by forwarding the (train-x) data into the 

model; 

Step 1: FFT Technique was used to reduce the noise of the original signals. 

Step 2: The spectral feature extraction method was used, and all features 

extracted from signals were saved in the form of a CSV file. 

Step 3: The dropout technique was added between layers to prevent overfitting 

and the dropout was set to a probability of 0.4 when trained. 

Step 4: In this step, the convolutional neural network layers were added, the 

first layer consisted of a convolutional layer1D with 64 filters, each of which was 

size 3. Each filter extracts several features with the ReLU activation function to 

represent them in the rectifier features map. Subsequently, the max-pooling layer was 

used; the reason behind choosing the maximal value is to capture the most significant 

feature and reduce the calculation in advanced layers, then the flatten layer to feed 

the next layer. The output vectors of the max-pooling layer become inputs to a fully 

connected layer. Finally, the sigmoid function was used in the output layer (it gives 

clear predictions for binary classifications). 

Step 5: The layer of the LSTM has a set number of units, and the input to every 

cell is the output of the preceding max-pooling layer. The output vectors of the max-

pooling layer become inputs to the networks of the LSTM for measuring long-term 

feature sequence dependencies. The output of the LSTM layer passes through a fully 

connected layer with sigmoid function prediction of the final output results (the 

sigmoid function keeps the output within a 0–1 range). A binary cross-entropy loss 

function was used to calculate the error to measure the distinction of the actual 

distributions. Finally, the error between the predicted output and the actual output is 

calculated by using binary cross-entropy to check whether these errors are acceptable 

or not. The Adam optimization algorithm was used in the backpropagation step to 

reduce these errors and to update the weights. 
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Testing phase 

When building the CNN-LSTM model and optimizing its fit to the training 

dataset, the model is evaluated on the test dataset. The evaluation is based on the 

correct prediction of a PD (0 or 1). The evaluation metrics were used to determine 

the actual performance of the final model, relying on a trial and error method that 

does not stop trying to choose the best hyper-parameters until success has been 

achieved.  The following parameters were tested: several filters (64, 16, 256), 

learning rate (0.01, 0.001), dropout rate (0.2, 0.4, 0.5), LSTM cell (100,200,300), and 

epochs (40, 15, 50). The results will be presented in the next chapter. 

 

3.6.3. Construction of the KNN model. 

This section describes the K-nearest neighbor (KNN) prediction algorithm and 

its steps, which do not require any training to build a model. (The data was divided 

into 70% training data and 30% test data.) As shown in Figure 24, these steps are 

followed: 

Step1: The distance between the new point and the old points is calculated. 

The assumption is that points that are close to each other are similar, and those that 

are far from each other are not. 

Step2: The neighbors closest to the new point are determined after selecting 

the value of K, to predict the class. 

Step3: The final results are calculated using performance metrics. 
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Figure 24. Steps of the KNN algorithm 

3.6.4. Construction of the CNN-KNN Model 

A CNN-KNN model in Figure 25 shows an overview of the convolution neural 

network and KNN for partial discharge detection. After the model had been 

constructed, samples of signals were trained and tested in phases. 

 

Figure 25. Construction of the CNN-KNN Model 
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Training phase 

This section describes hybrid CNN-KNN. The CNN-KNN model was trained 

by forwarding the (train-x) data into the model; 

Step 1: FFT Technique was used to reduce the noise of the original signals. 

Step 2: The spectral feature extraction method was used, and all features 

extracted from signals were saved in the form of a CSV file. 

Step 3: The dropout technique was added between layers to prevent overfitting 

and the dropout was set to a probability of 0.4 when trained. 

Step 4: In this step, the convolutional neural network layers were added, the 

first layer consisted of a convolutional layer1D with 64 filters, each of which was 

size 3. Each filter extracts several features with the ReLU activation function to 

represent them in the rectifier features map. Subsequently, the max-pooling layer was 

used; the reason behind choosing the maximal value is to capture the most significant 

feature and reduce the calculation in advanced layers, then the flatten layer to feed 

the next layer. The output vectors of the max-pooling layer become inputs to a fully 

connected layer. Finally the sigmoid function was used in the output. The Adam 

optimization algorithm was used in the backpropagation step to reduce these errors 

and to update the weights. 

Step 5: After the CNN model was built, the features extracted from the CNN model 

were used. Then, the extracted features were used as a dataset for the KNN algorithm 

by splitting the data into training and testing data to predict the category. As 

explained earlier, training is not required in the K-nearest neighbor (KNN) prediction 

algorithm. 

Testing phase  

When building the model and optimizing its fit to the training dataset, the 

model is evaluated on the test dataset. The evaluation is based on the correct 

prediction of a PD (0 or 1). The evaluation metrics were used to determine the actual 

performance of the final model, relying on a trial and error method that does not stop 

trying to choose the best hyper-parameters until success has been achieved: filters 

(64, 16, 256), dropout rate (0.2, 0.4,0.5), learning rate (0.1, 0.01, 0.001), epochs (40, 

15, 50), K (3,5,8,9). 
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CHAPTER FOUR                                                                                                

RESULTS AND DISCUSSION 

 

4.1. GENERAL 

This chapter explains the requirements needed to build the proposed partial 

discharge (PD) classification models. Additionally, the experimental results and 

evaluations for each model will be presented. 

 

4.2. EXPERIMENTAL RESULTS OF DATASET  

Electrical transmission line faults may cause a harmful phenomenon known as 

PD. If left unchecked, PDs may cause damage to equipment to the point that it stops 

working. It is essential to find any discharges to make repairs before serious harm 

occurs. This study used the VSB dataset (open source) created by the Technical 

University of Ostrava, each signal contains 800 000 voltage measurements. Because 

the underlying electric grid works at 50 Hz, each signal spans a single grid cycle. The 

grid itself is a three-phase electrical system, with all three phases being monitored 

simultaneously. The training data contains 8 712 samples, with three labels: 

measurement ID, phase, and target, as shown in Figure 26. 

 

 

Figure 26. Training dataset 
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Here the training data consists of 8 187 samples of an undamaged power line 

(0), and 525 samples of a damaged power line (1), as shown in Figure 27. 

 

 

Figure 27. The distribution of the sample 

The testing data contains 20 337 samples, with two labels: measurement ID and 

phase, as shown in Figure 28. 

 

 

Figure 28. Testing dataset 
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Nine signals from the Parquet dataset are displayed for illustration, as shown in 

Figure 29. Figure 30 shows the raw data for all the three phases of a signal, the 

Matplotlib library was used to help visualize the data and to see the data in the form 

of signals.   

 

Figure 29. The dataset parquet for 9 signals 

 

 

Figure 30.The raw data: 3 phases over one period 
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4.3 EXPERIMENTAL RESULTS OF PREPROCESSING 

To overcome the noise, threshold filtering was added to the traditional FFT 

code. FFT converts a signal from its original time domain to its frequency domain to 

differentiate between the actual signal and the noise. The orange-colored curve in 

Fig. 31 is a filtered signal, and the blue lines are noise. The blue color in the figure 

represents the signal before using the filter, and the orange color represents the signal 

after the FFT filter use. 

 

 

Figure 31. Result of FFT filter 

Then, the filtered signal is returned to the time domain using the inverse fast 

Fourier transform (IFFT), as shown in Fig. 32. 

 

 

Figure 32. De-noised signals for three phases 
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4.4. EXPERIMENTAL RESULTS OF FEATURES EXTRACTION  

 After the processing step, the features from the signals through the max peak 

interval were extracted. The orange line in Figure 33 is the smoothed max-mean 

spectrum (sum of three phases); and the red band is the peak interval, i.e., the interval 

that gives the maximum smoothed line (orange). Next, the features in the peak 

interval were computed. 

 

Figure 33. Features extracted from the signals 

 

4.5. EXPERIMENTAL RESULTS OF CLASSIFICATION MODELS 

   The experimental setups of the classification models are listed in the 

following sections: 

 

4.5.1. First Experiment (CNN Model)  : 

In this section, the performance of the CNN model was evaluated using 

evaluation metrics; the CNN model was built using one convolutional layer, one max 

pooling layer, a fully connected layer, and a flattening layer. The optimization was 

tested (Adam, SGD, RMSPROP), for several epochs, as shown in table 5. 
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Table 5. Trial and error method for choosing the best parameters 

            Filters         Optimization     Epoch           Batch size 

64              Adam 15                    64  

64   RMSPROP 35                    64 

 64          SGD 25                    64 

 

 

The best hyper-parameters of the CNN model are listed in Table 6. The best 

accuracy was obtained using filter 64, optimization algorithm Adam, and epoch 15. 

 

Table 6 Trial and error method for choosing the best parameters 

         Filters Optimization         Epoch Accuracy 

64 Adam 15  96.44% 

64 RMSPROP 35 95.86% 

64  SGD 25  93.92% 

 

 

Figure (34) shows the history of accuracy and loss to diagnose learning issues 

such as underfitting or overfitting problems. The ROC curve in figure (35) shows the 

performance of the CNN model 
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Figure 34. The history of acc and loss of CNN model 

 

Figure 35. The Roc curve of the CNN model. 

4.5.2 Second Experiment (CNN-LSTM) model  

In the second experiment, the performance of the CNN-LSTM model was 

evaluated. The hybrid CNN-LSTM was used with one convolutional layer, a max-

pooling layer, a fully connected layer, a flattening layer, and LSTM. The experiment 

also investigated LSTM (100), LSTM (200), and LSTM (300), as shown in table 7. 
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Table 7. Evaluation performance of CNN+LSTM 

Classification model Accuracy 

CNN+LSTM(100) 95.76% 

CNN+LSTM(200) 89.45% 

CNN+LSTM(300) 78.23% 

  

The best accuracy of the CNN-LSTM model was obtained using filter 64, 

Adam's optimization algorithm, epoch 15, and LSTM (100). Figure (36) shows the 

history of accuracy and loss, and Figure (37) shows the ROC curve of the CNN-

LSTM model. 

 

 

Figure 36. The history of acc and loss of the (CNN+LSTM) model 
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Figure 37. The Roc curve of the CNN-LSTM model 

The experiment was repeated, and table (8) shows the results using two 

convolutional layers and two layers of max-pooling, with LSTM (100 cells). 

 

Table 8. Evaluation performance of CNN+LSTM (2 conv layer, 2 max-pooling 

layer) 

Classification model Accuracy 

CNN+LSTM(100) 88.55% 

CNN+LSTM(200) 86.81% 

CNN+LSTM(300) 73.28% 

 

4.5.3. Third experiment (CNN-KNN and KNN) models:  

In the third experiment, the hybrid model (CNN-KNN) was built using one 

convolutional layer, one max pooling layer, a fully connected layer, and one flat 

layer. After building the CNN model, the features extracted from this model were 

used. Then, the extracted features were used as a dataset for the KNN algorithm by 

splitting the data into training and testing data. Also, another experiment was 

conducted that used just the KNN algorithm to predict 0, or 1, as shown in table (9). 

The best accuracy was obtained when using k = 3, as shown in table (10). Figure 

(38) shows the ROC curve for the CNN-KNN and KNN models. 
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Table 9. Evaluation performance of CNN+KNN and KNN models 

Classifcation  model Accuracy % 

                           CNN +KNN                      99.89% 

                                   KNN                              98.74% 

 

Table 10. Trial and error method for choosing the best parameters (CNN-KNN, 

KNN) 

Classification model         Accuracy % K=3   Accuracy %, K=5        Accuracy %, K=9 

CNN-KNN                   99.98  99.20                98.67 

KNN        98.74 98.12    97.66 

 

 

   

 

 

Figure 38. The Roc curve for the CNN-KNN and KNN models 
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 4.6. EVALUATION METRICS  

The evaluations metrics of the models are listed in the following sections: 

4.6.1. Evaluation of the CNN, and CNN+ LSTM model 

The performance of the model (CNN, and CNN-LSTM) was evaluated after 15 

epochs. Figure (39) shows the confusion matrix that displays the values of TP, TN, 

FP, and FN; and table (11) illustrates all the results of the evaluation metrics that 

were used for evaluating the (CNN, and CNN-LSTM) models. 

 

 

Figure 39. Confusion matrix of (CNN) and (CNN+LSTM) models after 15 epochs 

 

Table 11. The final results of the CNN-LSTM and CNN models 

 

 

 

 

     Model   Accuracy %       Recall % Precision% F1-score % 

CNN-LSTM         95.79             57           68       62 

  CNN 96.45 55    81   66 
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4.6.2 Evaluation of the KNN, and CNN+KNN model 

The performance of the model (KNN, and CNN-KNN) was evaluated after 40 

epochs. Figure (40) shows the confusion matrix that displays the values of TP, TN, 

FP, and FN; and table (12) illustrates all the results of the evaluation metrics that 

were used for evaluating the (KNN, and CNN-KNN) models. 

 

 

Figure 40. Confusion matrix of (CNN+KNN) and (KNN) model 

 

Table 12. The final results of the CNN-KNN and KNN models 

   Model        Accuracy % Recall % Precision % F1-score % 

CNN- KNN        99.89   98 100  99  

      KNN 98.74 79 100 88 

 

 

The CNN-KNN model combines the benefits of both methods (Srinivas, 

Sasibhushana, 2019). The benefits of CNN are the connection between neurons at 

consecutive layers and weight sharing among layers. Moreover, the ReLU activation 

function in the convolution layer reduces the complexity of the model computations 
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better than in the LSTM layer, which has three gates that are very complex in the 

computations and take a long time in their complex computations. The KNN 

algorithm differs from training DNNs that require numerous hyper-parameters to be 

set; KNN only requires one hype-parameter (K) to be set. Moreover, because KNN 

does not require training on the dataset, modifications to the dataset (for example, the 

addition of some new samples) would not impair the performance of the algorithm. 

As a result, when compared to other models, the proposed model performs better. 

 

4.7  RESULTS COMPARISON 

The proposed models were compared with previous studies that used the ENET 

VSB dataset. 

 In 2021, Michau et al. used a high-pass filter to reduce the noise of the signals 

and a convolutional NN for PD detection; each phase was handled independently. 

The Adam optimization algorithm was used in this study. 

In 2019, Dong et al. used two main techniques to determine PD activities on 

insulated overhead conductors (IOCs):  STL, which is a technique for decomposing 

time series, and SVM, which is used as a binary classifier.  

In 2020, Qu et al. used a discrete wavelet transform (DWT) and (LSTM). The 

original signal was first de-noised by the DWT. Then the DWT was used to 

decompose the de-noised signal and extract the characteristics on separate layers. 

Finally, the LSTM was employed to detect the problem(s) with the insulated 

overhead conductors (IOCs). 

The proposed models were compared with previous studies regarding the 

classification models, size of datasets, and the accuracy in detecting PDs as shown in 

table 13. 
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Table 13. Comparison of performance of different models 

Ref Size of dataset Classification     Accuracy   Recall  Precision F1-score 

       Proposed 

Model 

2022 

800000x8712 CNN-LSTM     95.75%        57%        68%    62% 

800000x8712 CNN 96.44%        55%        81%    65% 

800000x8712 CNN- KNN 99.89%         98%       100%     99% 

800000x8712       KNN 98.74%         79%       100%     88% 

Michau, et al. 

(2021) 
800000x8712 CNN 96.7%       95.7%       72.6%       - 

Dong, et al. 

(2019) 
800000x8712 STL+SVM -         88%         68%      77% 

Qu, et al. (2020)  800000x8712       LSTM -        81%          81%     83% 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 

5.1  Conclusions 

The proposed models were developed to detect PDs using the ENET dataset; 

DL and ML were employed. The FFT technique was used to reduce the noise of the 

original signal. After that, the spectral method was used to extract features like mean 

and max from the peak interval; then the model was trained to distinguish between 

PD and the absence of PD, and the models were validated using performance 

evaluation metrics. 

Many points can be concluded from the results of the proposed models to 

classify PDs: 

- The results show that the hybrid model (CNN-KNN) gives higher accuracy 

than the hybrid and machine learning models (CNN, CNN-LSTM, and 

KNN). 

- The FFT technique can effectively reduce the noise of the original signal. 

- The dropout technique is effective for reducing overfitting during model 

training.  

- Adam's optimization method used with this dataset plays a significant role in 

improving classification accuracy. 

5.2. Future Works: 

- Using other classification models such as the hybrid CNN-SVM model to 

check their impacts on the classification accuracy.  

- Using another type of dataset such as images of PD patterns. 

- Using another technique to prevent overfitting to check its impact on 

classification accuracy. 
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