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Abstract

The	Reactive-Causal	Architecture	(ReCau)	is	a	cognitive	agent	architecture	which	is	proposed	to	simulate	human-like
intelligence	while	satisfying	the	core	attributes	of	believable	agents.	ReCau	combines	intentional	notion	and	motivation	theories.
ReCau	agents	are	entities	driven	by	their	unsatisfied	needs,	to	satisfy	those	needs	they	act	intentionally	while	satisfaction	and
dissatisfaction	of	needs	results	in	affect	display.	In	this	paper,	the	results	of	a	multi-agent	based	simulation	called	radar	task	are
presented.	With	the	help	of	this	simulation,	ReCau	is	compared	with	some	other	existing	agent	and	cognitive	architectures.	The
results	indicate	that	ReCau	provides	a	highly	realistic	decision-making	mechanism.	This	architecture;	therefore,	contributes
towards	the	solution	for	the	development	of	believable	agents.
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	Introduction

1.1 Several	scientists,	studying	organisation	theory,	attempt	to	determine	the	factors	that	affect	organisational	performance.	To
achieve	this	aim,	they	have	tried	to	form	different	formal	methods	to	understand	and	predict	human	behaviour	in	organisational
decision-making	processes.	They	have	established	several	formal	models	by	establishing	mathematical	models,	performing
simulation	studies	and	using	expert	systems.	These	models	have	provided	useful	information	to	scientists	on	finding	gaps	and
errors	in	verbal	theories	and	understanding	and	foreseeing	behaviour	in	organisational	decision-making	processes	(Carley	et	al.
1998).

1.2 One	of	the	approaches	used	in	this	field	is	performing	multi-agent	based	simulation	(MABS).	MABS	uses	techniques	of	agent-
based	computing	and	computer	simulation.	The	purpose	of	MABS	is	to	study	the	use	of	agent	technology	for	simulating	any
phenomena	on	a	computer	(Davidsson	2002).	MABS	is	mostly	used	in	a	social	context.	However,	some	properties	of	MABS
make	it	useful	for	other	domains	like	simulated	reality,	simulation	of	behaviour	and	dynamic	scenario	simulation.	MABS	are
especially	useful	for	simulating	scenarios	in	more	technical	domains	(Davidsson	2000).

1.3 In	the	literature,	a	few	multi-agent	based	simulation	studies	on	radar	task	have	been	reported	by	using	different	agent	and
cognitive	architectures.	In	those	studies,	scientists	attempted	to	understand	the	effects	of	cognition	and	organisational	design	on
performance	by	adopting	radar	task	as	an	example	decision-making	problem.	Radar	task	is	a	typical	classification	choice	task.	In
this	task,	agents	try	to	decide	if	a	blip	on	a	radar	screen	is	friendly,	neutral	or	enemy.	In	order	to	decide,	agents	consider	nine
different	characteristics	of	aircrafts.	The	ratio	of	correct	decisions	determines	the	performance	in	this	task	(Carley	et	al.	1998).

1.4 The	first	simulation	on	radar	task	was	performed	by	Carley	et	al.	(1998).	In	this	simulation	four	different	organisational	settings
are	used	together	with	five	different	agent	models.	They	performed	the	same	simulation	on	humans	and	compared	the	results.
They	analysed	the	results	at	both	micro	and	macro	levels.	They	found	that	there	is	a	meaningful	relationship	between	design	and
cognition.

1.5 Later,	Sun	and	Naveh	(2004)	performed	the	same	simulation	by	using	cognitive	architecture	called	CLARION.	By	this	study,	they
proved	that	not	much	learning	took	place	in	the	original	simulation	performed	on	humans.	In	order	to	illustrate	this,	they	adopted
the	Q-learning	algorithm	to	enable	agents	to	learn	in	a	trial-error	fashion.	The	simulations	indicated	that	if	enough	time	is	given	to
the	agents	their	performance	increases.
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1.6 The	conclusion	is	that	in	the	original	simulation	the	cognitive	parameters	in	the	decision-making	mechanism	affected	the
performance	of	the	agents.	Therefore,	the	results	of	the	original	radar	task	simulation	provide	a	well-designed	test	bed	to	test
decision-making	mechanisms.	It	is	because	of	the	fact	that	in	the	original	simulation	study	not	much	learning	took	place.

1.7 With	this	respect,	in	this	research	study	radar	task	simulation	is	undertaken	to	test	and	illustrate	the	decision-making	mechanism
of	the	Reactive-Causal	Architecture	(ReCau).	This	simulation	provides	a	means	to	compare	ReCau	with	some	of	the	existing
architectures;	since,	this	simulation	is	undertaken	by	using	those	architectures.	In	addition	to	this,	performing	this	simulation	with
ReCau	without	adopting	any	learning	approach	can	give	chance	to	observe	the	effects	of	cognitive	parameters	on	performance.
Therefore,	the	major	aim	of	this	study	is:	(1)	to	test	and	illustrate	the	decision-making	mechanism	proposed	along	with	ReCau,
and	(2)	to	further	understand	the	relation	between	organisational	design	and	cognition.

1.8 The	organisation	of	this	paper	is	as	follows.	In	Section	2	existing	work	related	with	ReCau	architecture	is	discussed.	In	Section	3,
theoretical	background	and	architectural	details	of	ReCau	are	elaborated.	In	Section	4,	the	radar	task	simulation	is	explained.	In
Section	5,	previous	radar	task	simulation	results	are	presented.	In	Section	6,	the	results	of	the	simulation	by	employing	ReCau
agents	are	given.	In	Section	7,	evaluation	of	the	radar	task	simulation	by	ReCau	is	presented.	In	the	last	section,	conclusions	and
discussions	are	given.

	Related	Work

2.1 In	1980,	a	group	of	researchers	held	a	workshop	at	the	Massachusetts	Institute	of	Technology.	Until	that	time,	the	Artificial
Intelligence	(AI)	community	was	considering	intelligence	as	a	whole.	However,	in	that	workshop	it	was	asserted	that	intelligence
was	constituted	of	distributed	properties	like	learning,	reasoning,	and	so	on.	After	this	workshop,	the	term	agent	attracted	the
focus	of	attention.	This	development	gave	rise	to	agent	technologies	which	became	a	commonly	approved	research	area
(Jennings	et	al.	1998).

2.2 Today,	the	agent	term	implies	entities	that	represent	some	aspects	of	intelligence.	In	spite	of	the	fact	that	there	is	a	debate	on
what	the	term	agent	means,	Jennings	et	al.	(1998)	put	forward	a	commonly	acceptable	definition	as	follows:

A	computer	system,	situated	in	some	environment	that	is	capable	of	flexible	autonomous	action	in	order	to	meet
its	design	objectives.

In	this	definition,	they	put	forward	three	attributes	that	an	agent	should	have:	situatedness,	flexibility	and	autonomy.	They	state
that	the	term	situatedness	implies	entities	that	are	capable	of	obtaining	sensory	data	and	performing	actions	to	change	the
environment	where	they	are	embodied.	They	explained	the	term	flexibility	as	a	capability	for	performing	flexible	actions.	They
further	elaborated	this	attribute	by	asserting	its	three	constituents:	responsive,	pro-active	and	social.	Entities	that	can	understand
their	environment	and	respond	to	the	changes	that	occur	in	their	environment	are	called	responsive.	Pro-active	entities	can
perform	actions	and	take	initiatives	to	achieve	their	objectives.	Finally,	the	term	social	implies	systems	that	are	able	to	interact
with	other	entities	and	also	help	others	in	their	activities.

2.3 By	the	term	autonomy	Jennings	et	al.	(1998)	were	referring	to	those	entities	that	can	perform	actions	without	the	assistance	of
other	entities.	Moreover,	those	entities	have	the	ability	to	control	their	internal	state	and	actions.	Russell	and	Norvig	(2002)	gave
a	stronger	sense	of	autonomy	by	adding	that	those	entities	should	also	have	the	ability	to	learn	from	experiences.	To	achieve
stronger	autonomy,	Luck	and	D'Inverno	(1995)	suggested	that	the	agents	should	have	motives	to	allow	them	to	generate	goals.	In
addition	to	strong	autonomy,	to	develop	human-like	intelligent	agents,	the	research	has	indicated	the	importance	of	emotions
(Bates	1994).	Several	researchers	have	stressed	that	one	of	the	core	requirements	for	believable	agents	is	a	capability	for	affect
display.

2.4 These	and	many	other	studies	have	come	to	conclusion	that	the	commonly	approved	fundamental	attributes	that	a	believable
agent	should	have	are	situatedness,	autonomy,	flexibility,	and	affect	display.	Adding	some	other	attributes	to	believable	agents
depends	on	their	design	objectives.

2.5 Researchers	who	aim	to	develop	agents	satisfying	these	attributes	look	for	a	way	to	formulate	their	approaches.	For	this
purpose,	particular	methodologies	such	as	agent	architectures	are	used.	Maes	(1991)	defined	agent	architecture	as	a	particular
methodology	for	building	agents.	She	stated	that	agent	architecture	should	be	a	set	of	modules.	Kaelbling	(1986)	presented
similar	point	of	view	and	stated	that	agent	architecture	is	a	specific	collection	of	modules	and	there	must	be	arrows	to	indicate
data	flow	among	modules.	In	this	context,	agent	architecture	can	be	considered	as	a	methodology	for	designing	particular
modular	decompositions	for	tasks	of	the	agents.

2.6 While	conceptualising	agent	and	cognitive	architectures,	most	of	the	researchers	utilize	intentional	notion.	They	use	intentional
notion	while	they	are	trying	to	satisfy	core	attributes	of	intelligent	agents.	While	explaining	intentional	stance,	Dennett	(2000)
states	three	levels	of	abstraction	which	help	explain	and	predict	the	behaviours	of	entities	and	objects:	(1)	physical	stance;	(2)
design	stance:	and	(3)	intentional	stance.

2.7 Dennett	(2000)	puts	forward	physical	stance	to	explain	behaviours	by	utilizing	concepts	from	physics	and	chemistry.	In	this	level
of	abstraction	behaviours	of	entities	are	predicted	by	considering	the	knowledge	related	with	things	like	energy,	velocity	and	so
on.	As	an	example,	it	can	easily	be	predicted	a	ball	would	fall	down	to	the	ground	if	it	is	released	from	the	top	of	a	building.	It	is
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due	to	the	fact	that	there	is	gravity	on	earth	and	the	behaviour	of	the	ball	can	be	anticipated	by	considering	this	physical	principle.

2.8 Design	stance	is	a	more	abstract	level	and	at	this	level	of	abstraction,	the	manner	of	acting	is	explained	and	predicted	through
biology	and	engineering.	At	this	level,	things	such	as	a	purpose	function	and	existential	attributes	are	taken	into	account.	It	can
be	predicted	that	the	speed	of	a	car	is	going	to	increase	whenever	we	press	on	the	gas	pedal.	It	is	because	of	the	fact	that	it	is
known	that	the	gas	pedal	is	made	for	increasing	the	speed	of	the	vehicle.	In	this	case,	design	stance	is	utilized	to	understand	the
behaviour	of	the	car.

2.9 The	last	stance	is	intentional	stance	which	is	the	most	abstract	level.	At	this	level	of	abstraction,	an	attempt	is	made	to
understand	and	predict	the	behaviours	of	software	agents	and	minds	by	considering	mental	concepts	such	as	intention	and
belief.	As	an	example,	if	a	bird	flies	away	while	a	cat	tries	to	catch	it,	it	can	be	understood	that	the	bird	desires	to	live.	This	can	be
comprehended	by	taking	intentional	stance	into	account.

2.10 According	to	intentional	stance,	entities	are	treated	as	rational	agents.	Behaviours	of	agents	are	predicted	by	considering	what
beliefs	an	agent	ought	to	have	based	on	its	purpose	in	a	given	condition.	Afterwards,	an	attempt	is	made	to	predict	what	desires
the	agent	ought	to	have,	based	on	the	same	conditions.	Finally,	it	is	predicted	that	a	rational	agent	will	act	to	achieve	its	goals
under	the	guidance	of	its	beliefs.	From	this	point	of	view,	practical	reasoning	helps	towards	an	understanding	of	what	the	agent
ought	to	do	base	on	the	chosen	set	of	beliefs	and	desires.

2.11 In	the	literature,	there	are	several	architectures	that	attempt	to	mimic	human-like	intelligence.	These	architectures	fail	to	satisfy
the	aforementioned	core	attributes	of	believable	agents	all	at	once.	Most	of	those	studies	utilize	the	intentional	notion	to	simulate
human	intelligence.	To	achieve	strong	autonomy,	some	of	those	studies	employ	learning	approaches	while	others	adopt
motivation	theories.	To	simulate	affect	display,	a	few	studies	employ	an	emotion	model.

2.12 With	this	respect,	there	is	no	general	approach	covering	all	aspects	of	the	problem.	To	achieve	this	aim	an	approach	should
employ	a	learning	model,	adopt	motivation	theories,	and	utilize	an	emotion	model.	Reactive-Causal	Architecture	is	proposed	to
meet	these	requirements	(Aydin	et	al.	2008a).	For	this	purpose,	ReCau	adopts	causality	assumption	and	motivation	theories
while	employing	emotion	model.	In	the	following	section	theoretical	background	related	with	ReCau	is	given.

	The	Reactive-Causal	Architecture

3.1 In	this	section	of	the	study,	theoretical	background	of	Reactive-Causal	Architecture	is	presented.	Then	in	the	second	subsection
the	mechanisms	and	components	of	the	architecture	are	elaborated.

The	Theoretical	Background

3.2 The	Reactive-Causal	Architecture	(ReCau)	is	proposed	to	develop	believable	agents	while	considering	agents	as	neither	totally
rational	nor	totally	irrational.	To	achieve	these	aims,	the	intentional	notion	and	theories	of	needs	are	combined	together	(Aydin	et
al.	2008b).	In	particular,	in	ReCau	Belief,	Desire,	Intention	approach	and	the	theories	of	needs	are	brought	together.	By
combining	these	approaches,	agents	are	enabled	to	be	driven	by	their	motives.	In	this	manner,	the	emergence	of	intelligent
behaviour	is	explained	as	the	result	of	unsatisfied	needs.

3.3 In	the	literature,	the	simulation	of	intelligence	is	tried	to	be	achieved	under	certain	assumptions.	The	most	commonly	accepted
assumption	in	the	literature	is	rationality.	Instead	of	this	assumption,	in	ReCau,	causality	is	put	forward	as	the	most	basic
assumption	of	the	simulation	of	intelligence.

3.4 Even	though,	the	intentional	notion	provides	a	good	theoretical	infrastructure	for	agency,	it	has	few	but	vital	obstacles	in
simulating	intelligence.	Some	of	these	problems	are	explicitly	stated	by	the	founder	of	these	stances—Daniel	Dennett	(1987).	He
stated	that	there	were	some	unknown	issues	related	to	the	emergence	of	intelligent	behaviour.	Besides,	some	other	objections
related	to	the	intentional	notion	can	be	put	forward.

3.5 First	of	all,	the	animals	cannot	only	be	considered	as	intentional	systems.	In	other	words,	too	much	abstraction	in	some	cases
may	lead	to	false	predictions	in	the	behaviours	of	intelligent	animals.	In	the	end,	these	creatures	-including	humans-	also	have	so
called	physical	and	design	stances.	The	animals	are	bounded	by	the	physical	and	the	chemical	principles	of	the	universe;
therefore,	this	situation	certainly	has	an	effect	on	intelligent	behaviour.

3.6 Besides,	the	behaviours	of	animals	are	delimited	by	existential	attributes,	purposes	and	functions	and	this	stance	is	known	as	the
design	stance.	Here	instead	of	the	term	design,	the	existential	attributes	are	used	to	refer	to	the	same	thing.	The	term	existential
attributes	are	used;	since,	this	term	does	not	refer	to	a	creator.	Usually	the	term	design	brings	about	belief	on	a	creator.	In	the
present	study,	it	is	not	aimed	to	refer	to	a	creator.	Instead	it	is	tried	to	express	that	all	intelligent	creatures	have	existential
attributes	regardless	of	whether	a	supreme	deity	created	them	or	not.

3.7 Secondly,	the	cause	of	the	emergence	of	intelligent	behaviour	is	not	known	as	stated	by	Dennett	(1987).	It	is	commonly	accepted
fact	that	intelligent	animals	including	human-beings	are	intentional.	In	other	words,	the	behaviours	of	the	animals	can	be
somehow	understood	and	predicted	by	employing	the	intentional	stance.	However,	it	cannot	be	known	what	causes	the
emergence	of	intelligent	behaviour;	therefore,	the	emergence	of	intelligence	cannot	be	simulated	by	only	applying	the	intentional
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notion.

3.8 Last	but	not	the	least	objection	to	the	intentional	notion	is	related	to	the	rationality	assumption.	While	explaining	these	stances,
Dennett	(2000)	simply	assumes	that	the	agents	are	rational.	The	rationally	debate	wass	initially	put	forward	by	Sloman	and	Logan
(1998).	They	stated	that	the	systems	that	are	developed	by	utilizing	findings	of	AI	are	neither	rational	nor	irrational.

3.9 Even	though,	the	above	opposition	is	a	good	starting	point,	a	more	serious	objection	is	put	forward	by	Stich	(1985).	He
questioned	if	a	man	is	ideally	rational	or	irrational.	He	argued	that	the	human-beings	often	have	beliefs	and/or	desires	which	are
irrational	and	the	intentional	stance	does	not	help	understanding	and	predicting	the	behaviours	which	are	the	result	of	irrational
beliefs	and/or	desires.

3.10 When	explaining	the	intentional	notion,	Dennett	(1987)	stated	that	the	animals	are	to	be	treated	as	rational	agents	and	then
attempted	to	understand	what	beliefs	an	agents	ought	to	have,	given	their	situation	and	purpose.	However,	as	explained	by	Stich
(1985),	human-beings	have	beliefs	and	desires	which	are	irrational.	Therefore,	while	trying	to	understand	and	predict	the
behaviours	of	intelligent	beings,	the	intentional	stance	fails	to	explain	the	behaviours	that	are	the	result	of	irrational	beliefs	and/or
desires.

3.11 Moreover,	in	many	cases	rational	behaviour	depends	on	time,	culture,	context,	limited	with	the	beliefs	an	intelligent-being	has.
Various	behaviours	of	human-beings	in	the	past	are	thought	to	be	rational,	while	today	some	of	them	look	irrational.	Many	more
behaviours	are	considered	as	rational	in	certain	cultures,	but	in	other	cultures	they	are	presumed	as	irrational.	Moreover,	all
intelligent	behaviours	are	limited	with	the	beliefs	of	an	intelligent-being,	which	in	turn	may	yield	irrational	actions.

3.12 The	last	but	not	the	least	concern	in	here	is	that	rationality	is	constrained	with	the	beliefs	an	intelligent-being	has.	For	instance,
consider	a	cat	is	given	to	Jack	as	a	present.	Assume	that	Jack	does	not	know	much	about	cats.	The	following	day,	assume	that
he	wants	to	go	outside.	Before	going	out,	he	decides	to	keep	the	cat	away	from	his	parlour.	Therefore,	he	rationally	closes	the
door	of	the	parlour!

3.13 Is	it	really	a	rational	behaviour	to	close	the	doors?	We	would	say	``No''	knowing	that	some	cats	can	open	a	closed	door.	Cats	are
capable	of	using	a	door	handle.	The	cats	can	jump	on	a	handle	and	by	pressing	down;	they	can	open	closed	doors	(Thorndike
1998).	Therefore,	Jack	should	have	locked	the	door	which	is	the	rational	action	to	take	before	going	out.	But	when	deciding,	he
had	a	belief	which	is	"Cats	cannot	open	the	closed	doors.''.	Actually,	this	belief	is	not	sufficient	to	provide	the	rational	action.
Therefore,	as	stated	previously	intelligent	behaviour	is	limited	with	the	beliefs	intelligent-beings	have.

3.14 In	the	frame	of	the	above	references,	along	with	the	ReCau	architecture	it	is	asserted	that	the	rationality	assumption	fails	to
explain	all	aspects	of	the	intelligent	behaviour.	However,	without	the	rationality	assumption	the	intentional	notion	is	very	useful	in
explaining,	understanding,	and	predicting	intelligent	actions.

3.15 Instead	of	the	rationality	assumption,	along	with	ReCau,	it	is	asserted	that	the	most	basic	assumption	of	intelligence	simulation
should	be	causality.	Basically,	causality	denotes	the	relationship	between	one	event	and	another	event	which	is	the	consequence
of	the	first.	The	first	event	is	called	as	the	cause	while	the	latter	is	called	the	effect.	The	cause	must	be	prior	to,	or	at	least
simultaneous	with,	the	effect.	According	to	the	causality,	the	cause	and	the	effect	must	be	connected	by	a	nexus	which	is	a	chain
of	intermediate	things	in	contact	(Pearl	2000).

3.16 By	the	proposed	approach,	it	is	suggested	that	intelligent	behaviour	is	produced	in	accordance	with	causality.	Firstly,	intelligent
entities	observe	their	internal	state	and	the	environment.	Then	based	on	the	perceived	input,	intelligent	entities	perform	some
actions	in	the	environment.	According	to	this	viewpoint,	perceived	input	is	the	cause	while	the	taken	action	is	the	effect.

3.17 Actually,	all	of	the	current	architectures	which	try	to	mimic	intelligent	behaviour	are	in	accordance	with	causality,	even	if	the
researchers	are	not	aware	of	this	fact.	In	other	words,	the	existing	architectures	produce	intelligent	behaviour	in	accordance	with
causality.	Therefore,	the	most	basic	assumption	of	the	simulation	intelligence	is	that	intelligent	behaviour	is	produced	in
accordance	with	the	causality.

3.18 Aside	from	this	fact,	according	to	the	present	approach	each	cause	and	effect	is	connected	by	a	particular	motive.	In	other	words,
in	the	proposed	approach	the	nexi	are	the	needs.	These	needs	provide	the	means	to	select	among	alternatives.	From	this	point
of	view,	while	producing	intelligent	behaviour	the	intelligent	beings	choose	a	plan	which	satisfies	their	motives	(i.e.	needs)	the
best.

3.19 Within	this	point	of	view,	one	can	understand	and	predict	an	intelligent-being's	behaviour	if	he	knows	its	motives.	Instead	of
considering	the	rational	actions	an	intelligent-being	has,	one	should	consider	its	motives.	Based	on	these	motives,	acts	of	an
intelligent	being	can	be	understood	and	predicted	by	considering	the	action	which	satisfies	the	associated	motive	best.

3.20 According	to	Britannica	Concise	Encyclopaedia,	the	term	motivation	refers	to	factors	within	an	animal	that	arouse	and	direct	goal-
oriented	behaviours	(Britannica	Concise	Encyclopaedia	2005).	Theories	of	human	motivation	have	been	extensively	studied	in
disciplines	such	as	Psychology.	Among	several	established	motivation	theories,	in	the	ReCau	architecture,	the	theory	of	needs
which	is	the	most	commonly	accepted	theory	in	explaining	motives	is	adopted.

3.21 The	original	theory	of	needs	was	proposed	by	Maslow	(1987).	According	to	this	theory,	human-beings	are	said	to	be	motivated
by	their	unsatisfied	needs.	Maslow	lists	these	needs	in	a	hierarchical	order	in	five	groups:	physiological,	safety,	love	and
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belongingness,	esteem	and	self-actualization.

3.22 The	lowest	level	needs	are	the	physiological	needs	such	as	air,	water,	food,	sleep,	sex,	and	so	on.	According	to	Maslow,	when
these	needs	are	not	satisfied,	sickness,	irritation,	pain	and	discomfort	can	be	felt.	These	needs	motivate	human-beings	to
alleviate	them	as	soon	as	possible.

3.23 Humans	also	need	safety	and	security	of	themselves	and	their	family.	This	need	can	be	satisfied	with	a	secure	house	and	good
neighbourhood.	In	addition	to	this,	safety	needs	sometimes	motivate	people	to	be	religious.

3.24 Love	and	belongingness	are	the	next	level	of	needs.	Human-beings	need	to	be	a	member	of	groups	like	family,	work	groups,	and
religious	groups.	They	need	to	be	loved	by	others	and	need	to	be	accepted	by	others.	According	to	Maslow	(1987),	it	is	an
essential	need	to	be	needed.

3.25 Esteem	needs	are	categorized	in	two	as	self-esteem	and	recognition	that	comes	from	others.	Self-esteem	results	from
competence	or	mastery	of	a	task.	This	is	similar	to	the	belongingness;	however,	wanting	admiration	has	to	do	with	the	need	for
power.

3.26 The	need	for	self-actualization	is	the	need	in	becoming	everything	that	one	is	capable	of,	as	far	as	physical	and	mental
capabilities	permit.	Human-beings	that	meet	the	other	needs	can	try	to	maximize	their	potential.	They	can	seek	knowledge,
peace,	aesthetic	experiences,	self-fulfilment,	and	oneness	with	deity,	and	so	on.

3.27 According	to	Maslow	(1987),	certain	lower	needs	are	to	be	satisfied	before	higher	level	needs	can	be	satisfied.	From	this
perspective,	once	the	lower	level	needs	are	taken	care	of,	human-beings	can	start	thinking	about	higher	level	needs.

3.28 By	expanding	and	revising	above	theory,	Existence,	Relatedness	and	Growth	(ERG)	theory	is	proposed	by	Alderfer	(1972).	In
ERG,	physiological	and	safety	are	placed	in	the	existence	category.	Relatedness	category	contains	love	and	external	esteem
needs.	The	growth	category	includes	the	higher	order	needs:	self-actualization	and	self-esteem.	Alderfer	(1972)	removed
overlapping	needs	in	the	hierarchy	of	Maslow	and	reduced	the	number	of	levels.	Therefore,	in	the	current	study	ERG	theory	is
adopted.	It	must	be	noted	that	ERG	needs	can	still	be	mapped	to	those	of	Maslow's	theory	(Aydin	and	Orgun	2010).

3.29 Along	with	this	approach	an	emotion	model	is	incorporated	in	ReCau	in	order	to	enable	ReCau	agents	to	display	affect.	In
ReCau,	affect	is	considered	to	be	post-cognitive	by	following	Lazarus	(1982).	According	to	this	point	of	view,	an	experience	of
emotions	is	based	on	a	prior	cognitive	process.	As	stated	by	Brewin	(1989),	in	this	process,	the	features	are	identified,	examined
and	weighted	for	their	contributions.

3.30 Maslow	(1987)	also	considers	emotions	as	post-cognitive.	While	explaining	the	needs,	he	states	that	if	the	physiological	needs
are	not	satisfied,	it	results	in	different	emotional	states	like	irritation,	pain	and	discomfort.	Hereby,	his	approach	is	extended	by
stating	that	the	satisfaction	or	the	dissatisfaction	of	not	only	physiological	needs	but	also	every	need	results	in	feeling	different
emotions.

3.31 While	explaining	emotions,	an	approach	that	commensurate	the	above	idea	is	adopted.	Specifically,	the	emotion	model	proposed
by	Wukmir	(1967)	is	adopted.	He	proposed	that	emotions	are	such	a	mechanism	that	they	provide	information	on	the	degree	of
favourability	of	the	perceived	situation.	If	the	situation	seems	to	be	favourable	to	the	survival	of	an	intelligent	being,	then	the	being
experiences	a	positive	emotion.	A	being	experiences	a	negative	emotion,	when	the	situation	seems	to	be	unfavourable	for
survival	of	the	being.

3.32 When	the	theories	of	needs	are	considered,	it	can	be	claimed	that	the	survival	of	the	beings	depends	on	meeting	their	needs.
From	this	point	of	view,	Wukmir's	(1967)	approach	and	theories	of	needs	can	be	combined.	According	to	this	proposal,	every
need	in	the	hierarchy	can	be	associated	with	two	different	emotions.	While	one	of	these	emotions	is	positive,	the	other	one	is
negative.	Whenever	a	particular	need	is	adequately	satisfied,	it	results	in	the	generation	of	a	positive	emotion;	since,	it	is
favourable	for	survival.	Likewise,	if	a	particular	need	is	not	sufficiently	satisfied,	it	results	in	a	negative	emotion.	It	is	because	of
the	fact	that	when	a	need	is	not	satisfied,	it	is	not	favourable	for	survival.

3.33 In	addition	to	these	features	of	ReCau,	social	learning	theory	is	also	incorporated	in	ReCau	architecture.	For	this	purpose,	social
learning	theory	proposed	by	Bandura	(1969)	is	adopted.	This	theory	focuses	on	learning	in	a	social	context.	The	principles	of
social	learning	theory	can	be	summarised	as	follows	(Ormrod	2003):

Agents	can	learn	by	observing	the	behaviours	of	others	and	the	outcomes	of	those	behaviours.
Learning	may	or	may	not	result	in	a	behaviour	change	of	an	agent.
Expected	reinforcements	or	punishments	can	have	effect	on	the	behaviours	of	an	agent.

3.34 Additionally,	Bandura	(1969)	suggests	that	the	environment	reinforces	social	learning.	He	states	that	this	can	happen	in	several
different	ways	such	as:

A	group	of	agents	with	strong	likelihood	to	an	agent	can	reinforce	learning	from	them.	For	instance,	a	group	of	planning
agents	who	use	a	hybrid	planning	approach	can	reinforce	the	other	planning	agents	to	learn	the	same	approach.
An	individual	third	agent	which	has	influence	on	an	agent	can	reinforce	learning	from	the	other	agents.	As	an	example,	a
planning	manager	agent	can	reinforce	one	of	the	planning	agents	to	learn	a	hybrid	planning	approach	from	the	other
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agents.
The	expectation	of	satisfaction	from	a	behaviour	that	is	performed	by	the	other	agents	can	reinforce	an	agent	to	learn.
The	agent	can	observe	that	the	other	agents	create	plans	faster	than	itself	due	to	the	use	of	the	hybrid	planning
approach.	In	turn,	the	agent	would	be	reinforced	to	learn	to	use	the	same	approach	to	create	plans	faster.

3.35 By	adopting	these	ideas	in	the	ReCau	architecture,	a	social	learning	model	is	proposed.	In	order	to	establish	the	model,
reinforcement	learning	is	utilized.	According	to	reinforcement	learning,	the	agents	learn	a	policy	of	how	to	act	given	an
observation	of	the	world.	The	policy	maps	the	states	of	the	world	to	the	actions	that	the	agent	ought	to	take	in	those	states
(Sutton	and	Barto	1998).

3.36 An	agent	can	learn	either	in	a	supervised	or	an	unsupervised	manner.	The	reinforcement	in	the	present	approach	is	provided	by
the	predicting	the	satisfaction	that	can	be	obtained	by	using	the	plan	to	be	learned.	If	an	agent	considers	that	the	plan	is
sufficiently	satisfactory	then	the	agent	starts	learning.	Otherwise,	the	agent	does	not	learn	the	plan.

3.37 In	the	supervised	learning	an	agent	receives	a	complete	plan	from	another	agent.	Since	reinforcement	learning	is	adopted,	the
plans	include	the	conditions	and	the	actions.	In	addition,	in	this	approach	when	providing	a	plan	to	another	agent,	an	agent
provides	the	associated	need.	In	the	proposed	approach,	reinforcement	realised	by	the	satisfaction.	To	put	in	practice,	a	social
context	to	an	agent	is	established	and	every	agent	is	grouped.

The	ReCau	Architecture

3.38 The	Reactive-Causal	Architecture	is	a	three	tiered	architecture	consisting	reactive,	deliberative	and	causal	layers.	While	the
lowest	layer	is	reactive,	the	highest	layer	is	causal.	The	reactive	layer	controls	perception	and	action.	The	deliberative	layer	has
capabilities	such	as	learning,	action	planning	and	task	dispatching.	In	the	highest	layer,	decision-making	and	emotion	generation
occurs.	The	components	of	the	architecture	are	shown	in	Figure	1.	Subsequently,	the	functions	of	these	components	are
elaborated.
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Figure	1.	Reactive-Causal	Architecture

3.39 ReCau	continuously	observes	internal	and	external	conditions	by	a	perception	controller.	After	receiving	these	conditions,	data	is
sent	to	a	filtering	mechanism.	The	filtering	mechanism	filters	out	data	which	is	not	related	with	the	predefined	needs	of	an	agent.	If
the	sensory	data	is	relevant	to	the	needs	of	the	agent,	the	motivation	activator	generates	a	goal	to	satisfy	the	corresponding
need.

3.40 To	realise	these	mechanisms	each	condition	is	related	to	a	need.	To	put	this	idea	in	practice,	all	of	the	needs	of	an	agent	are
organised	in	a	hierarchical	order.	While	defining	needs	Existence,	Relatedness	and	Growth	approach	proposed	by	Alderfer
(1972)	is	adopted.	According	to	the	design	purpose	of	the	architecture	needs	are	selected	in	accordance	with	the	ERG	approach.

3.41 The	goals	of	an	agent	are	held	in	a	queue.	In	this	queue	goals	are	in	a	hierarchical	order	in	accordance	with	the	level	of	the
corresponding	need.	The	goal	related	with	the	lowest	level	need	takes	the	first	order	in	the	hierarchy.	Being	in	the	first	place	in
the	queue	means	the	corresponding	goal	is	processed	first.	The	first	goal	in	the	queue	and	the	related	condition	and	need	are
sent	to	the	deliberative	layer	by	the	filtering	mechanism.	While	sending	the	goal,	condition,	and	need,	the	goal	is	removed	from
the	queue	and	agent	status	is	changed	as	busy.
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3.42 Whenever	a	goal,	a	condition	and	a	need	are	sent,	they	reach	a	reinforcement	learner.	The	reinforcement	learner	is	linked	to	a
plan	library.	By	using	data	in	the	plan	library,	the	reinforcement	learner	determines	if	learning	is	required	or	not.	If	the
reinforcement	learner	cannot	map	received	condition	with	a	plan,	the	agent	starts	learning.	Otherwise,	the	reinforcement	learner
sends	the	condition	and	goal	to	a	planner.

3.43 Whenever	the	planner	receives	the	condition	and	goal,	it	develops	a	plan	by	the	help	of	the	plan	library.	The	planner	of	ReCau	is
a	discrete	feasible	planner	which	means	the	state	space	is	defined	discretely.	The	planning	starts	in	an	initial	state	and	tries	to
arrive	at	a	specified	goal	state.	Initial	state	is	the	condition	received	and	the	goal	which	satisfies	the	associated	need	is	the	final
state.

3.44 In	ReCau,	each	goal	state	corresponds	to	a	certain	mean	value	of	satisfaction	degree	(μ)	and	a	variance	value	(σ2)	which	means
that	each	plan	alternative	corresponds	to	these	values.	When	the	plan	alternatives	are	developed	the	plan	alternatives	with
associated	values,	the	need,	and	the	condition	are	sent	to	a	manipulator.

3.45 The	responsibilities	of	the	manipulator	are	to	judge	plan	alternatives	and	resolve	conflicts	between	other	agents	by	using	a	belief
base.	When	the	manipulator	receives	a	condition,	if	it	is	required,	beliefs	are	updated	in	accordance	with	the	changing	condition.
Then	the	manipulator	simply	checks	post-conditions	of	each	plan	alternative.	If	there	is	a	belief	associated	with	the	post-condition,
manipulator	analyses	the	impact	of	the	belief	on	the	plan	alternative.	To	realise	this	impact,	each	belief	has	a	certain	impact	factor
(ψ).	The	impact	factor	is	a	value	between	-1	and	1	while	0	signifies	no	influence,	1	signifies	strongest	positive	impact.	The	positive
impact	factor	increases	the	mean	value	of	satisfaction	degree	while	negative	impact	factor	reduces	it.	The	manipulator
recalculates	the	mean	values	of	satisfaction	degrees	of	each	plan	alternative	by	using	these	impact	factors.	Recalculated	values
are	called	ameliorated	mean	values	of	satisfaction	degrees	(μ').	These	values	are	calculated	by	the	following	formula:

(1)

3.46 Having	calculated	the	ameliorated	mean	values,	the	plan	alternatives	along	with	these	values	are	sent	to	the	causal	layer.	The
plan	alternatives,	the	need,	the	goal	and	corresponding	values	reach	the	decision-making	mechanism	first.	The	decision-making
mechanism	uses	these	values	to	determine	the	satisfaction	degrees	for	each	plan	alternative.

3.47 To	determine	satisfaction	degrees,	initially	polar	technique	proposed	by	Box	and	Muller	(1958)	is	applied	to	generate	two
independent	and	identically	distributed	(iid)	uniform	random	variables	(U1	and	U2).	Then	these	variables	are	transformed	into	two
normally	distributed	random	numbers	(p1	and	p2).	These	are	independent	and	identically	distributed	variables.	Besides,	these
are	normally	distributed	random	numbers	with	mean	value	of	0	and	standard	deviation	of	1	(p1	and	p2	are	iid	N	≈	(1)).	After
obtaining	two	normally	distributed	random	numbers	(p1	and	p2),	one	of	them	is	used	to	calculate	a	satisfaction	degree	(δ).	The
formula	for	calculating	satisfaction	degrees	is	shown	below.

(2)

As	stated	before,	the	satisfaction	degree	should	be	between	0	and	1.	Therefore,	if	the	calculated	value	is	bigger	than	1	then
satisfaction	degree	is	set	to	1	and	if	the	calculated	value	is	less	than	0	the	satisfaction	degree	is	set	to	0.	Otherwise,	calculated
value	becomes	the	satisfaction	degree	of	the	corresponding	plan	alternative.

3.48 Each	plan	alternative	corresponds	to	different	mean	value	of	the	satisfaction	degree	and	variance	value.	Therefore,	for	each	plan
alternative	satisfaction	degree	is	to	be	calculated.	Then	these	values	are	compared	by	the	decision-making	mechanism	to	find
the	most	satisfactory	plan	alternative.	The	plan	alternative	with	the	highest	satisfaction	degree	is	considered	as	the	most
satisfactory	plan	alternative.

3.49 After	finding	the	most	satisfactory	plan	alternative,	it	is	selected	as	the	intention	of	the	agent.	The	intention	is	sent	to	emotion
generation	mechanism	along	with	the	satisfaction	degree,	the	need	and	the	goal.

3.50 In	the	emotion	generation	mechanism,	the	needs	are	associated	with	certain	emotions.	There	are	four	emotion	types	in	ReCau:
(1)	strong	positive	emotion,	(2)	positive	emotion,	(3)	negative	emotion,	and	(4)	strong	negative	emotion.	If	the	satisfaction	degree
is	above	or	below	certain	emotion	limits	then	the	corresponding	emotion	is	generated.	More	details	on	the	emotion	generation
mechanism	can	be	found	in	(Aydin	and	Orgun	2008).

3.51 After	determining	the	intention	and	the	emotion,	they	are	sent	to	the	dispatcher.	The	responsibility	of	the	dispatcher	is	to	assign
tasks	to	the	components.	To	assign	those	tasks,	according	to	the	intention	(i.e.,	the	selected	plan)	and	the	emotion,	the
dispatcher	obtains	the	details	of	the	plans	from	the	plan	library.	In	the	plan	library,	each	action	is	described	explicitly	in	such	a
way	that	each	action	corresponds	to	certain	components.	The	emotions	are	also	kinds	of	plans;	therefore,	they	are	held	in	the
plan	library.
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3.52 Then	the	details	of	the	actions	are	sent	to	the	actuator	controllers	through	the	attention	mechanism.	The	attention	mechanism
enables	the	agent	to	focus	on	meeting	the	active	motive.	While	executing	certain	actions	to	satisfy	a	particular	need,	it	keeps	the
agent	focused	on	that	activity.	To	do	so,	it	directs	the	controlling	mechanisms.	While	performing	the	actions,	if	the	agent's	active
goal	changes,	the	attention	mechanism	changes	the	focus	of	the	controllers.	In	other	words,	the	agent	stops	executing	the	action
by	warning	its	actuator	and	perception	controllers.	These	components	start	focusing	on	the	new	active	goal.	To	do	so,	the
actuator	delays	the	current	action	to	continue	after	finishing	the	new	active	goal.

3.53 The	last	component	of	the	reactive	layer	is	the	actuator	controller.	This	component	provides	a	means	to	perform	actions	in	the
environment.	To	perform	actions,	the	ReCau	agent	requires	external	components	like	a	body,	arms,	or	just	a	message	passing
mechanism.	These	additional	mechanisms	may	vary	according	to	the	design	purposes	of	an	agent.

3.54 More	details	on	the	theoretical	background,	components	and	mechanisms	of	the	ReCau	architecture	can	be	found	in	Aydin	and
Orgun	(2010).

	The	Description	of	the	Radar	Task	Simulation

4.1 In	the	field	of	organisational	research	many	researchers	focused	on	determinants	of	organisational	performance.	For	this
purpose,	organisational	theorists	attempted	to	develop	various	formalisms	to	predict	behaviour.	Several	formal	models	are
developed	by	using	mathematics,	simulation,	expert	systems	and	formal	logic.	Those	models	help	researchers	to	provide
information	on	organisational	behaviour,	determine	errors	and	gaps	in	verbal	theories,	and	determine	if	theoretical	propositions
are	consistent	(Carley	et	al.	1998).

4.2 Carley	et	al.	(1998)	explains	organisational	performance	as	a	function	of	the	task	performed.	A	typical	task	is	a	classification
choice	task	in	which	decision	makers	gather	information,	classify	it	and	make	a	decision	based	on	the	classified	information.	In
the	field	of	organisational	design,	many	researchers	adopted	the	radar	task	in	order	to	determine	the	impact	of	cognition	and
design	on	organisational	performance.	In	this	task	organisational	performance	is	characterised	as	accuracy.

4.3 In	the	radar	task,	the	agents	try	to	determine	whether	a	blip	on	a	radar	screen	is	a	hostile	plane,	a	civilian	plane,	or	a	flock	of
geese.	Originally,	there	are	two	types	of	radar	tasks.	The	first	one	is	static	and	the	second	one	is	dynamic.	In	the	static	version	of
the	task,	the	aircrafts	do	not	move	on	the	radar	screen.	In	the	dynamic	radar	task,	the	aircrafts	move	and	the	analysts	may
examine	an	aircraft	several	times	(Lin	and	Carley	1995).	In	the	present	study,	the	static	version	of	the	radar	task	is	adopted.
Therefore,	the	static	radar	task	is	explained	below.

4.4 In	this	task,	there	is	a	single	aircraft	in	the	airspace	at	a	given	time.	The	aircrafts	are	uniquely	characterized	by	nine	different
characteristics	(features).	The	list	of	these	features	is	shown	in	Table	1.

Table	1:	The	Features	of	an	Aircraft	[Source:	(Lin	and	Carley	1995)]

Name Range Categorisation	of	Criticality
Low Medium High

Speed 200-800	miles/hour 200-400 401-600 601-800
Direction 0-30	degrees 21-30 11-20 0-10
Range 1-60	miles 41-60 21-40 1-20
Altitude 5,000-5000	feet 35k-50k 20k-35k 5k-20k
Angle (-10)-(10)	degrees (4)-(10) (-3)-(3) (-10)-(-4)
Corridor	Status 0(in),	1(edge),	2(out) 0 1 2
Identification 0	(Friendly	Military),

1	(Civilian),
2	(Unknown	Military)

0 1 2

Size 0-150	feet 100-150 50-100 0-50
Radar	Emission	Type 0	(Weather),

1	(None),
2	(Weapon)

0 1 2

4.5 In	the	radar	task	simulations	each	of	the	above	characteristics	can	take	on	one	of	three	values	(low	=	1,	medium	=	2,	or	high	=	3).
A	number	of	agents	must	determine	whether	an	aircraft	observed	is	friendly	(1),	neutral	(2),	or	hostile	(3).	The	number	of	possible

aircrafts	is	19,683	which	is	the	number	of	different	unique	combinations	of	the	features	(39).

4.6 A	task	environment	can	either	be	biased	or	unbiased.	If	the	possible	outcomes	of	the	task	are	not	equally	likely,	it	is	said	that	the
task	environment	is	biased.	If	approximately	one	third	of	the	aircrafts	are	hostile	and	one	third	of	the	aircrafts	are	friendly,	then	the
environment	is	said	to	be	unbiased.	Lin	and	Carley	(1992)	state	that	biased	tasks	are	less	complex,	since	a	particular	solution
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outweighs	others.

4.7 The	true	state	of	an	aircraft	is	determined	by	adding	the	values	of	the	above	9	features.	In	an	unbiased	environment,	if	the	sum	is
less	than	17,	then	the	true	state	of	the	aircraft	is	friendly.	If	the	sum	is	greater	than	19,	then	the	true	state	of	the	aircraft	is	hostile.
Otherwise,	the	aircraft's	true	state	is	neutral.	The	true	state	of	the	aircraft	is	not	known	before	making	the	decision	(Lin	and	Carley
1992).

4.8 The	responsibility	of	the	organisation	is	to	scan	the	air	space	and	make	a	decision	as	to	the	nature	of	the	aircraft.	Some	of	the
agents	(the	analysts	of	the	organisation)	have	access	to	information	on	the	aircraft	related	to	its	features.	Based	on	this
information,	the	agents	make	decision	and	develop	a	recommendation	whether	they	think	the	aircraft	is	friendly,	neutral,	or
hostile.	The	recommendations	are	processed	or	combined	in	accordance	with	the	organisational	structure.	The	types	of
organisational	structures	are	as	follows	(Lin	and	Carley	1995):

Team	with	Voting:	In	this	type	of	an	organisational	structure,	each	analyst	has	an	equal	vote.	Each	analyst	examines
available	information	and	makes	a	decision.	This	decision	is	considered	as	the	vote	of	the	analyst.	The	organisational
decision	is	made	by	the	majority	vote.	This	structure	is	illustrated	in	Figure	2.

Figure	2.	Organisational	Structure	of	Team	with	Voting	[Source:	(Lin	and	Carley	1992)]

Team	with	Manager:	In	this	structure,	each	analyst	reports	its	decision	to	a	single	manager.	Like	the	team	with	voting,
analysts	examine	available	information	and	recommend	a	solution.	Based	on	these	recommendations,	the	manager
makes	an	organisational	decision.	The	Team	with	Manager	structure	is	shown	in	Figure	3.

Figure	3.	Organisational	Structure	of	Team	with	Manager	[Source:	(Lin	and	Carley	1992)]

Hierarchy:	In	the	hierarchical	structure,	each	analyst	reports	to	its	middle-level	manager	and	the	middle-level	managers
report	to	the	top-level	manager.	The	analysts	examine	available	information	and	make	recommendations.	Then	the
middle-level	managers	analyse	the	recommendations	from	their	subordinates	and	make	a	recommendation	to	the	top-
level	manager.	Based	on	the	middle-level	managers'	recommendations,	the	top-level	manager	makes	organisational
decision.	This	structure	is	illustrated	in	Figure	4.
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Figure	4.	Organisational	Structure	of	Hierarchy	[Source:	(Lin	and	Carley	1992)]

Matrix:	This	structure	is	also	a	hierarchical	structure.	However,	in	this	structure,	each	analyst	reports	to	two	middle	level
managers.	Each	analyst	examines	information	and	makes	a	recommendation.	By	examining	the	recommendations	of
their	subordinates,	the	middle-level	managers	make	decision	and	report	to	the	top-level	manager.	Top-level	manager
makes	an	organisational	decision	based	on	the	recommendations	of	the	middle-level	managers.	The	matrix	structure	is
shown	in	Figure	5.

Figure	5.	Organisational	Structure	of	Matrix	[Source:	(Lin	and	Carley	1992)]

4.9 As	illustrated	in	the	above	figures,	in	the	radar	task	simulations,	each	structure	consists	of	nine	analysts.	As	it	can	be	seen,	some
structures	also	include	middle	and/or	top-level	managers.

4.10 Within	an	organisation,	there	are	also	resource	access	structures.	These	structures	determine	the	distribution	of	information	to
the	analysts.	Each	analyst	may	have	access	to	particular	characteristics.	There	are	four	different	types	of	resource	access
structures:

Segregated:	In	such	a	structure,	each	agent	has	access	to	only	one	task	component.	This	structure	is	illustrated	in	Figure
6.
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Figure	6.	Segregated	Resource	Access	Structure	[Source:	(Lin	and	Carley	1992)]

Overlapped:	In	this	structure,	each	agent	has	access	to	two	task	components,	while	each	task	component	is	accessible
by	only	two	analysts.	Overlapped	resource	access	structure	is	shown	in	Figure	7.

Figure	7.	Overlapped	Resource	Access	Structure	[Source:	(Lin	and	Carley	1992)]

Blocked:	In	this	type	of	structure,	each	agent	has	access	to	three	task	components.	Three	analysts	have	access	to	the
exact	same	three	task	components.	If	these	three	analysts	are	in	a	hierarchical	organisational	structure,	then	they	report
to	the	same	manager.	This	structure	is	illustrated	in	Figure	8.

Figure	8.	Blocked	Resource	Access	Structure	[Source:	(Lin	and	Carley	1992)]

Distributed:	In	this	structure,	each	agent	has	access	to	three	task	components.	No	two	analysts	see	the	same	set	of	task
components.	If	these	analysts	are	in	a	hierarchy	or	a	matrix,	then	the	manager	would	have	indirect	access	to	all	the	task
components.	Distributed	resource	access	structure	is	shown	in	Figure	9.
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Figure	9.	Distributed	Resource	Access	Structure	[Source:	(Lin	and	Carley	1992)]

4.11 By	utilizing	these	structures,	the	radar	task	simulations	are	performed	to	determine	the	relative	impact	of	cognition	and	design	on
organisational	performance.	If	the	true	state	of	the	aircraft	is	the	same	with	the	final	decision	of	the	organisation	then	the	decision
is	correct.	For	a	set	of	problems,	the	percentage	of	the	correct	decisions	of	those	problems	determines	the	performance	of	the
organisation.

4.12 A	number	of	radar	task	simulations	are	performed	by	adopting	these	organisational	structures	and	resource	access	structures.	In
the	following	section	the	former	radar	task	simulations	are	discussed.

	Previous	Simulation	Results

5.1 By	implementing	the	radar	task	simulations,	researchers	attempt	to	analyse	organisational	performance.	For	this	purpose,
researchers	use	computational	models,	human	experiments	and	archived	data.	These	analyses	can	be	performed	at	a	micro
(small	group)	and/or	a	macro	(organisational)	level.	In	the	micro	level	studies,	a	hierarchy	has	a	single	tier.	In	other	words,	the
hierarchy	includes	only	one	manager	and	9	subordinates.	In	the	macro	level	studies,	a	hierarchy	may	be	multi-tier	structure
(Carley	et	al.	1998).	In	the	present	study,	only	micro	level	studies	are	considered.

5.2 Carley	et	al.	(1998)	are	the	first	researchers	who	studied	the	radar	task	simulations	at	the	micro	level.	They	adopted	two	resource
access	structures:	the	distributed	structure	and	the	blocked	structure.	At	the	same	time,	they	adopted	two	organisational
structures:	team	and	hierarchy.	They	implemented	the	simulation	in	such	a	way	that	the	organisations	faced	the	same	set	of	30
tasks	in	the	same	order	with	the	same	organisational	design	while	the	agent	models	varied.	In	the	first	30	tasks,	the	agents
received	feedback.	For	the	second	30	tasks,	the	agents	did	not	receive	any	feedback.

5.3 In	their	analysis,	they	performed	a	series	of	experiments	which	included	computational	models	and	humans.	These	are:

CORP-ELM,
CORP-P-ELM,
CORP-SOP,
Radar-SOAR,	and
Humans.

By	using	above	artificial	agents	and	humans,	they	aimed	to	compare	their	behaviour.	These	models	vary	in	complexity	and
realism.	CORP-SOP	is	the	simplest	model	while	the	most	complex	agents	are	humans.	Radar-SOAR	agents	are	less	complex
than	humans	while	they	are	more	realistic	than	CORP	models	(Carley	et	al.	1998).

5.4 CORP	is	a	computational	framework	which	is	a	simulated	testbed.	This	testbed	is	designed	to	enable	the	researchers	to	compare
the	performance	of	organisations	with	different	settings.	CORP	models	are	artificial	organisations	consisting	adaptive	agents	with
task	specific	abilities	(Carley	and	Lin	1995).

5.5 The	difference	in	CORP	models	is	related	to	their	decision	making	mechanism.	CORP-SOP	agents	make	decisions	by	following
standard	operating	procedures	provided	by	the	organisation.	CORP-ELM	agents	make	decisions	under	the	guidance	of	their	own
personal	experience.	CORP-P-ELM	agents	make	decisions	by	guessing	based	on	a	probabilistic	estimate	of	the	obtained
answers	through	their	own	experience	(Carley	et	al.	1998).

5.6 SOAR	agents	are	more	complex	artificial	entities.	They	are	based	on	the	SOAR	architecture	which	attempts	to	mimic	general
intelligence.	Radar-SOAR	is	a	composite	simulation	system,	specifically	designed	for	the	radar	task.	It	provides	a	way	to
compare	and	contrast	the	performance	of	SOAR	agents	on	the	radar	task	(Carley	and	Ye	1995).

5.7 Carley	et	al.	(1998)	used	four	different	organisational	designs	in	their	simulations:

A	team	with	voting	organisational	structure	and	a	blocked	resource	access,
A	team	with	voting	organisational	structure	and	a	distributed	resource	access,
A	hierarchy	with	a	single	supervisor	organisational	structure	and	a	blocked	resource	access,	and
A	hierarchy	with	a	single	supervisor	organisational	structure	and	a	distributed	resource	access.

In	all	of	these	settings,	there	were	nine	subordinated	(personnel)	who	obtain	and	analyse	information.	As	stated	before,	in	their
experiments	they	used	the	same	60	tasks.	The	results	of	the	radar	task	simulation	performed	by	Carley	et	al.	(1998)	are	shown
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in	Table	2.

Table	2:	Radar	Task	Simulation	Results	of	the	Original	Study	[Source:	(Carley	et	al.	1998)]

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
CORP-ELM 88.3 85.0 45.0 50.0
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-SOP 81.7 85.0 81.7 85.0
Radar-SOAR 73.3 63.3 63.3 53.3
Human 50.0 56.7 46.7 55.0

5.8 All	of	the	results	shown	in	this	subsection	are	performance	percentage.	According	to	these	results,	the	agent	models	performed
better	than	humans	in	all	the	team	situations.	Humans	showed	better	performance	than	CORP-ELM	and	CORP-P-ELM	in	the
hierarchy.	In	the	distributed	resource	access	structure	humans	performed	better.	However,	CORP-P-ELM	and	Radar-SOAR
agents	performed	better	while	the	resource	access	is	blocked.	The	other	agent	models,	performed	better	in	the	distributed
resource	access	like	humans.	CORP-P-ELM	agents	performed	the	worst	in	the	hierarchy,	while	humans	performed	worst	in	the
team	with	voting.	The	results	indicate	that	the	performance	in	a	different	organisational	setting	depends	on	the	type	of	the
employed	agent.

5.9 Sun	and	Naveh	(2004)	criticised	these	experiments	stating	that	the	agent	models	are	being	fairly	simplistic.	They	stated	that	the
intelligence	level	of	these	agents	including	SOAR	was	rather	low.	They	added	that	learning	was	not	complex	enough	to	mimic
human	cognition.	To	address	these	criticisms	they	performed	the	same	simulation	by	adopting	a	cognitive	architecture	called
CLARION.

5.10 In	their	simulations,	Sun	and	Naveh	(2004)	used	the	same	organisational	setting	while	employing	the	same	number	of	agents.
They	replaced	the	agents	with	CLARION	agents.	Then	they	chose	100	tasks	randomly.	In	these	settings,	they	performed	a
number	of	simulations.	The	first	simulation	was	a	docking	simulation	in	an	abstract	sense.	They	run	the	simulation	for	4,000
cycles	to	match	the	human	data.	The	results	of	this	experiment	and	previous	human	data	are	shown	in	Table	3.

Table	3:	Radar	Task	Simulation	Results	of	CLARION	Agents	[Source:	(Sun	and	Naveh	2004)]

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
Human 50.0 56.7 46.7 55.0
CLARION 53.2 59.3 45.0 49.4

All	of	the	above	results	are	performance	percentage.	According	to	these	results,	CLARION	achieved	the	best	performance	match
with	human	data.

5.11 In	the	second	simulation	they	performed,	they	increased	the	number	of	cycles	to	2000.	By	this	experiment,	they	proved	that
performance	can	be	improved	in	the	long	run	by	the	contribution	of	the	learning	approach	adopted	in	CLARION.	They	criticised
the	original	simulations	being	the	result	of	limited	training.

5.12 Their	findings	indicated	that	a	team	organisation	using	distributed	access	achieves	a	high	level	of	performance	quickly	then	the
learning	process	slows	down	and	the	performance	does	not	increase	much.	Contrary	to	this,	a	team	with	blocked	access	starts
out	slowly.	However,	it	reaches	the	distributed	access'	performance	in	the	long	run.	In	the	hierarchy,	they	stressed	that	learning	is
slower	and	more	erratic;	since,	two	layers	of	agents	are	being	trained.	They	indicated	that	when	there	is	a	hierarchy	in	a	blocked
access,	the	performance	is	worse;	since,	there	is	very	little	learning.

5.13 In	their	third	simulation,	they	varied	a	number	of	cognitive	parameters	and	observed	their	effect	on	the	performance.	With	this
simulation,	they	confirmed	the	effects	of	the	organisation	structure	and	the	resource	access	structure.	Besides,	they	found	that
the	interaction	of	the	organisation	structure	and	the	resource	access	structure	with	the	length	of	training	was	significant.	In
addition,	they	found	no	significant	interaction	between	the	learning	rates	with	the	organisational	settings.

5.14 In	their	last	two	simulations,	they	introduced	individual	differences	in	the	agents.	Firstly	they	replaced	one	of	the	CLARION	agents
with	a	weaker	agent.	Then	they	performed	simulation	in	a	hierarchy	with	distributed	resource	access.	Under	these	settings,	the
performance	of	the	organisation	dropped	by	only	three	to	four	per	cent.	They	concluded	that	the	hierarchies	are	flexible	enough	to
deal	with	a	single	weak	performer.	Secondly,	they	employed	CLARION	agents	with	a	different	learning	rate.	They	found	that	the
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hierarchy	performed	better	than	team	with	voting.	They	claimed	that	supervisors	could	take	individual	differences	into	account	by
learning	from	experiences.

	ReCau:	Radar	Task	Simulation

6.1 In	the	literature,	the	radar	task	is	chosen	to	analyse	interaction	between	design	and	cognition	for	several	reasons.	The	most
important	reasons	are	that	the	radar	task	is	inspired	from	a	real	world	problem	and	widely	examined.	The	other	reason	is	that	the
task	is	a	specific	and	well	defined	task.	Thirdly,	the	true	decision	can	be	known	and	feedback	can	be	provided.	Fourth,	multiple
agents	can	be	employed	in	a	distributed	environment	so	that	the	agents	can	work	on	different	aspects	of	the	task.	Fifth,	the	task
has	a	limited	number	of	cases;	therefore,	mathematical	techniques	can	be	used	to	evaluate	agent	performance.	The	last	but	not
the	least	important	reason	is	that	the	task	can	be	expanded	further	by	including	other	factors.

6.2 Beside	these	reasons,	in	the	present	study	the	radar	task	is	chosen	in	order	to	evaluate	the	decision-making	mechanism	of
ReCau.	The	decision-making	mechanism	is	the	most	significant	component	of	the	architecture.	In	the	present	study,	several
simulations	are	performed	to	test	the	decision-making	mechanism	of	ReCau.	These	simulations	are	performed	by	using
Netbeans	IDE	and	Java	Programming	Language.	The	simulation	codes	can	be	obtained	from	the	following	web	page:
http://web.science.mq.edu.au/~aaydin/

6.3 In	this	study,	the	same	organisational	settings	with	the	former	studies	are	implemented.	In	these	settings,	the	same	tasks	are
performed	by	ReCau	agents.	The	most	important	difference	between	previous	studies	and	this	study	is	that	the	former	studies
chose	a	set	of	problems.	They	performed	simulations	for	the	chosen	set	of	problems.	In	the	present	study,	all	of	the	tasks	are
generated	randomly	to	realise	a	real	unbiased	environment.	To	achieve	this	aim,	the	features	of	each	aircraft	are	generated
randomly	and	independently	from	each	other.	The	other	difference	is	that	in	the	present	study	the	length	of	the	simulation	is
higher.

6.4 Initially,	a	docking	simulation	is	performed	while	the	organisational	structure	is	the	team	with	voting.	By	performing	a	docking
simulation,	cognitive	parameters	are	adjusted	to	match	human	data	in	the	first	setting.	Then	the	same	cognitive	parameters	are
used	in	the	other	settings.

6.5 The	length	(cycle)	of	the	simulation	is	set	to	20,000	and	then	the	simulation	is	run	for	10	times	for	each	setting	separately.	The
results	of	the	docking	simulation	are	shown	in	Table	4.	The	results	shown	in	the	table	are	performance	percentage.

Table	4:	The	Docking	Simulation	Results

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
1 52.45 53.68 42.345 42.63
2 53.49 53.67 42.995 43.02
3 52.935 54.03 42.345 42.7
4 52.765 53.515 42.545 43.07
5 52.61 53.915 42.535 42.615
6 53.17 53.16 42.665 42.63
7 53.165 53.245 42.17 43.86
8 53.365 53.81 42.225 42.97
9 52.995 53.545 42.82 42.64
10 53.61 53.325 43.19 42.715
Average	Performance 53.0555 53.5895 42.5835 42.885
Mean	Values 0.65,	0.70,	0.75
Variance	Value 0.085

6.6 In	the	docking	simulation	the	variance	value	is	set	to	0.085	and	means	values	are	adjusted	as	follows:

If	the	aircraft	value	is	greater	and	equal	to	7:

Satisfaction	degree	for	hostile	is	0.75	Satisfaction	degree	for	neutral	is	0.70	Satisfaction	degree	for
friendly	is	0.65

If	the	aircraft	value	is	greater	and	equal	to	6:

Satisfaction	degree	for	hostile	is	0.70	Satisfaction	degree	for	neutral	is	0.75	Satisfaction	degree	for
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friendly	is	0.70

else:

Satisfaction	degree	for	hostile	is	0.65	Satisfaction	degree	for	neutral	is	0.70	Satisfaction	degree	for
friendly	is	0.75

The	above	given	satisfaction	degrees	are	determined	by	trial	and	error.	These	values	are	not	set	in	the	direction	of	any	guidance.
By	trying	several	alternative	satisfaction	degrees	above	values	are	obtained.	In	these	settings	the	best	match	with	human	data	is
achieved.

6.7 The	cognitive	parameters	of	ReCau	provide	very	high	flexibility.	To	illustrate	this	aspect	of	ReCau,	in	the	following	experiments
the	variance	value	in	the	decision-making	mechanism	is	reduced	to	low	levels	(0.05	and	0.01).	The	same	length,	the	number	of
replications,	settings	and	mean	values	are	used	in	these	simulations.	The	results	of	these	simulations	are	shown	in	Table	5.	In
this	table,	only	the	overall	average	performance	percentages	are	shown.

Table	5:	The	Simulation	Results	when	Variance	Value	is	Reduced

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
Average	Performance 59.2075 61.04 49.679 50.879
Mean	Values 0.65,	0.70,	0.75
Variance	Value 0.05
Average	Performance 75.5565 72.2895 72.3165 76.5915
Mean	Values 0.65,	0.70,	0.75
Variance	Value 0.01

As	can	be	seen	in	the	table,	while	the	variance	value	is	reduced,	the	performance	of	the	organisation	is	increasing.	The	highest
performance	is	achieved	in	a	hierarchy	with	distributed	resource	access.

6.8 In	the	following	simulation,	the	difference	between	the	mean	values	is	increased.	The	results	are	shown	in	Table	6.	In	these
simulations,	the	variance	value	is	once	again	set	to	0.085.

Table	6:	The	Simulation	Results	when	Differences	between	Mean	Values	are	Increased

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
Average	Performance 61.5195 63.5035 52.77 54.356
Mean	Values 0.60,	0.70,	0.80
Variance	Value 0.085
Average	Performance 70.263 70.5555 64.2985 68.7015
Mean	Values 0.50,	0.70,	0.90
Variance	Value 0.085

As	can	be	seen,	while	the	variance	value	is	constant,	if	the	difference	between	mean	values	is	increased,	the	performance
increases.	However,	with	smaller	variance,	better	performance	is	observed.	The	detailed	evaluation	of	the	radar	task	simulation
can	be	found	in	the	following	subsection.

	The	Evaluation	of	the	Radar	Task	Simulation

7.1 In	this	paper,	the	radar	task	simulation	is	undertaken	to	illustrate	and	evaluate	the	decision-making	mechanism	of	ReCau	and	to
better	understand	the	relation	between	organisational	design	and	cognitive	parameters.	For	this	purpose,	the	radar	task
simulations	are	performed	by	varying	cognitive	parameters	in	the	decision-making	mechanism	of	ReCau.

7.2 In	the	Table	7,	the	simulation	results	of	the	existing	architectures	and	the	docking	simulation	results	of	ReCau	are	shown	together
to	compare	the	results.

7.3 As	it	can	be	seen	in	the	table,	the	performance	of	the	ReCau	agents	matches	the	human	data	well.	A	better	match	in	this	task
means	closer	performance	percentage	to	human	data.	ReCau	performance	best	matches	human	data	in	a	team	with	voting
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organisational	structure.	The	performance	of	the	CLARION	agents	also	matches	human	data	very	well.	Especially,	in	the	first
three	setting,	the	performance	percentage	difference	between	CLARION,	ReCau	and	humans	is	around	3	per	cent.	However,	the
performance	of	CLARION	agents	matches	human	data	better	in	hierarchy	with	distributed	resource	access	structure.

Table	7:	Comparison	of	Docking	Simulation	Results

Agent Organisational	Design
Team Hierarchy

Blocked Distributed Blocked Distributed
CORP-ELM 88.3 85.0 45.0 50.0
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-SOP 81.7 85.0 81.7 85.0
Radar-SOAR 73.3 63.3 63.3 53.3
CLARION 53.2 59.3 45.0 49.4
ReCau 53.1 53.6 42.6 42.9
Human 50.0 56.7 46.7 55.0

7.4 The	results	show	that	the	performance	of	ReCau	in	docking	simulation	is	generally	closer	to	human	performance	than	CORP
series	and	Radar-SOAR.	As	stated	by	Sun	and	Naveh	(2004),	those	models	are	fairly	simplistic.	However,	the	decision-making
model	of	ReCau	is	highly	realistic.	On	the	other	hand,	the	trial	and	error	fashion	learning	model	adopted	in	CLARION	enable
CLARION	agents	to	match	human	data	slightly	better.	It	is	because	of	the	fact	that	a	little	learning	took	place	in	the	original
simulation	performed	on	humans.

7.5 The	performance	pattern	of	ReCau	agents	also	matches	human	data.	As	it	can	be	seen,	in	the	distributed	resource	access
structures	the	ReCau	performs	slightly	better.	It	is	the	same	for	human	data.	Humans	also	perform	better	in	the	distributed
resource	access	structures.	Humans	and	the	ReCau	agents	show	the	best	performance	in	a	team	with	distributed	resource
access	structure.	They	show	the	worst	performance	in	a	hierarchy	with	blocked	resource	access	structure.

7.6 From	these	results,	it	can	be	deduced	that	the	distributed	resource	access	structure	has	positive	impact	over	performance.
Except	for	CORP-SOP	agents,	the	performance	of	all	agents	is	higher	in	a	team.	Therefore,	it	can	be	asserted	that	the	agents
including	the	ReCau	agents	perform	better	in	a	team.

7.7 In	ReCau	simulations,	the	learning	approach	proposed	by	ReCau	is	not	implemented;	since,	social	learning	is	not	an	appropriate
approach	to	adopt	in	this	type	of	a	task.	Under	this	setting,	the	findings	support	the	results	of	Sun	and	Naveh	(2004).	They	stated
that	very	little	learning	takes	place	in	a	hierarchy	with	a	blocked	access.	The	results	of	ReCau	simulations	confirm	this	finding;
since,	the	performance	of	ReCau	agents	matches	human	data	well	without	employing	any	learning	approach.

7.8 It	must	be	noted	that,	in	the	original	simulation	study	very	little	learning	took	place.	It	is	because	of	the	fact	that	the	results	of	the
original	study	are	the	result	of	limited	training.	Therefore,	the	radar	task	simulation	provides	a	very	good	test	bed	for	testing
decision-making	mechanism	of	ReCau.

7.9 The	most	significant	performance	difference	between	human	data	and	the	ReCau	agents	is	observed	in	a	hierarchy	with
distributed	resource	access	structure.	The	performance	of	the	CLARION	agents	matches	human	data	better	in	this	setting.
These	results	indicate	that	the	learning	is	more	effective	in	a	hierarchy	with	distributed	resource	access	structure.

7.10 Carley	et	al.	(1998)	stated	the	same	predictive	performance	accuracy	with	human	data	can	be	achieved	by	more	cognitively
accurate	models	at	the	micro	levels.	In	the	light	of	this	fact,	the	findings	of	the	docking	simulation	of	ReCau	indicate	that	the
decision-making	mechanism	proposed	along	with	ReCau	is	highly	realistic.

7.11 When	the	cognitive	parameters	in	the	decision-making	mechanism	of	ReCau	are	varied,	higher	performance	percentages	are
achieved.	Even	though,	the	performance	percentages	of	ReCau	cannot	go	as	high	as	CORP	models,	it	still	holds	promise	to
perform	like	humans	in	this	type	of	choice	tasks.

7.12 The	simulation	results	of	ReCau	also	reveal	interesting	results	with	regards	to	the	organisational	theory.	The	performance
percentages	of	ReCau	agents	confirm	the	results	of	Carley	et	al.	(1998)	who	stated	that	the	agent	cognition	interacting	with
organisational	design	affects	organisational	performance.

7.13 The	results	indicate	that	the	organisational	structure	has	a	more	significant	effect	on	performance	than	the	resource	access
structure.	In	the	docking	simulation,	the	performance	of	ReCau	agents	is	significantly	different	in	different	organisational
structures.	However,	there	is	no	significant	performance	difference	while	the	agents	are	in	the	same	organisational	structure	and
the	resource	access	structure	is	different.
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8.1 The	simulation	results	indicate	that	ReCau	provides	a	highly	realistic	decision-making	mechanism.	In	ReCau,	satisfaction
degrees	are	normally	distributed	random	numbers	coming	from	certain	mean	and	variance	values.	As	a	result,	the	proposed
approach	provides	a	degree	of	randomness	in	the	process	which	in	turn	explains	human	intelligent	behaviour.	Therefore,	the
decision-making	mechanism	of	ReCau	simulates	the	human	behaviour	better.

8.2 In	its	current	form,	Reactive-Causal	Architecture	provides	a	good	infrastructure	for	believable	agents.	However,	in	the	future	a
number	of	improvements	can	be	made.	For	instance,	hierarchical	and/or	the	non-linear	planning	approaches	can	be	adopted	to
increase	the	efficiency	of	ReCau.

8.3 The	emotion	model	adopted	in	ReCau	is	very	simplistic.	Even	though	in	its	current	form	it	provides	a	means	to	illustrate	the	ideas
of	Maslow,	it	can	be	further	improved.	For	instance,	there	might	be	conflicting	needs	each	of	which	is	satisfied	to	a	certain	extent.
Therefore,	in	the	future,	the	emotion	model	of	ReCau	can	be	further	extended	to	display	affect	different	emotions	in	such	cases.

8.4 The	type	of	learning	adapted	in	ReCau	is	based	on	the	theories	of	social	learning	and	it	is	not	implemented	in	the	current
simulation.	In	the	near	future,	an	approach	to	enable	the	ReCau	agents	to	learn	from	their	mistakes	can	be	incorporated	and
social	learning	approach	can	be	implemented.	After	adopting	these	approaches,	the	radar	task	simulation	can	be	performed	once
again.

8.5 While	performing	such	a	simulation	study,	human	simulation	must	be	performed	once	again	to	obtain	better	results.	It	is	because
of	the	fact	that	in	the	original	simulation,	humans	were	not	allowed	to	learn	sufficiently.	In	such	a	study,	we	plan	to	enable	humans
to	learn	socially	and	learn	from	their	mistakes	by	providing	feedback.	Therefore,	in	the	near	future,	we	plan	to	perform	this
simulation	on	humans	and	by	employing	ReCau	agents.
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