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a b s t r a c t 

Recently, electroencephalogram (EEG) signal presents a great potential for a new biometric system to deal 

with a cognitive task. Several studies defined the EEG with uniqueness features, universality, and natural 

robustness that can be used as a new track to prevent spoofing attacks. The EEG signals are the graph- 

ical recording of the brain electrical activities which can be measured by placing electrodes (channels) 

in various positions of the scalp. With a large number of channels, some channels have very important 

information for biometric system while others not. The channel selection problem has been recently for- 

mulated as an optimisation problem and solved by optimisation techniques. This paper proposes hybrid 

optimisation techniques based on binary flower pollination algorithm (FPA) and β-hill climbing (called 

FPA β-hc) for selecting the most relative EEG channels (i.e., features) that come up with efficient accuracy 

rate of personal identification. Each EEG signals with three different groups of EEG channels have been 

utilized (i.e., time domain, frequency domain, and time-frequency domain). The FPA β-hc is measured us- 

ing a standard EEG signal dataset, namely, EEG motor movement/imagery dataset with a real world data 

taken from 109 persons each with 14 different cognitive tasks using 64 channels. To evaluate the perfor- 

mance of the FPA β-hc, five measurement criteria are considered:accuracy (Acc), (ii) sensitivity (Sen), (iii) 

F-score (F_s), (v) specificity (Spe), and (iv) number of channels selected (No. Ch). The proposed method 

is able to identify the personals with high Acc, Sen., F_s, Spe, and less number of channels selected. In- 

terestingly, the experimental results suggest that FPA β-hc is able to reduce the number of channels with 

accuracy rate up to 96% using time-frequency domain features. For comparative evaluation, the proposed 

method is able to achieve results better than those produced by binary-FPA-OPF method using the same 

EEG motor movement/imagery datasets. In a nutshell, the proposed method can be very beneficial for 

effective use of EEG signals in biometric applications. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Several decades ago, the world was transformed into a digital

ociety where every individual has a unique digital identifier. Dig-

tal identifiers can be categorised into traditional identifiers, such

s using passwords and ID cards. However, this kind of identifier

an be easily circumvented [1] . Therefore, another type of identi-
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er that is based on a person’s behaviour or personal characteris-

ics, which are called biometrics, was established; it includes face,

oice, fingerprint and iris recognition [2] . Personal identification

ia biometric systems has recently attracted the attention of se-

urity research communities. Security systems are considered one

f the most important challenges that any society seeks to resolve

ontinually. One of the main tools for security systems is the use

f personal identification systems. However, the widespread use of

ersonal identification for biometric systems has resulted in a new

hallenge called spoofing [1,3,4] . The spoofing personal identifica-

ion dilemma is the most dangerous challenge facing any security

ystems. In principle, spoofing methods are used to attack the se-

urity of biometric systems and allow unauthorised persons to en-
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Fig. 1. Distribution of electrodes (channels) to 64 different positions. 
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ter the system [2] . Several spoofing attacks on biometric systems

have already occurred [5] . Examples include the following: Face

recognition systems have been spoofed using several attacks, such

as “printed photo to spoof face recognition systems on three laptops”

2D face spoofing, and 3D mask attacks [6] . Fingerprint scanning

has been attacked using “gummy fingers” [7] . A Finger-vein com-

mercial system has been spoofed by using a piece of paper [8] .

An iris recognition system has been spoofed by using an eyeball in

front of an iris scanner [9] . Voice recognition has been spoofed by

replaying a voice recording in front of a speaker recognition system

[5] . Given these attacks, new biometric identification systems are

required to identify persons based on invisible characteristics and

thus eliminate external threats . These new biometric identification

systems can be developed using an authentication method based

on brain signal electroencephalogram (EEG) [10] . 

EEG signals have been recently captured and recorded accu-

rately; they can be plugged to new biometric systems to en-

hance their defense strategies. Several studies has shown that

EEG presents unique features [11] , universality [4] and natural ro-

bustness to spoof attacks [1,12] . EEG signals represent a graphical

recording of the brain’s electrical activity, which can be measured

by placing electrodes (channels) in various positions on the scalp

[1,13] . 

Marcel and Jose in [14] proofed that the brain-wave has a pat-

tern of every individual is unique which can be used as a new

biometric for person identification. Also, they expected the EEG-

based person identification technique will be an interesting area

for new research directions and applications in the future. Also,

Palaniappan and Mandic [12] proposed a method for person iden-

tification using Visual Evoked Potential (VEP) with energy features

of the gamma band as a feature extracted for the EEG signal. The

proposed method was tested on a large group of subjects and it

achieved a high accuracy rate. The results showed that the analy-

sis and simulations have clearly indicated the significant potential

of brain electrical activity as biometrics. Rodrigues et al. [1] used

the Binary Flower Pollination Algorithm (BFPA) [15] to obtain the

best channels concerning EEG signals for person verification pur-

poses. The authors used a standard EEG dataset focused on motor

and movement and imagination [16] using autoregressive models

with different orders for feature extraction. They authors were able

to obtain recognition rates of around 86% using the Optimum-Path

Forest (OPF) classifier with a reduction in the number of EEG chan-

nels to half. Alyasseri et al. [4] proposed a novel approach for user

identification based on the EEG signals. The method used a multi-

objective Flower Pollination Algorithm and the Wavelet Transform

(MOFPA-WT) to extract EEG features, in which several variations

of EEG energy information from the EEG sub-bands have been ex-

tracted. The MOFPA-WT method extracts several time-domain fea-

tures. The performance results were evaluated using accuracy, sen-

sitivity, specificity, false acceptance rate, and F-score. The MOFPA-

T method was compared with some state-of-the-art techniques

using different criteria with promising results. 

One of the main challenges in the EEG-based user identifica-

tion technique is signal acquisition. The acquisition process is im-

plemented by placing a number of electrodes (channels) on top of

a person’s head, as shown in Fig. 1 . This process might be slightly

uncomfortable. High proficiency is required to hang electrodes in

their correct positions. Several problems should be carefully ad-

dressed in this case. For example, unnecessary electrodes hung on

the top of a persons’ head must be removed. Thus, only the most

relevant EEG channels must be selected for user identification. The

selection of EEG channels has been recently modeled as an optimi-

sation problem and addressed by using several optimisation meth-

ods. 

Recently, several researchers have utilised different methods to

select EEG channels [1,17–19] . Rodrigues et al. [1] used the binary
ower pollination algorithm (BFPA) [15] to obtain the best chan-

el for the EEG signal with the highest recognition rate for person

dentification. The authors tested the approach by using a standard

EG dataset that focused on motor and movement and imagina-

ion [16] . The BFPA method extracted the autoregressive feature in

, 10 and 20 different orders. The authors obtained the highest

ecognition rate of 86% by using the optimum-path forest (OPF)

lassifier, and the number of EEG channels was reduced to half.

he authors comparatively evaluated the method against five opti-

isation methods (binary genetic algorithm (BGA), binary particle

warm optimisation (BPSO), binary firefly algorithm (BFFA), binary

armony search (BHS) and binary charged system search (BCSS)),

nd the proposed method ranked first. 

FPA is a recent optimisation swarm intelligence method pro-

osed by Yang [15] and inspired by the mating process of flowering

lants. It has several advantages over other optimisation methods.

t does not require intensive configurations in the initial run nor

equired derivative data to begin. It has several positive features,

uch as simplicity, ease of use, extendability, adaptability, flexibil-

ty, soundness and completeness. Given its impressive features, it

as been successfully utilised for several optimisation problems,

uch as identification systems [3,4] . 

Although FPA has been intensively mastered for simple opti-

isation problems, it exhibits challenges in dealing with nonlin-

ar, non-convex optimisation problems with combinatorial features

n nature, such as the EEG channel selection problem. Therefore,

he theories of FPA have been improved either by hybridizing the

ethod with other optimisation techniques or tweaking its current

perators for the approach to become relevant in addressing the

omplexity of the optimisation problem on hand. 

Given that EEG channel selection can be considered a complex

ptimisation problem [1] , this study proposes an optimum EEG

hannel selection method by means of a binary constrained version

f hybridizing FPA with β-hill climbing. The proposed approach is

alled FPA β-hc, and it can determine the optimal subset of chan-

els. The radial basis function-kernel support vector machine (RBF-

VM) classifier for personal identification is used to measure the

ccuracy of the channels selected. The proposed method (FPA- βhc)

elects EEG channels from three different groups, namely, time
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omain, frequency domain and time-frequency domain features.

PA β-hc is tested using a standard EEG signal dataset, namely, EEG

otor movement/imagery dataset 1 , with real-world data obtained

rom 109 persons each with 14 different cognitive tasks using 64

hannels. The following five measures were used to evaluate the

erformance of FPA β-hc:(i) accuracy (Acc), (ii) sensitivity (Sen),

iii) F-score (F_s), (v) specificity (Spe), and (iv) number of channels

elected (No. Ch). For performance evaluation, the results of the

roposed method are compared with those obtained in [1] by us-

ng the same EEG motor movement/imagery dataset. FPA β-hc can

educe the number of channels and achieves an accuracy rate of

p to 96% by using time-frequency domain channels. 

The rest of this paper is organised as follows: Section 2 ex-

lains the EEG channels selection problem. Section 3 provides

he background of FPA and β-hill climbing algorithm. The selec-

ion schemes are presented in Section 4 . An analysis of the re-

ults obtained by the proposed method is provided in Section 5 .

ection 6 presents the conclusions and future work directions. 

. EEG Channel selection problem 

EEG channel selection is formulated as an optimisation prob-

em. Therefore, two main optimisation concepts, namely, solution

ormulation and objective function, are required to utilise any opti-

isation algorithm for EEG channel selection. This section provides

nformation on the EEG channels selection problem and how this

roblem is modelled in terms of optimisation context. 

.1. Features for EEG channel selection 

Extracting an effective f eature (or EEG channel) is crucial in any

uthentication system [20,21] . The main purpose of the extracted

eature is to find unique patterns from input EEG signals that allow

or the achievement of a high classification rate. Feature extrac-

ion generally involves converting a raw EEG signal into a relevant

ata structure called a feature vector x = (x 1 , x 2 , . . . , x N ) by delet-

ng noise and highlighting important data. It could also include

dimensionality reduction,” which eliminates redundant and noisy

eatures (repeated data) from the feature vector, to facilitate the

lassification process [22] . According to Phinyomark [23] , Ang et al.

24] , the features that can be extracted from any bio-signals, such

s EEG, ECG and EMG, can be categorised into three types: time

omain features (TDF), frequency domain features (FDF), and time-

requency domain features (T-FDF). These features are explained

nd formulated as follows. 

• TDF : This type of feature is commonly used with bio-signals

because of its easy and quick extraction from the original sig-

nals, given that it does not require a transformation. TDFs are

extracted using the signal amplitude, and the resultant values

provide a measure of frequency, waveform amplitude and du-

ration within several limited parameters [22] . 

The TDF type can be formulated as follows: 

1. Mean ( EEG Mean ) 

E E G Mean = 

1 

N 

∗
N ∑ 

j=1 

D i j , i = 1 , 2 , 3 , . . . , L, (1)

where D ij is a time series and N is the number of EEG data

points. 

2. Standard deviation ( EEG Std ) 

E E G Std = 

√ √ √ √ 

1 

N 

N ∑ 

j= i 
(x i − x ) 2 , i = 1 , 2 , 3 , . . . , L, (2)
1 https://www.physionet.org/physiobank/database/eegmmidb/ . 

 

where x is the mean value. 

3. Entropy ( EEG Entropy ) 

E E G Entropy = −
∑ 

p(x ) log p(x ) (3)

4. Energy ( EEG Energy ) 

E E G Energy = 

N ∑ 

j=1 

| D i j | 2 , i = 1 , 2 , 3 , . . . , L (4)

5. Root mean square ( EEG RMS ) 

E E G RMS = 

√ √ √ √ 

1 

N 

∗
N ∑ 

j=1 

x 2 
i 

(5) 

6. Variance ( EEG VAR ) 

E E G VAR = 

1 

N 

∗
N ∑ 

j=1 

(x i − x ) 2 , (6)

where x is the mean value of the EEG signal. 

7. Maximum peak value ( EEG MPV ) 

E E G MPV = max | x i | (7)

8. Skewness ( EEG Skewness ) 

E E G Skewness = 

1 

N 

∗
N ∑ 

j=1 

D i j , i = 1 , 2 , 3 , . . . , L, (8)

where Skewness is the moment coefficient of skewness. 

9. Kurtosis ( EEG Kurtosis ) 

E E G Kurtosis = 

1 

N 

∗
N ∑ 

j=1 

D i j , i = 1 , 2 , 3 , . . . , L (9)

10. Cross correlation ( EEG CCR ) 

E E G C C R = 

1 

N 

∗
N ∑ 

j=1 

D i j , i = 1 , 2 , 3 , . . . , L (10)

• FDF : This type of EEG feature requires more computational

time than TDF. Usually, FDF is measured using the EEG esti-

mated power spectrum density (PSD) or autoregressive coeffi-

cient features [22] . 

The FDF type is formulated as follows: 

1. Autoregressive coefficients (AR) 

E E GAR seg = −
N ∑ 

i =1 

a i ∗ x seg−i + e ∗ seg, (11)

where a i is the AR coefficients for feature i, e is white noise

or the error sequence and N is the order of the AR model. 

2. Power spectrum density ( EEG PSD ) 

E E G PSD = | 
N−1 ∑ 

i =0 

x i ∗ e 
− j∗2 ∗π∗seg i 

N | 2 , (12)

where seg = 0; 1; 2,... N is the length of the EEG data. 
• T-FDF : T-FDF can be represented by localizing the signal en-

ergy in terms of time and frequency, and it can provide an ac-

curate description of the physical phenomenon. However, these

features generally require a shift that may be computationally

heavy. The most commonly used in T-FDF is the short time

Fourier transform (STFT) feature [22] . The Fourier transform

technique divides the input signal into segments; then, the sig-

nal in each window can be assumed to be stationary. The STFT

can be formulated as follows: 

E E GST F T x (t,w ) = 

∫ 
W ∗ (τ − t) x (τ ) e jwτ dτ, (13)

where W ( t ) is the window function, τ represents time and w
stands for frequency. 

https://www.physionet.org/physiobank/database/eegmmidb/
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Fig. 2. EEG dataset representation. 
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2.2. Modelling of EEG channel selection features 

To model the features of the EEG channel selection problem, we

have to know how to represent the captured EEG signal inside a

standard dataset. In general, the EEG dataset can be represented as

a matrix of size K × d , where K is calculated as S × R × T, S denotes

the number of subjects, R denotes the number of trials and T de-

notes the number of tasks. Each EEG channel (sensor) can capture

brain activity from the human scalp. Th activity is then presented

as a single set of raw EEG data. The total number of EEG chan-

nels is presented as a vector of d channels, C = (ch 1 , ch 2 , . . . , ch d ) .

Each of these channels is represented as a set of features that

can be extracted from the original EEG (e.g. the features ex-

plained in Section 2.1 ). For instance, ch i can be represented as a

set of { E E G Mean (i ) , E E G Std (i ) , E E G Energy (i ) , . . . , E E GST F T x (i ) } , where

i refers to the channel number between within ( 1 , 2 , . . . , d). Fre-

quently, the current EEG dataset cannot be modelled into the

EEG channel selection problem because the high dimensionality

of the current EEG dataset leads to a complex problem. For this

case, the mean value (i.e. Chmv ) is calculated for each feature

to represent the channel value to be stored on the correspond-

ing location of that channel in the final EEG dataset (i., e., C =
(C hm v 1 , C hm v 2 , . . . , C hm v d ) ). 

hm v i = 

∑ d 
i =1 (E E G Mean (i ) + E E G Std (i ) + . . . + E E GST F T (i )) 

K 

Fig. 2 (step 1 and 2) shows the final EEG dataset representation

of EEG data recorded from several subjects. 

Notably, each subject can record several tasks and trials for the

same task (see Eq. (14) ). This represents the final EEG dataset with

K records, where K refers to S × R × T, S denotes the number of
ubjects, R denotes the number of trials and T denotes the number

f tasks. 

 E G f eatures = 

⎡ 

⎢ ⎢ ⎣ 

Chm v 1 1 Chm v 1 2 · · · Chm v 1 
d 

Chm v 2 1 Chm v 2 2 · · · Chm v 2 
d 

. . . 
. . . · · ·

. . . 

Chm v K 1 Chm v K 2 · · · Chm v K 
d 

⎤ 

⎥ ⎥ ⎦ 

. (14)

Notably, not all of these features are useful for final decisions.

everal of these features affect the efficiency of the results by in-

reasing the misclassification rate (i.e. using all of these features

ffects the unique pattern of the EEG signal). Therefore, only use-

ul EEG features with the highest accuracy rate must be used. One

f the best ways to solve this problem is implementing a feature

election technique to select optimal EEG channels. 

In short, the EEG channel selection solution can be represented

s a binary vector C = (C hm v 1 , C hm v 2 , . . . , C hm v d ) of d channels,

here Chm v i = 1 means that channel i is selected and 0 other-

ise. The conversion of the mean value of the channel ( Chmv ) is

erformed based on the transfer function of sigmoid ( Eq. (21) ).

ig. 2 (step 3) shows an example of binary solution representa-

ion of EEG channel selection. Optimal channels are selected ac-

ording to an objective function such as in Section 2.3 where the

est channels that achieved the best results are selected. 

.3. Objective function 

This section describes in details the objective function of EEG

hannels selection. However, we must first know the measures

hat directly affect the objective functions of EEG channel selec-

ion. These measures can be summarised as follows: 
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Fig. 3. Solution representation of EEG channel selection. 
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1. True accept ( T a ) is the percentage measure of valid matches. It

is the number of times (in percentage) the system recognises

authorised users as genuine users. 

2. True reject ( T r ) is the measure of times (in percentage) the sys-

tem recognises unauthorised users as impostors . It is the per-

centage measure of rejecting invalid users. 

3. False accept ( F a ) is the percentage measure of invalid matches.

It is the number of times (in percentage) the system recog-

nises unauthorised users as genuine users. For a robust biomet-

ric system, this error must be as low as possible. 

4. False reject ( F r ) is the measure of times (in percentage) the sys-

tem recognises unauthorised users as impostors . It is the per-

centage measure of rejecting valid inputs. From the user’s point

of view, this number must be as low as possible. 

The objective function used to evaluate the classification per-

ormance of EEG channel selection in this work is formulated in

q. (15) , as suggested by Xue et al. [25,26] . 

ax f (C) = 

T a + T r 

T a + F a + T r + F r 
, (15) 

here f ( C ) denotes the objective function and T a , T r , F a and F r rep-

esent the true acceptance, true reject, false acceptance and false

eject, respectively. 

EEG data are generally divided into training and testing datasets

1] . The main purpose of the training phase is to select the opti-

al EEG channel set that can achieve the highest accuracy rate.

uring the running time of the algorithm, the features of each sin-

le EEG row as visualised in Fig. 2 are converted into binary values

nd passed to a classifier technique to calculate the accuracy rate.

his case is repeated within each iteration of the algorithm. After

 certain number of iterations, the best EEG channel set (optimal

et) is selected and represented as a binary vector, as shown in

ig. 3 (step 1), where 1 means that the channel is selected and 0
therwise. With the selection of the selected optimal EEG channel

et, the training phase is achieved. Notably, the final results on the

ccuracy rate are calculated according to these features of the se-

ected channels in the testing dataset. For instance, Fig. 3 presents

he procedure of calculating the final accuracy rate ( f ( C )) for one

erson. Step 1 shows how to generate the binary value for EEG

hannel selection. Then, this binary vector is passed to a classi-

er, such as SVM, KNN, to find objective function parameters T a ,

 r , F a and F r , as shown in Step 2. T a represents the true acceptance

ercentage of person i and indicates how many times the classi-

er correctly classified the EEG features of person i. F a represents

he false acceptance percentage of person i and shows how many

imes the classifier classified the EEG features from other persons

s those of person i. F r represents the false reject percentage of

erson i and indicates how many times the classifier classified the

EG features of person i as those of other persons. In Step 3, the fi-

al accuracy rate ( f ( C )) is calculated by repeating these three steps

ntil the highest accuracy rate is reached. 

. Background 

This section explain in details the main concepts of the flower

ollination algorithm and β-hill climbing algorithm. Section 3.1 de-

cribes the fundamentals of the flower pollination algorithm.

ection 3.2 explains the fundamentals of β-hill climbing algorithm.

.1. Fundamentals of the flower pollination algorithm 

FPA is a nature-inspired algorithm which introduced by Yang in

012 [15] . It is inspired from analogous to the pollination behavior

f flowering plants. The main idea of the standard version of FPA

an summarize by the following concepts: 
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Concept 1 Local pollination of FPA, which is represented the

abiotic and self-pollination in nature. 

Concept 2 Global pollination of FPA which is represented the

biotic and cross-pollination in nature where pollinators carry

the pollen-based on Levy flights law. 

Concept 3 The probability of reproduction can be considered

that the stability of the flower corresponds to the similarity

between any two flowers. 

Concept 4 External factors, such as wind or distance between

flowers, which are affected on the global and local pollina-

tion. Therefore, the balancing between global and local pol-

lination can be controlled by switch probability p ∈ [0 , 1] . 

In general, we can summarize FPA procedure in five steps which

are shown as follows. 

Step 1: Initialization parameters . Parameters for both FPA and

the problem which we try to solved must be initialized

within possible range parameters value x . Therefor, the gen-

eral formulation of the FPA initialization can be generalized

as follows: 

min or max { f ( x ) | x ∈ X } , 
where f ( x ) is the objective function; x = { x i | i = 1 , . . . , d}
is the set of decision variables. x = { x i | i = 1 , . . . , d} is the

possible value range for each decision variable, where C i ∈
[ LowerB i , U pperB i ] , where LowerB i and UpperB i are the lower

and upper bounds for the decision variable C i respectively

and d is the number of decision variables. 

Also, other FPA parameters should be initialized as well,

where these parameters can be summarized as follows: 

• FPA s : representing the population size (Number of flow-

ers). 
• G 

∗
best 

: representing the best current solution from the ini-

tialized population size. 
• Switch probability P : Where the P value will determine

to FPA to follow either global or local pollination. 
• L dis : Refers to a step size, is the strength of the pollina-

tion. 

The next steps will provide a full explanation of these pa-

rameters. 

Step 2: Initialize FPA population memory . The flower popula-

tion memory (FPM) can be represented as a 2-dimensional

matrix with size FPA s × d which contains sets of flower

location vectors as many as FPA s (see Eq. (20) ). Where

these flowers are randomly generated as follows: x 
j 
i 

=
LowerB i + (U pperB i − LowerB i ) × U(0 , 1) , ∀ i = 1 , 2 , . . . , z and

∀ j = 1 , 2 , . . . , FPA s , and U (0, 1) generates a uniform random

number between 0 and 1. The generated solutions are stored

in the FPM in ascending order according to their objective

function values where f ( x 1 ) ≤ f ( x 2 ) ≤ . . . ≤ f ( x F PA s ) . 

FPM = 

⎡ 

⎢ ⎢ ⎣ 

x 1 1 x 1 2 · · · x 1 
d 

x 2 1 x 2 2 · · · x 2 
d 

. . . 
. . . · · ·

. . . 

x F PA s 
1 

x F PA s 
2 

· · · x F PA s 
d 

⎤ 

⎥ ⎥ ⎦ 

. (16)

Also in this step, the global best flower location G 

∗
best 

is

memorized where G 

∗
best 

= x 1 . 

Step 3: Intensification of the current flower population As we

mentioned above the ( p ) value will determine to the pollina-

tor which path will follow either global or local pollination

as follows: 

• Local Search of FPA (abiotic) The pollination of this type

occurs without any pollinators. That means, it occurs

m

based on the wind and diffusion to transfer the pollen.

The local pollination and flower constancy represented as

follows: 

x t+1 
i 

= x t i + ε(x t j − x t k ) (17)

where x t 
j 

and x k 
j 

are pollens from the different flowers

of the same plant type. This essentially mimic the flower

constancy in a limited neighborhood. Mathematically, if

x t 
j 

and x k 
j 

comes from the same species or selected from

the same population, this become a local random walk if

we draw ε from a uniform distribution in [0,1]. 
• Global Search of FPA (biotic) In this type of pollination

the flowers pollens are transferred by pollinators such as

bees, birds, bats.etc. to long distances. This ensures the

pollination and reproduction of the most fittest. There-

fore, we can represent the procedure of biotic FPA as fol-

lows: 

x t+1 
i 

= x t i + L dis ∗ (G 

∗
best − x t i ) (18)

Where x t+1 
i 

the pollen i or solution vector x i at iteration

t , and G 

∗
best 

is the current best solution found among all

solutions at the current iteration. The parameter L dis is

the strength of the pollination, which essentially is a step

size. Since insects may move over a long distance with

various distance steps, we can use a Levy flight to mimic

this characteristic efficiently [1,15,27] . That is, we draw

L dis > 0 from a Levy distribution 

L dis ∼
λ�(λ) sin (πλ/ 2) 

π

1 

Q 

1+ λ , (Q >> s 0 > 0) (19)

�( λ) denotes the standard gamma function, and this dis-

tribution is valid for large steps Q > 0. In all our simula-

tions below, In this study the ( λ) used equal (1.5). 

Step 4: Updating the best solution ( G 

∗
best 

) . During for each iter-

ation in FPA procedure, the global best flower location G 

∗
best 

will be updated if f ( x ′ j ) < f (G 

∗
best 

) . 

Step 5: Stop condition . FPA repeats step 3 and step 4 until

the termination criterion is met. The termination criterion is

normally met based on some criterion, such as the number

of iterations or the quality of the final outcomes. 

.2. β-hill climbing algorithm 

Hill climbing can be considered as one of the simplest opti-

isation technique to find the local optimal solution. In general,

s other local search techniques, the iterative approach of the hill

limb algorithm begins with the creation of an arbitrary solution

o the problem and then proceeds with a trajectory search for a

etter solution than the previous solution. The previous process is

epeated until you reach the local optima that the solution can no

onger be improved [28,29] . 

However, the original hill climb algorithm suffers from several

roblems: the most important of which is that it only accepts

he uphill movement, often leading to stuck in local optima [30] .

herefore, several extensions of the hill climb algorithm have been

roposed to overcome such problem. β-hill climbing, an extension

o hill climbing, was proposed by Al-Betar [28] . Where he proposed

o add one operator called β-operator controlled by β parameter

i.e., β ∈ [0, 1]). This operator is used to achieve the appropriate

alance between exploration and exploitation during the search

rocess to eliminate the problem of falling into to stuck in local

ptima. 

To elaborate, suppose the optimisation problem is formulated

s follows: 

in { f ( x ) | x ∈ X } , 
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here f ( x ) refers to the objective function which will evaluate the

ew solution x = (x 1 , x 2 , . . . , x d ) where the new solution contains

 set of decision variables. Each decision variable x i ∈ X i where

 = { X i | i = 1 , . . . , d} is the possible value range for each decision

ariable. Note that the X i ∈ [ LowerB i , U pperB i ] , and LowerB i and

pperB i are the lower and upper bounds for the decision variable

 i respectively and d is the total number of decision variables. 

As mentioned above, the β-hill climbing algorithm is a tra-

ectory search technique that begins with single random solution,

 = (x 1 , x 2 , . . . , x d ) . During the running time, the new solution,

olnew = (x 1 , x 2 , . . . , x d ) , must be created by modifying the current

olution using two operators namely: N -operator and β-operator,

hich function as the main sources for exploitation and explo-

ation, respectively. Specifically, the N -operator works as neigh-

ourhood search, while β-operator works similar to mutation op-

rator. At each iteration, the new solution can be enhanced by N -

perator stage or β-operator stage until the optimal solution is

eached. 

When the algorithm begins to generate the solution randomly,

hen the solution is evaluated using the objective function f ( x ) .

he solution is then modified using N -operator, which employs the

mprov e (N ( x )) function within a random range of its neighbors.

he solution x is as follows: 

olnew i = sol i ± U(0 , 1) × bw ∃ i ∈ [1 , d] 

Where i is randomly selected from the space range, i ∈
1 , 2 , . . . , d] . The parameter bw representees the bandwidth be-

ween the current value and the new value. 

In β-operator, within the β range where β ∈ [0, 1], variables

f new solution will be assigned based on selected randomly from

vailable range or from the existing values of the current solution

s follows: 

olnew i ← 

{
x r rnd ≤ β
x i otherwise. 

Where rnd generates a uniform random number between 0 and

 and x r ∈ X i is the possible range for the decision variable solnew i .

. EEG Channel selection using hybridizing FPA βhc with 

BF-SVM classifier: proposed method 

To select the optimal subset of EEG channels, this section pro-

ides in detail the full explanation of the proposed method for

EG channel selection based on hybridizing the FPA with the β-

ill climbing algorithm (FPA β-hc). Fig. 4 shows flowchart of the

roposed method. The procedural steps of the proposed method

re described in detail below. 

Step 1: Initialization parameters. The parameters for FPA, β-

hill climbing algorithm, and EEG channel selection problem

must be initialised within a possible range of parameter val-

ues. The utilisation of FPA initialisation for channel selection

can be given as follows: 

max { f ( C ) | C ∈ X } , 
where f ( C ) is the objective function and C = { Chm v i | i =
1 , . . . , d} is the set of channels. Chmv _i is equal to the mean

value of EEG features in position i , and d is the total num-

ber of EEG channels ( Section 2.2 ). Other parameters for FPA,

β-hc and the EEG channel selection problem should be ini-

tialised as well, and these parameters can be summarised as

follows: 

• FPA s : represents the population size (number of flowers).
• G 

∗
best 

: represents the best current solution from the ini-

tialised population size that provides the highest accu-

racy rate. 
• Switch probability P : Determines whether FPA will follow

either global or local pollination for the selection of the

optimal EEG channel set. 
• L dis : Refers to step size and is the strength of the pollina-

tion. 
• d : Refers to the total number of EEG channels and repre-

sents the solution size. 
• bw : Refers to the bandwidth between the current value

and the new value. 
• β-operator: β ∈ [0, 1]. 

The next steps show how these parameters are used. 

Step 2: Initializations of flower population memory (FPM). FPM

can be represented as a 2D matrix with size FPA s × d

where FPA s is calculated as S × R × T , ( S denotes the num-

ber of subjects, R denotes the number of trials, T denotes

the number of tasks, and d refers to the number of chan-

nels) ( Eq. (20) ). These flowers are created from the EEG

recorded and stored in FPM in ascending order according to

their objective function values, where f ( C 1 ) ≤ f ( C 2 ) ≤ . . . ≤
f ( C F PA s ) . 

FPM = 

⎡ 

⎢ ⎢ ⎣ 

Chm v 1 1 Chm v 1 2 · · · Chm v 1 
d 

Chm v 2 1 Chm v 2 2 · · · Chm v 2 
d 

. . . 
. . . · · ·

. . . 

Chm v F PA s 
1 

Chm v F PA s 
2 

· · · Chm v F PA s 
d 

⎤ 

⎥ ⎥ ⎦ 

(20) 

Step 3: Improvement Loop. According to the number of flowers

N , FPA repeats the following procedure to find the optimal

subset of the EEG channels to achieve the highest accuracy

rate. 

The ( p ) value helps the pollinator determine which path to

follow (either global or local pollination) as follows: 

Step 3.1: Local pollination FPA selects two solutions j and

k randomly from FPM to manipulate them to generate a

new solution C itr 
i 

(see 17 ). 

Step 3.2: Global pollination The new solution is generated

using the current solution with the current best solution

G 

∗
best 

after manipulation with the strength parameter of

pollination L dis (see 18 ). 

Step 3.3: Transform to binary by sigmoid The proposed

method uses the standard version of FPA, which adopts

continuous-valued positions to update the solution in the

search space. However, the EEG channel selection prob-

lem is classified as a binary vector problem which means

(0 and 1), where 1 refers to the selected channel and 0

refers to the non-selected channel [1,31] . Therefore, FPA is

converted to the binary version to address the EEG chan-

nel selection problem; the solution can be represented as

a binary vector C = (C hm v 1 , C hm v 2 , . . . , C hm v d ) of d chan-

nels, where Chm v i = 1 means that channel i is selected

and 0 otherwise. For restricting binary solutions based on

FPA β-hc, two equations ( Eqs. (21) and (22) ) are used to

build this binary vector. 

sigmoid (C itr 
i 

(t)) = 

1 

1 + e −C itr 
i 

(t) , 
(21) 

C itr 
i (t) = 

{
1 C itr 

i 
(t) > σ

0 otherwise, 
(22) 

where σ is a random number between 0 and 1. 

Step 3.4: β-hill climbing algorithm ( β-hc) To improve the

behaviour of standard FPA for EEG channel selection, this

study proposes hybridizing the standard FPA with the β-

hc algorithm. β-hc, a the local search technique, takes the
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Fig. 4. Flowchart of hybridizing FPA with β-hill climbing. 
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current solution C itr 
i 

from FPA (either global or local polli-

nation) and tries to improve it. If the current solution C itr 
i 

is improved, the new solution (New − sol ′′ itr 
i 

) will replace

the previous solution C itr 
i 

. 

Step 4: RBF-SVM classifier The improved solution by the β-

hc algorithm (New − sol ′′ itr 
i 

) is evaluated using the RBF-SVM

classifier to calculate its objective function of the accuracy

rate of EEG channels selection ( Eq. (15) ). Then, if ( f (New −
sol ′ itr 

i 
) > f( C itr 

i 
), the current best solution will be replaced

by the new solution. 

Step 5: Update the population The current best solution is

replaced when improvement is achieved. Therefore, FPA β-

hc algorithm checks the current best solution with the

global best flower location G 

∗
best 

during each iteration. The

global best flower location G 

∗
best 

will be updated if f (C itr 
i 

)

> f (G 

∗
best 

) . 

Stop 6: Stop criteria FPA repeats steps 3 and 5 until the termi-

nation criterion is met. The termination criterion is normally

met based on another criterion, such as the number of iter-

ations or the quality of the final outcomes. 

Step 7: Output Return the G 

∗
best 

best channel

subset with the highest accuracy rate. 

Algorithm 1 pseudo-codes the proposed method that employs

BFPA βhc for EEG channel selection by using the RBF-SVM classi-

fier as the objective function and Eqs. (21) and (22) as a transfer

function. 

5. Results and discussions 

This section explains the performance of the proposed method

(i.e. FPA β-hc) for EEG channel selection. Section 5.1 describes the
EG dataset used in this work. The parameter setting and experi-

ental setup are introduced in Section 5.2 . Section 5.3 compares

he results of standard FPA with RBF-SVM and hybridizing FPA β-

c with RBF-SMV classifier. Section 5.4 presents the comparison

esults of the proposed method FPA β-hc with state-of-the-art ap-

roaches for EEG channels selection. 

.1. EEG Dataset 

EEG signal acquisition is performed over a standard EEG signal

ataset [32] . The EEG signals are collected from 109 healthy vol-

nteers using a brain-computer interface software called BCI20 0 0

ystem [16] . The EEG signals are captured from 64 sensors (i.e.

lectrodes), and each subject performs 12 motor/imagery tasks that

re mainly used in different fields, such as neurological rehabil-

tation and brain-computer interface applications. In general, the

asks involve imagining or motor movement, such as opening and

losing of the eyes. The signals are recorded from each person by

equiring them to perform four tasks according to the position of

he target appearing on the screen in front of them, as follows: 

• Task(1): A subject is asked to open and close his/her fist cor-

responding to the position of the target on the screen. If the

target appears on the right or left side of the screen, then the

subject relaxes. 
• Task(2): A subject is asked to imagine opening and closing

his/her fist corresponding to the position of the target on the

screen. If the target appears on the right or left side of the

screen, then the subject relaxes. 
• Task(3): A subject is asked to open and close both fists or both

feet. If the target appears on either the bottom or the top of

the screen, then the subject relaxes. 
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Algorithm 1 Hybridizing Flower Pollination Algorithm with β-hill 

climbing (FPA β-hc) for EEG Channel Selection. 

1: Input: 

2: Initialize the problem and FPA parameters 

3: Initialize FPA population and select current best solution G 

∗
best 

4: Channels= { ch 1 , ch 2 , . . . , ch d } 
5: for a = 1 to N do 

6: Evaluate fitness value of f (C) based on 10-fold-CSV RBF-SVM 

and accuracy rate of EEG channels selection [equation 15] 

7: end for 

8: Find G 

∗
best 

, where G 

∗
best 

∈ (1, 2, . . . , N) 

9: itr = 0 

10: while it r < T otal _ iterat ions do 

11: for j = 1 to N do 

12: for i = 1 to number of channels (d) do 

13: if rnd ≤ p then 

14: Global pollination via C itr 
i 

= C itr−1 
i 

+ L dis ∗ (G 

∗
best 

−
C itr−1 

i 
) 

15: sigmoid( C itr 
i 

)= 1 

1+ e −C itr 
i 

16: if sigmoid( C itr+1 
i 

) > U(0 , 1) then 

17: C ′ itr 
i, j 

= 1 

18: else 

19: C ′ itr 
i, j 

= 0 

20: end if 

21: else 

22: Dolocal pollination v ia C itr 
i 

= C itr−1 
i 

+ ε ( C itr 
j 

− C itr 
k 

) 

23: sigmoid( C itr 
i 

)= 1 

1+ e −C itr 
i 

24: if sigmoid( C itr 
i 

) > U(0 , 1) then 

25: C ′ itr 
i, j 

= 1 

26: else 

27: C ′ itr 
i, j 

= 0 

28: end if 

29: end if 

30: end for 

31: Run β-hill climbing algorithm using C ′ itr 
i, j 

. 

32: while Stop criterion is not met do 

33: New − sol ′ itr 
i, j 

= N − Operator(C ′ itr 
i, j 

) 

34: New − sol ′′ itr 
i, j 

= β − Operator(New − sol ′ itr 
i, j 

) 

35: Calculate fitness value of f (New − sol ′′ itr 
i, j 

) using RBF- 

SVM classifier for EEG channels selection [equation 15] 

36: if f (New − sol ′ itr 
i, j 

) < f (New − sol ′′ itr 
i, j 

) then 

37: replace (New − sol ′ itr 
i, j 

) by (New − sol ′′ itr 
i, j 

) 

38: end if 

39: end while 

40: sol ′ itr 
i, j 

= New − sol ′′ itr 
i, j 

41: end for 

42: Update G 

∗
best 

, where G 

∗
best 

∈ (1 , 2 , . . . , N ) 

43: it r = it r + 1 

44: end while 

45: Output 

46: Return G 

∗
best 

: best channels subset with highest accuracy 

rate. 

47: End 
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Table 1 

parameters setting. 

Parameters and values β-hc FPA 

Iterations number ( N − itr) 100 100 

Population size 1 20 

Solution size 64 64 

β-operator 0.5 –

Switch probability P – 0.8 
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• Task(4): A subject is asked to imagine opening and closing both

fists or both feet. If the target appears on either the bottom or

the top of the screen, then the subject relaxes. 

Each person performs four tasks, which are repeated three

imes for two minutes per recording. The outcome of this phase

s 12 records of EEG signals for each person. The EEG signals
re recorded using 64 sensors with 160 samples per second.

hen, the EEG features are extracted from these 12 recordings

ith three different categories, as mentioned in Section 2.1 ). To

educe the dispersion of the EEG pattern (obtain unique fea-

ures) and achieve quick processing of the extracted EEG fea-

ures, the mean value for each electrode is calculated and called

 Chm v ( i ) ), where i refers to the channel number. This means

ach electrode is represented by one value. We use the fol-

owing notations for each of the dataset configuration, such

s time domain feature. TDF1 includes the features { EEG Mean ( i ),

EG Std ( i ), EEG Entrpy ( i ), EEG Energy ( i ), EEG RMS ( i )}. TDF2 includes the

eatures { EEG VAR ( i ), EEG MPV ( i ), EEG Skewness ( i ), EEG Kurtosis ( i ), EEG CCR ( i )}.

DF includes the combination of TDF1 and TDF2 features,

uch as { EEG Mean ( i ), EEG Std ( i ), EEG Entrpy ( i ), EEG Energy ( i ), EEG RMS ( i ),

EG VAR ( i ), EEG MPV ( i ), EEG Skewness ( i ), EEG Kurtosis ( i ), EEG CCR ( i )}, where i

efers to the channel number. For FDF, FDF1 includes AR features

ith five orders. FDF2 includes PSD ( EEG PSD ) features. FDF includes

he combination of FDF1 and FDF2 features. T-FDF includes STFT

 EEGSTFT ) features. 

.2. Experimental setup 

In the experimental test, the 10fold cross-validation approach

s applied, this approach is widely used to validate machine learn-

ng algorithms due to its consistency and reduced results variabil-

ty with regard to input data [33] . The main purpose of using the

0fold cross-validation approach in our dataset is to determine the

ptimal subset of features that can provide the maximum accuracy,

ith accuracy being the fitness function. The proposed method

FPA β-hc) begins to create a mapping between the original EEG

ataset and a new scalar feature (i. e. a binary value initialised

andomly for each channel, where 1 refers to the selected channel

nd 0 refers to the non-selected channel). In addition, the fitness

unction of each row of features is set to RBF-SVM for the training

ata part, and the accuracy recognition rate is determined over the

alidation subset. Then, we select the optimal subset from the val-

dation part that provides the highest accuracy rate. This subset is

assed to the testing dataset for calculating the final accuracy rate.

able 1 shows the parameters used for FPA and the β-hc algorithm

sed in this work. N − itr is a parameter to determine the number

f iterations used in the experiments. 

.3. Comparing performance of standard FPA and hybridizing 

PA β-hc for EEG channel selection 

Given that the proposed method (FPA β-hc) belongs to meta-

euristic algorithms that are non-deterministic, we determine the

verage of the accuracy rate over 25 rounds by using the proposed

ethod, to avoid biased results. The experiment results are ob-

ained using a LENOVO Ideapad 310 PC with, Intel Core i7 2.59

hz processor, 8 GB of RAM and Windows 10 operating system.

o evaluate the performance of the proposed FPA β-hc, we con-

ider five measures, namely, (i) accuracy ( EEG Acc ), (ii) sensitivity

 EEG Sen ), (iii) F-score ( EEG Fs ), (v) specificity ( EEG Spe ), and (iv) num-

er of channels selected (No. Ch). These measures can formulated
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Fig. 5. Convergence rate of hybridizing FPA β-hc compared with that of standard FPA. Where a) FPA AR 5 and FPA β-hc AR 5 , b) FPA PSD and FPA β-hc PSD , c) FPA FDF and FPA β-hc FDF , 

d) FPA TDF and FPA β-hc TDF , e) FPA TDF 1 and FPA β-hc TDF 1 , f) FPA TDF 2 and FPA β-hc TDF 2 , and g) F PA T−FDF and FPA β-hc T−FDF . 
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as follows: 

E E G Acc = 

T a + T r 

T a + F a + T r + F r 
× 100 (23)

E E G Sen (Recal l ) = 

T a 

T a + F r 
(24)

E E G Spe = 

T r 

T r + F r 
(25)

P recision (P re ) = 

T a 

T a + F a 
(26)

E E G F s = 2 × ( 
P re . Recall 

P re + Recall 
) , (27)

where T a , T r , F a and F r represent true acceptance, true reject, false

acceptance and false reject, respectively. 

Figs. 5 –7 show the convergence rate and frequency of selected

electrodes over 25 runs for standard FPA and the proposed method
FPA β-hc) during the experimental evaluation using FDF1, FDF2,

DF, TDF1, TDF2, TDF and T-FDF. 

Table 2 shows the comparison results of the proposed meth-

ds (i. e., FPA and FPA β-hc) with three method of feature selection

hich are LASSO [34] , Information Gain [35] , RelifF [36] for all EEG

eatures extracted from the input EEG signal as follows: 

1. TDF group 1, presented as (TDF1), contains features: mean,

standard deviation, energy, entropy and root mean square

(RMS). 

2. TDF group 2, presented as (TDF2), has also five EEG features:

variance (VAR), maximum peak value, skewness, kurtosis, and

cross correlation. 

3. The combination of all TDFs, which is presented as (TDF),

merges the features of TDF1 and TDF2. 

4. FDF group 1, presented as (FDF1), contains AR features with or-

der 5 (AR5). 
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Fig. 6. Distribution of frequency of selected electrodes for FPA and FPA β-hc. 

 

 

 

 

(  
5. FDF group 2, presented as (FDF2), contains five features: PSD

of the EEG sub-signal of delta δ, theta θ , beta β , alpha α, and

gamma γ . 

6. The combination of all FDFs, which is presented as (FDF),

merges the features of FDF1 and FDF2. 
s  
7. T-FDF presented as (T-FDF), includes STFT features. 

The results show that the performance of the proposed method

FPA β-hc) exhibits a significant improvement compared with the

tandard FPA algorithm based on all the comparison measures.
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Fig. 7. Distribution of frequency of selected electrodes for FPA and FPA β-hc. 
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FPA β-hc achieves better results than the standard FPA algorithm

with all the EEG features extracted. In the FDF1 group, the pro-

posed method obtains accuracy rates of 93.7619, 32, 0.9376, 0.9943

and 0.9383 compared with standard FPA with accuracy rates of

92.9523, 41, 0.9295, 0.9935 and 0.93 the number of channels, sen-
itivity, specificity, and F1-score, respectively. In the FDF2 group,

PA β-hc achieves 70.0476, 35, 0.7005, 0.9727 and 0.6916 accuracy

ates compared with standard FPA with 6 8.2857, 42, 0.6 828, 0.9711

nd 0.6739 accuracy rates for the number channels, sensitivity,

pecificity, and F1-score, respectively. For the combination of FDF,
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Table 2 

Comparing performance of proposed method FPA β-hc with feature selection methods. 

Dataset Measure FPA FPA β-hc LASSO Information Gain RelifF 

FDF1(AR5) Accuracy 92.9523 93.7619 86.3095 85.119 85.119 

No.of Channels 41 32 16 33 17 

Sensitivity 0.9295 0.9376 0.8630 0.85119 0.85119 

Specificity 0.9935 0.9943 0.9875 0.9864 0.98647 

F1-Score 0.93 0.9383 0.8653 0.8542 0.8545 

FDF2(PSD) Accuracy 68.2857 70.0476 51.1905 41.0714 40.4762 

No.of Channels 42 35 10 14 10 

Sensitivity 0.6828 0.7005 0.5119 0.4107 0.4048 

Specificity 0.9711 0.9727 0.9556 0.9464 0.9459 

F1-Score 0.6739 0.6916 0.5118 0.4161 0.4296 

FDF Accuracy 79.1666 79.6428 68.1548 67.8571 75.5952 

No.of Channels 43 40 16 37 45 

Sensitivity 0.7916 0.7964 0.6815 0.6786 0.7560 

Specificity 0.981 0.9814 0.9710 0.9708 0.9778 

F1-Score 0.7914 0.7957 0.6760 0.6829 0.7612 

TDF1 Accuracy 95 95.548 82.1429 85.1190 81.5476 

No.of Channels 40 33 16 33 17 

Sensitivity 0.95 0.95547 0.8214 0.8512 0.8155 

Specificity 0.9954 0.9959 0.9838 0.9865 0.9832 

F1-Score 0.95 0.956 0.8232 0.8524 0.8152 

TDF2 Accuracy 88 88.642 73.2143 63.6905 64.8810 

No.of Channels 42 39 16 39 15 

Sensitivity 0.88 0.8864 0.7321 0.6369 0.6488 

Specificity 0.989 0.9896 0.9756 0.9670 0.9681 

F1-Score 0.8819 0.8882 0.7461 0.6410 0.6601 

TDF Accuracy 94.833 95.214 88.0952 91.6667 92.2619 

No.of Channels 40 34 16 15 16 

Sensitivity 0.9483 0.9521 0.8810 0.9167 0.9226 

Specificity 0.9953 0.9956 0.9892 0.9924 0.9930 

F1-Score 0.9493 0.9529 0.8811 0.9166 0.9223 

T-FDF Accuracy 95.619 96.0476 88.6905 91.6667 91.0714 

No.of Channels 41 35 16 13 17 

Sensitivity 0.9561 0.9605 0.8869 0.9167 0.9107 

Specificity 0.996 0.9964 0.9897 0.9924 0.9919 

F1-Score 0.9569 0.9611 0.8870 0.9165 0.9111 

Bold value indicates best results. 
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PA β-hc achieves 79.6428, 40, 0.7964, 0.9814 and 0.7957 accuracy

ates compared with standard FPA with 79.16 6 6, 43, 0.7916, 0.981,

nd 0.7914 accuracy rates for the number of channels, sensitivity,

pecificity, and F1-score, respectively. 

With regard to TDF extraction, in the TDF1 group, FPA β-hc ob-

ains 95.548, 33, 0.9554, 0.9959 and 0.956 accuracy rates com-

ared with standard FPA with 95, 40, 0.95, 0.9954 and 0.95 accu-

acy rates for the number of channels, sensitivity, specificity, and

1-score, respectively. In the TDF2 group, FPA β-hc obtains 88.642,

9, 0.8864, 0.9896 and 0.8882 accuracy rates compared with stan-

ard FPA with 88, 42, 0.88, 0.989 and 0.8819 accuracy rates for

he number of channels, sensitivity, specificity, and F1-score, re-

pectively. For the combination all TDF, FPA β-hc obtains 95.214, 34,

.9521, 0.9956 and 0.9529 accuracy rates compared with standard

PA with 94.833, 40, 0.9483, 0.9953 and 0.9493 accuracy rates for

he number of channels, sensitivity, specificity, and F1-score, re-

pectively. For T-FDF, the proposed method (FPA β-hc) achieves the

est performance results, where it obtained 96.0476, 35, 0.9605,

.9964 and 0.9611 accuracy rates compared with standard FPA

ith 95.619, 41, 0.9561, 0.996 and 0.9569 accuracy rates for the

umber of channels, sensitivity, specificity, and F1-score, respec-

ively. 

To further evaluate the performance of FPA β-hc, the results are

ompared against well-known filter methods in the literature of

eature selection methods such as ReliefF [36] , Information Gain

IG) [35] , and LASSO [34] . Conventionally, ReliefF and IG the most

mportant feature ranking methods which evaluate each feature in-

ependently according to its relevance to class labels and the top

 features are chosen as a final subset of features. In other hands,

ASSO is also one of the most common types for embedded feature

election methods. It produces a subset of features and evaluates
hem using machine learning algorithms. The results of filter meth-

ds in Table 2 are reported based on multiple experiments using a

arious number of features (i.e., top K = 5, K = 10, K = 15, etc). It

an be seen that FPA β-hc outperforms other filter-based methods

n almost all evaluation measures, except a number of channels

elected. LASSO resulted in the smallest number of channels on

ost of the datasets; however, it produced less classification accu-

acy on all datasets when compared with FPA β-hc. In classification

ystems, higher classification accuracy with a reasonable increase

n number of channels is more desirable than lower classification

ccuracy with smaller number of channels. In a nutshell, the re-

ults prove that integration between FPA and β-hc promotes its

ocal exploitation process in finding the most discriminative sub-

et and, thus, produced more accurate and reliable identification

ystem. 

Figs. 8–10 show the performance of the proposed method com-

ared standard FPA algorithm using accuracy rate, the number of

hannels, sensitivity, specificity, and F1-score. 

Then, we perform the Wilcoxon signed-rank statistical test

37] to verify whether a significant difference exists between FPA 

nd FPA β-hc. Table 3 shows a comparison of all EEG features ex-

racted using FPA and FPA β-hc ( Fig. 11 ). 

.4. Comparison with state-of-arts 

The proposed method (FPA β-hc) is compared with state-of-the-

rt approaches [1] by using the same dataset and feature extrac-

ion, namely, AR features with five-order coefficients called AR5.

owever, the other approaches used binary metahurstic algorithms

ith the OPF classifier. The performance of the proposed method

s compared with five that of optimisation methods (binary ge-
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Fig. 8. Performance results of FPA and FPA β-hc using accuracy rate and number of channels selected. 

Fig. 9. Performance results of FPA and FPA β-hc using sensitivity and specificity measures. 

Table 3 

Wilcoxon signed-rank test evaluation. of FPA and HyFPA β-hc. 

Dataset P -Value W -value Mean Difference Sum of pos. ranks Sum of neg. ranks Z -value Mean (W) Std(W) T-Sig FPA β-hc 

AR5 0.05 16.5 0.17 16.5 214.5 −3.441 115.5 28.77 0.00058 + 

PSD 0.05 3 −4.81 3 273 −4.106 138 32.88 0 + 

FDF 0.05 20 −0.78 20 280 −3.7143 150 35 0.0002 + 

TDF1 0.05 0 −0.57 0 210 −3.9199 105 26.79 8.00E-05 + 

TDF2 0.05 8 −1.44 8 182 −3.5011 95 24.85 0.00046 + 

TDF 0.05 18 −0.57 18 258 −3.6498 138 32.88 0.00026 + 

T-FDF 0.05 4 −1.49 4 132 −3.3094 68 19.34 0.00049 + 

Std is Standard Deviation (W), + refers to Significant. 
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Fig. 10. Performance results of FPA and FPA β-hc using the F1-score measure. 

Fig. 11. Comparison of the accuracy rate and No. of EEG channels selected using AR5. 
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t  
etic algorithm (BGA),binary particle swarm optimisation (BPSO),

inary firefly algorithm (BFFA), binary harmony search (BHS), and

inary charged system search (BCSS)), and the proposed method is

anked first. The comparison involves two criteria, which are accu-

acy rate and number of channels selected. FPA β-hc exhibits signif-

cant superiority in both criteria. It has an accuracy rate of 93.7619

ompared to 85.8, 86.1, 86.6, 85.4, 86.3, 86.7 and 92.952 for BGA,

PSO, BFFA, BHS, BCSS, BFPA-OPF, and FPA-RBF-SVM, respectively.

oreover, the FPA β-hc has the minimum number EEG channels se-

ected, where it achieves 32 compared to 36, 37, 45, 37, 4 4, 4 4 and

1 for BGA, BPSO, BFFA, BHS, BCSS, BFPA-OPF, and FPA-RBF-SVM,

espectively. Fig. 11 shows a comparison of the accuracy rate and

umber of EEG channels selected using the proposed method with

1] . 
.5. Discussion 

The main objectives of this work are to evaluate the hybridiz-

ng version of FPA with β-hill climbing (FPA β-hc) for EEG-based

erson identification, to model the problem of EEG channel selec-

ion as an evolutionary-based optimisation problem and to intro-

uce the RBF-SVM classifier to EEG-based biometric person identi-

cation. These objectives are achieved successfully, and the results

an be summarised as follows. Evidently, the proposed method has

he best accuracy recognition rates using the RBF-SVM classifier

ith T-FDF, where FPA β-hc achieves the highest accuracy rate of

6.0476%. 

In the case of modelling EEG channel selection as an optimisa-

ion problem, the proposed method (FPA β-hc) reduces the number
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of channels needed to obtain the best accuracy rate of less than

half of the total number of sensors. FPA β-hc achieves the best re-

sult of reducing the number of channels selected with FDF1 equal

to 32 channels. 

In the case of EEG-based person identification, the proposed

method (FPA β-hc) extracts three different groups of features,

which are time domain, frequency domain, and time-frequency do-

main features. The extracted features can provide different accu-

racy rates. 

Another important point relates to the electrodes selected by

FPA β-hc. A more detailed investigation shows that the most fre-

quent electrodes are located on the front and back of the head,

although they also spread along the head. This interesting obser-

vation means that FPA β-hc attempts to identify electrodes that

are not too close together to capture relevant information from all

head locations. 

6. Conclusions and future work 

This paper proposes a hybrid method combining FPA and β-hill

climbing algorithm (i.e. FPA β-hc) to address the problem of EEG

channel selection in EEG-based personal identification. The main

objective of this work is to emphasise that it is not necessary to

use all EEG channels available in order to obtain a high accuracy

rate. This work proposes modelling the problem of channel selec-

tion as an optimisation problem, in which the subset of channels

that maximise the recognition rate over a validation set is used as

the fitness function. For the identification task, the RBF-SVM clas-

sifier is used, which achieves the best accuracy rate and a perfor-

mance that is similar to that of other classifier techniques. 

The experimental results show that the proposed FPA β-hc

method outperforms the standard FPA with RBF-SVM by obtaining

excellent person identification rates using a few channels only. No-

tably, the number of channels is reduced to half while maintaining

a high accuracy rate. 

In addition, a positive correlation exists between the number of

features extracted from the EEG signal and accuracy rate. A large

number of extracted features leads to a high accuracy rate, as ev-

idenced by T-FDF. This finding suggests that the proposed method

can exclude duplicate and unwanted features and maintain unique

features that provide the highest accuracy rate. 

Furthermore, the proposed FPA β-hc method is compared with

five state-of-the-arts methods [1] by using the same dataset and

feature extraction, namely, AR features with five-order coefficients

called AR5. The comparison involves two criteria, which are accu-

racy rate and number of channels selected. The FPA β-hc method

exhibits superiority in both criteria. 

With regard to the future work, 

• With regard to the immediate future, the multi-objective tech-

nique is recommended to be applied using FPA to achieve the

maximum accuracy rate and the minimum number of channels

selected. 
• the proposed method (FPA β-hc) will be used with different fea-

ture selection approaches, such as filtering, wrapper and hybrid

feature selection techniques, to perform channel selection with

the aim of improving the overall identification performance

while selecting fewer features of EEG signals. 
• An unsupervised technique (EEG clustering) could be applied to

determine the power of EEG as an identification technique. 
• Another recommended direction is to perform the identifica-

tion process according to several mental tasks in order to select

the best task that can provide the highest accuracy rate. Subse-

quently, the channel selection method could be applied. 
• In the future, the fMRI can be effectively fused in EEG to im-
prove the results due to their complementary properties. 
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