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___________________________________________________________________________ 
Abstract: Renewable energy technologies are promising, yet, very little is known about its role 
as a limiting factor in fossil fuel-attributable environmental degradation — especially in high-
income countries. This study investigated the dynamic effect of renewable energy 
consumption, economic growth, and biocapacity and trade policy on environmental 
degradation in the United States from 1985Q1 to 2014Q4. To achieve this objective, the study 
applied an autoregressive distributed lag (ARDL) model to obtain the long-run and short-run 
dynamic coefficients. Toda-Yamamoto causality test was used to examine the direction of 
causality while Cholesky decomposition test was for innovative accounting to validate the 
estimated models. The empirical results divulged that a decline in environmental degradation 
can be attributed to an increase in renewable energy consumption through its negative effects 
on ecological footprint. Economic growth and biocapacity were found to exert upward pressure 
on ecological footprint; however, trade policy exerts downward pressure on ecological 
footprint. A two-sided causal relationship was established between economic growth and 
ecological footprint as well as economic growth and biocapacity. In contrast, a one-way 
causality was confirmed running from trade policy to renewable energy consumption and from 
renewable energy consumption to biocapacity. The innovative accounting revealed that 
14.79% and 8.41% of renewable energy consumption and trade policy caused 0.60% and 
9.88% deterioration in the environment. Hence, country-specific energy policies that increase 
the share of renewable energy in the energy portfolio are recommended. 
Keywords: Ecological footprints; renewable energy consumption; Trade policy; Innovative 

Accounting tests 
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1. Introduction  

In the last decades, environmentalists and environmental stakeholders are increasingly 

overwhelmed with the impact of environmental degradation and ecological distortions of the 

globe’s geographical space. The continued and somewhat unwanted climatic experiences, in 

most cases, resulting into environmental disasters are the common indications that suggest 

these drastic ‘revolution’ in the earth’s climatic systems. With the increasing human activities, 

which include the direct and indirect activities on the atmospheric strata and the biosphere, 

humans’ sustainability has increasingly been endangered. (Alola, 2019; Bekun et al., 2019). 

For several decades, the impact of human engagements on the environment has consistently 

been measured by the environmental response to economic growth, population dynamics, 

energy usage, and several other notable factors (Sarkodie and Owusu, 2016; Emir and Bekun, 

2018; Sarkodie, 2018; Sarkodie and Strezov, 2018; Shahbaz and Sinha, 2019; Wang and Dong, 

2019). In fact, such environmental impact has consistently been accounted for by emissions 

from carbon dioxide (CO2). Specifically, the emissions from CO2 is largely believed to 

constitute about 76% and 94% of the total United States (US)’ anthropogenic greenhouse gas 

(GHG) and the anthropogenic CO2 emissions (Energy Information Administration, 2017). 

 

In recent times, and following the ecological accounting vis-a-vis the ecological footprint that 

was put forward by Wackernagel and Rees (1998), environmental wellbeing and distortions 

have been examined by using the ecological footprints. This is because the ecological footprint 

measures the capacity of the earth resources that is available for use or already been expanded 

by human engagements (Global Footprint Network, 2019).  On one hand, the Global Footprint 

Network (GFN) presents biocapacity as the earth surface’s capacity to produce the human basic 

ecological needs or resources from the fishing grounds, cropland, grazing land, built-up land, 

and forest area excluding carbon emissions’ absorption from land surface. In response, the 

perpetual demand on the ecological products (assets) is increasingly depleted especially in 

large states, thus accounting for the low or ecological deficit in some countries. Hence, 

ecological deficit (when the population’s demand on nature is more than the productive 

capacity of a nature) posits a severe environmental quality and sustainability concerns.       

 

Specifically, the US is currently known to be ecologically deficit (Global Footprint Network, 

2019). Although the ecosystem is expected to be managed such that it naturally adjusts and 

continuously change conditions in a sustainable pattern, the ecological accounting for the US 

otherwise suggests a serious concern. In previous studies, especially for the US, economic 
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expansion, vast energy (non-renewable fuels) consumption, and population growth are among 

the factors adjudged to be responsible (Boyce, 1994; Soytas et al., 2007; Shahbaz et al. 2017). 

However, the recent trade policy of the current US government has potentially continued to 

create more research questions especially as it relates to both economic and environmental 

sustainability of the country. With the changes in the US’s trade protocol like the North 

American Free Trade Agreement (NAFTA) and the introduction of trade embargoes on trade 

partners, the dynamics of environmental quality would potentially be undermined. For 

instance, in limiting its trade with China, it suggests that more of the previously imported goods 

would be produced domestically, thus increasing economic activities. In addition to the 

dynamics of the country’s trade policy, the surge in the consumption of renewable energy in 

the US (18% of power mix) is another factor that has continued to compound the demand on 

its ecological footprints. Importantly, the dynamics of the aforementioned factors is also not 

unconnected with the degradation of the country’s biocapacity.  

 

Based on the above motivations, this study is aimed at investigating the dynamic impact of 

renewable energy consumption, economic growth, biocapacity and trade policy on the 

ecological footprints in the US. In conducting this investigation, quarterly dataset from 1985Q1 

to 2014Q4 is employed, thus presenting diverse novelty to extant literature. At first, the study 

further draws the attention of environmentalists and scholars to the dire environmental concern 

for the US. In this case, the ecological footprint is employed as against the regular indicator 

(CO2) which potentially reveals more information on the ecological imbalance of the US. In 

addition to the recent study of Alola (2019), this current study investigates which variables 

among the combinations of the renewable energy consumption, GDP, biocapacity and trade 

policy exert upward or downward pressure on ecological footprints in the US. 

 

The other part of the study is ordered as follows. Section 2 presents an overview of ecological 

accounting vis-à-vis ecological footprint and biocapacity. Section 3 covers the material and 

empirical methodologies. The empirical findings and discussion are reported in Section 4. In 

section 5, the concluding remarks and policy implication of the study are provided.  

 

2. Environmental quality and sustainability: A synopsis 

Since the study of Wackernagel and Rees (1998) on the necessity of reducing the human impact 

of the environment, the use of ecological footprint has continued to be the toast of 
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environmentalist. For some reasons, the ecological footprint has been recently used as proxy 

for environmental quality. In a recent study and while investigating the role of economic 

growth on environmental degradation in the newly industrialized countries, Destek and 

Sarkodie (2019) affirmed the validity of the environmental Kuznets curve (EKC) hypothesis. 

Commenting further on the study, ecological footprint is being used in lieu of the conventional 

CO2 as proxy for environmental quality to obviously evaluate the positive of the EKC. 

Although other factors like the energy consumption, financial development were incorporated 

along with the Gross Domestic Product (GDP), the study found an inverted U-shaped 

relationship between GDP and the ecological footprint in the selected eleven newly developed 

countries. Similarly, Al-Mulali et al., (2015) utilized the ecological footprint in place of 

environmental degradation to investigate the positive of EKC for 93 countries. In this case, the 

validity of the EKC hypothesis is found to increase with the GDP growth, thus indicting the 

low and lower middle-income countries are at severe risk of environmental damage. The 

implication suggested by the study is that the low income countries are not likely equipped 

with technologies that improve energy efficiency, energy saving and renewable energy, thus 

experiencing slower economic growth (lower GDP growth). 

 

Furthermore, in addition to investigating the nexus of economic development or income (GDP 

growth), trade openness, energy consumption and financial development with the ecological 

footprint, other indicators have recently been employed. For instance, the disaggregated 

economic activities that include tourism, food and transportation have also been found to 

exhibit significant relationship with ecological footprint (Gössling et al., 2002; Ozturk et al. 

2016; Baabou et al., 2017). While the nexus of the ecological footprint and the tourism 

industry’s sustainability is being investigated by Seychelles by Gössling et al. (2002), a similar 

study has been presented for 144 countries by Ozturk et al.  (2016). The results found negative 

connection of the ecological footprint and the GDP growth from tourism, consumption of 

energy, openness to trade as well as urbanization.; hence it is reaffirmed the hypothesis of 

EKC holds, which is mostly exist around the upper middle- and high-income countries. 

Moreover, Baabou et al (2017) found that the drivers of EKC hypothesis in 19 Coastal 

Mediterranean Cities (CMC) are food consumption, transportation and consumption of 

manufactured goods. In addition, Baabou et al., (2017) noted empirically that the differences 

in the ecological footprint of the cities are potentially associated with socio-economic factors 

that include the disposable income, infrastructure, and cultural habits. 
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Moreover, in identifying the important of sustainable development of the regional ecology and 

economic system of China, Yue (2011) utilized the spatial analysis to examine the supply and 

demand of biocapacity across the country’s North-western region. Subsequently, the study 

revealed the following impacts of spatial heterogeneity on the biocapacity supply of the 

Northwestern region. Firstly, it affirmed a decline in the biocapacity supply from the eastern 

region to the middle, and then a rise from the middle to the west is however observed. Secondly, 

ecological deficit in the provincial and county levels are observed to be larger notwithstanding 

small regional ecological deficit resulting from the gap between the biocapacity demand and 

supply in the region. Lastly, it suggested that biocapacity supply is also determined by 

population density and the intensity of human exploitations. Additionally, Liu et al., (2011) 

and Kissinger and Rees (2010) are among the studies that have revealed the nexus of ecological 

capacity and different human activities in China and the US respectively. While Liu et al. 

(2011) hinted on the imbalance of the demand-supply ecological carrying capacity across 

China, the impact of the US’s imports of renewable resources on the ecosystem area is 

examined by Kissinger and Rees (2010). 

 

3.  Materials and data 

3.1 Data  

We use quarterly data from 1985Q1 to 2014Q4 to investigate the dynamic effects of renewable 

energy and trade policy on environmental quality and environmental sustainability in the US. 

To achieve this objective, use is made of the variables such as renewable energy, trade policy, 

gross domestic product (GDP) per capita, ecological footprint per capita, and biocapacity 

(gha/person). Environmental quality is proxied by ecological footprint (gha/person) while 

biocapacity is a proxy for environmental sustainability. Renewable energy is the amount of 

renewables to total supply of primary energy. GDP is a proxy for economic growth while trade 

policy is specifically used following the recent paper by Alola (2019) as a proxy for uncertainty 

in the US trade policy. With the aim of stabilizing the variance, we take the natural logarithms 

of all the variables.  

 

3.2 Model estimations and procedures 

In this study, we aim at investigating the effects of renewable energy and trade policy on 

environmental quality and environmental sustainability. Therefore, incorporating control 

variable, which include economic growth, we specify our equations as follows: 
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0 1 2 3 4lnHFP lnRE lnGDP lnBIOCAP lnTPt t                   (1) 

where 0  is the constant and t  is the independently and identically distributed stochastic term.

lnHFP  is the log of ecological footprint, lnRE is the log of renewable energy consumption, 

lnTP  is the log of trade policy measure,  lnGDP  is the log of the economic growth (GDP per 

capita) and lnBIOCAP  is the log of biocapacity. Equation (1) is concerned with measuring the 

effects of the fundamental variables on environmental degradation. To this extent, we applied 

Autoregressive Distributed Lag (ARDL) model proposed by Pesaran et al., (2001) using 

Equations (1). The transformed of these equations to unrestricted error correction model 

(UECM) are stated as follows: 
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where  is the natural logarithm of each of the variables captured in the model, Δ is the 

difference operator. The first section of equation (2) is aptly used to obtain the long-run 

coefficients of the HFP equation, while the second section is used to obtain the short-run 

coefficients.  

 

It could be noted that the ecological footprints, a measure of environmental degradation may 

be not change to the path of long-run equilibrium if there is a shock to any of the independent 

variables. The speed at which ecological footprints adjusts from short-run to long-run 

equilibrium level is captured by the estimated error correction model (ECM) equation as 

follows: 
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where all the variables remained as defined in equation (2). 1tecm   is the lag of the residuals. 

Using the methodology of ARDL bounds testing, we can estimate our models whether the 

variables are I(0) , I(1) or integrated fractionally. In addition, the model performs better 

compared to other cointegration tests in a small sample size. Therefore, we carry out a 

coingration test using Pesaran et al. (2001) approach of bounds test as well as the critical values 

of Kripfganz and Schneider (2018), which are perhaps approximately p-values test results. The 

null hypothesis of the test is that 1 2 3 4 5 0       and the alternative is that 

1 2 3 4 5 0      . Before estimation of the model, we test the stationarity properties 

of the series explored through the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP). 

The null hypothesis for these tests states that 0 : 0H   . This is tested against the alternative 

of 0 : 0H   . 

 

3.3 Causality test 

For better understanding of the causal interaction between variables, which are essential for 

crafting energy and environmental policies for development sustainability, we therefore apply 

Toda-Yamamoto conditional Granger causality test. This test aptly examines causality 

direction of the variables using a modified WALD Statistic. The test has several advantages 

over the Pairwise Granger causality approach, which assumes that the variables are indeed 

stationary at I(0). Should in case the variables are stationary at I(0) and I(1), Toda-Yamamoto 

can be conveniently applied and produce robust results. According to Toda and Yamamoto 

(1995), this test is implemented on the framework of Autoregressive Distributed Lag (VAR) 

model with the null hypothesis, which clearly states that 0 12H : 0 i   . 

 

4. Empirical Results  

Table 1 discloses the summary of these variables, their measurements, and sources as well as 

the statistical characteristics. The result show that the highest mean score of variables is owned 

by renewable energy consumption with about 11.59 while biocapacity has the lowest. The result 

further displays that all the variables tend to be less volatile. Furthermore, Table 2 discloses the 

results of the pair-wise correlations. We find a negative correlation between ecological footprint 

and fundamental variables such as consumption of renewable energy, GDP, and trade policy 

while a positive correlation between ecological footprint and biocapacity. We equally find a 

positive correlation between consumption of renewable energy and GDP as well as renewable 
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energy consumption and trade policy. The correlation between GDP and biocapacity is negative 

while GDP and trade policy is positive. Finally, the correlation between biocapacity and trade 

policy is negative. The correlations between the variables are all statistically significant at 1% 

significance level. 

 

Table 1:  Summary Descriptive statistics 

Variable Notation Source Number 
of Obs. 

Mean Min Max Std. 
Dev. 

Ecological 
Footprint 
(gha/person) 
 

LNHFP Global Ecological 
Footprint (2018) 

120 2.26 2.105 2.348 0.069 

Renewable 
Energy 
Consumption 
 

LNRE OECD Database  
(2018) 
 

120 11.59 11.38 11.92 0.127 

Biocapacity 
(gha/person) 
 

LNBIOCAP Global Ecological 
Footprint (2018) 

120 1.354 1.247 1.513 0.062 

GDP per 
capita 
(constant 2010 
US$) 
 

LNGDP World 
Development 
Indicator (2018) 

120 9.151 9.783 8.352 0.424 

Trade Policy LNTP Economic Policy 
Uncertainty (EPU) 
Database (2018) 

120 4.754 3.228 6.998 0.725 

Source:  Authors’ computation 
 

Table 2: Pairwise Correlations 
 
Variable LNHFT LNRE  LNGDP  LNBIOCAP  LNTP   
LNHFP  1.000000      
 -----       
       
LNRE  -0.888832 1.000000     
 (-21.070) -----      
       
LNGDP  -0.567155 0.635684 1.000000    
 (-7.4803) (8.9453) -----     
       
LNBIOCAP  0.547055 -0.611425 -0.897010 1.000000   
 (7.0981) (-8.3935) (-22.045) -----    
       
LNTP  -0.603883 0.628068 0.581310 -0.606881 1.000000  
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 (-8.2299) (8.7676) (7.7606) (-8.2945) -----   
       Notes: The values in the parenthesis are the t-statistic. 
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Figure 1: Time plots of log of ecological footprints, renewable energy consumption, GDP, 
biocapacity and trade policy 

 
The time plots of the log of ecological footprints, renewable energy consumption, output 

growth measured by GDP, biocapacity, and trade policy are dislosed in Figure 1. Based on this 

figure, it is found that there is no clear-cut evidence of trade in all the variables except output 

growth measure. We also observe that the variables are all characterized by fluctuations except 

in the case of GDP which trends upward. The fluctuations observed is more conspicuous in the 

trade policy variables.  
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We further test for the stationarity properties of the series so that we can apply the appropriate 

methodology. Our results based on the ADF test by Dickey and Fuller (1979) and the PP test 

by Phillips and Perron (1988) (See Table 3), indicate that the variables are all integrated of 

order one, I(1) except trade policy and biocapacity which are I(0). Therefore, we move to the 

next stage by establishing the relationship among the investigated variables. This test is 

performed using the ARDL bounds testing framework. We consider that the ARDL bounds 

testing approach to cointegration is most appropriate since we have mixed order of integration 

(See Pesaran et al. 2001). Therefore, the bounds test cointegration applied in this study is based 

on the unrestricted constant and no Trend. The test uses Akaike Information Criteria (AIC) lag 

length selection. The results as displayed in Table 4 show that the null hypothesis of no long-

run relationship on the basis of F-statistic and t-statistic is rejected at the significance test of 

1%. In other words, a well-established long-run relationship among the variables has been 

observed. Furthermore, for the purpose of robustness, we applied the Pesaran et al. (2001) 

bounds testing cointegration using Kripfganz and Scheneider (2018) critical values and 

approximate p-values. The results as shown in Table 5 indicate that the null hypothesis of no 

cointegration is rejected based on the significance of probability values at lower bound and 

upper bound. Hence, we proceed to estimate our models specified in equations (2) and (3) 

 

Table 3:  ADF and PP Unit Root Tests 

  Augmented Dickey-Fuller Test   Phillips-Perron Test 
Variables  Intercept  Intercept & 

Trend 
 Intercept  Intercept & 

Trend 
2lnCO   -0.5877   

(0.8678) 
 -1.4486   

(0.8410) 
  -0.0813 

  (0.9480) 
 -1.4021  

(0.8556) 
lnHFP   -0.4245  

(0.9000) 
 -1.1732  

(0.9105) 
 -0.4366  

(0.8981) 
 -1.2376  

( 0.8976) 
lnRE  
 
lnBIOCAP  

  0.3129 
 (0.9780)  

 0.0276  
(0.9584) 

 -0.9387  
(0.9471) 
-4.5653***  
(0.0019) 

  0.7065  
(0.9919)   
-2.3101   
(0.1705) 

 -0.4340  
(0.9852) 
-3.2833* 
 (0.0741) 

lnGDP   -1.9796  
(0.2955) 

 -1.1034  
(0.9235) 

 -2.8608* 
(0.0531) 

 -0.9142  
(0.9502) 

lnTP   -3.7620***  
( 0.0043) 

 -7.2961*** 
 (0.0000) 

 -5.3807*** 
(0.0000) 

 -7.4707*** 
 (0.0000) 

2lnCO   -2.6537*  
(0.0855) 

 -2.8387    
 (0.1869) 

 -5.0394***   
 (0.0000) 

 -4.9263***    
(0.0005) 
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lnHFP   -5.9321*** 
(0.0000) 

 -5.4234*** 
(0.0000) 

 -5.6213*** 
 (0.0000) 

 -5.7974***  
(0.0000) 

lnRE   -4.7811*** 
 (0.0024) 

 -4.2989*** 

(0.0082) 
 -5.5071***  

(0.0000) 
 -5.4802***  

(0.0000) 

lnBIOCAP   -3.6550***  
(0.0061) 

 -3.6337**  
(0.0315) 

 -8.1195***  
(0.0000) 

 -8.2302***  

(0.0000) 
lnGDP   -4.2831*** 

(0.0008) 
 -7.1338*** 

(0.0000) 
 -6.8502*** 

(0.0000) 
 -7.4139***  

(0.0000) 
lnTP   -11.7785*** 

(0.0001) 
 -11.7383***  

(0.0004) 
 -33.1562*** 

(0.0000) 
 -33.8863*** 

(0.0000) 
Notes: ***, ** and * denote significance level at 1%, 5%, 10% levels. 

 

Table 4: Pesaran et al. (2001) bounds testing cointegration analysis 

Models Statistics K 
lnHFP f(lnRE, lnGDP, lnBIOCAP, lnTP)  F-Stat:    6.8486*** 4 
 t-Stat:   -5.4039***  
Critical Value Bound Tests Lower I(0) Upper I(1) 
F-Statistic at 1 Percent 
t-Statistic at 1 Percent 

3.74 
-2.548 

5.06 
-3.644 

 
 Notes: *** denote significance level at 1%. 

 

Table 5: Pesaran et al. (2001) bounds testing cointegration using Kripfganz and Scheneider     
(2018) critical values and approximate p-values 

K=4 10%  5%  1%  P-value 
 I(0) I(1)  I(0) I(1)  I(0) I(1)  I(0) I(1) 

F-crit. 2.458 3.601  2.904 4.147  3.889 5.327  0.000 0.001 
t-crit. -2.530 -3.614  -2.844 -3.964  -3.457 -4.631  0.000 0.001 
F-cal. 6.752           
t-cal. -5.367           

Notes: F-crit. and t-crit. represent the critical values for F-statistic and t-statistic while F-cal. and t-call 
represent the values of F-calculated and t-calculated.  
 
 
Table 6 clearly discloses the estimates of the long run and short run environmental degradation 

functions. According to the long-run results, a 1% increase in renewable energy consumption 

and trade policy causes ecological footprints to decline by 0.3508% and 0.0482%, while a 1% 

increase in GDP and biocapacity increases ecological footprints by 0.1317% and 0.6364%. 

Similarly, in the short run, the coefficient of the renewable energy consumption is negatively 

related to ecological footprints but there is no evidence that it is statistically significant. 
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However, a 1% increase in GDP, biocapacity and trade policy increases ecological footprints 

by 0.5475%, 0.5139% and 0.0038% respectively.    

 

The negative relationship between renewable energy consumption and ecological footprints in 

the long run indicates that renewable energy consumption reduces environmental degradation 

through its negative effect on ecological footprints. In other words, the results suggest that 

renewable energy consumption in the US is improving environmental quality as per the results 

of this study. Therefore, our results are aligned with Apergis and Payne (2009), Shahbaz et al. 

(2013), Ben Jebli and Ben Youssef (2016). On the contrary, our findings do not agree with 

Apergis et al. (2010), Ben Jebli et al. (2015) Ben Jebli and Ben Youssef (2017) who argued 

that renewables are positively related to environmental degradation. Furthermore, the results 

of the short run indicate that, even though the coefficient is negative, it is statistically 

insignificant. The reason can be traceable to the combustible renewables and waste in the 

renewable energy consumption data explored; though this variable is adjudged to emit less 

pollution compared to the fossil fuel energy consumption or non-renewable energy 

consumption 

 

The result of the positive connection between GDP and ecological footprint indicates that GDP 

is a major source of environmental degradation in the US. This is due to the intensive use of 

fossil energy required by the firms for production process. As GDP increases, more pressure is 

mounted on ecological footprints components such as fishing grounds, cropland, grazing land, 

built-up land, forest area, and the carbon emissions’ absorption from land surface. This 

subsequently lead to environmental damage (Al-Mulali et al. 2015; Rafindadi, 2016; 

Ranfindadi and Ozturk, 2017; Shahbaz et al. 2017; Usman et al. 2019). More so, the adverse 

effect of trade policy on ecological footprint in the long run suggests that as trade policy in the 

US encourages trade with other countries, the pressure on biocapacity and ecological footprint 

reduces. This is because, the costs required for the production of goods and services in the 

countries of most trading partners such as China and North American countries such as Mexico, 

Brazil, as well as African countries are lower compared to the US. The implication for this 

result is that environmental quality improves through the negative effect of trade policy on 

ecological footprints of the US. However, in the short run, the opposite is the order of the day.

  

We conducted some diagnostic tests on the model estimation. The results of these tests reveal 

that there is no evidence of serial correction and heteroscedasticity. More so, while the 
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functional form of the model is perhaps correctly identified but there is no evidence to support 

the normal distribution of the residual. Finally, the stability of the model is being checked 

through CUSUM and CUSUM squared. The results obviously indicate stability of the model 

at the 5% level of significance. 

 

Table 6: Long-run ARDL Coefficients  
Dependent variable = LNHFP 
ARDL (2, 2, 2, 2, 2) Regression 
Variable  Coefficient Standard Error T-statistic P-value 
lnRE t   -0.3509*** 0.0669 -5.35 0.000 
lnGDPt   0.1317*** 0.0328  4.01 0.000 
lnBCAPt   0.6364*** 0.2352  2.71 0.008 
lnTPt   -0.0482*** 0.0167 -2.89 0.005 
      
Constant  0.5207*** 0.1557  3.34 0.001 

lnRE t   -0.0102 0.5073 -0.20 0.841 

1lnGDPt   0.5475*** 0.1236  4.43 0.000 
lnBIOCAPt   0.5139*** 0.0495 10.37 0.000 
lnTPt   0.0038*** 0.0016  2.45 0.016 

1tecm    -0.1159*** 0.0216 -5.37 0.000 
      
Diagnostic Test  Statistic P-value   

2 ARCH   [1]: 0.7547  0.3868   
2SERIAL   [1]: 1.3475  0.2484   
2 RESET   [1]: 0.6815 0.4110   
2 NORMAL   589.3070 0.0000   

R squared   0.7326    
.Adj R squared   0.6963    

Root MSE  0.0065    
Notes: ***, ** and * denote rejection of the null hypothesis at 1% , 5% and 10% level of significance. The lag length 
selected using Akaike Information Criteria (AIC) 6. 2

SERIAL , 2
ARCH , 2

RESET  and 2
NORMAL denote are tests for 

serial-correlation, heteroscedasticity, functional as well as normality test. [ ] represents the optimal lag selection 
for diagnostic tests; the case 3: Unrestricted Constant and No Trend is used. 
  

 

Table 7 presents the results of the Toda-Yamamoto causality test. The results show that there 

is a two-sided causal relationship between GDP and ecological footprints as well as GDP and 

biocapacity. The results further show that a one-way causal relationship runs from trade policy 

to ecological footprints and from trade policy to renewable energy consumption. In addition, 

renewable energy consumption Granger-cause biocapacity while there is no evidence that any 

of the variables captured Granger-cause trade policy. These results are supported by Apergis 
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and Payne (2010, 2011), Chang et al. (2013), Lin and Moubarak (2014), Al-Mulali et al. 

(2015), Kahia et al. (2016), Ben Jebli and Ben Youssef (2017), Destek and Sarkodie (2019). 

Furthermore, the causal relationship running GDP to ecological footprints supports the 

hypothesis of growth-led pollutant emissions which has been established in the literature (See 

Usman et al. 2019; Bekun et al. 2019). 

 

Table 7: Toda-Yomamoto Causality Test for Environmental Degradation 

Dependent  
Variable 

lnHFPt  lnRE t  lnGDPt  lnBIOCAPt  lnTPt   Overall χ2-
stat (prb.) 

lnHFPt  –  4.8627 
(0.6767) 

12.5180* 
(0.0848) 

6.6459 
(0.4666) 

13.5288* 
(0.0602) 

 39.1847*       
(0.0780) 
 

lnRE t  4.3847 
(0.7346) 

– 9.6029 
(0.2122) 

 10.2794 
(0.1733) 

16.1386** 
(0.0239) 

 54.0467*** 
(0.0022) 
 

lnGDPt  21.3219*** 
(0.0033) 

7.2203 
(0.4063) 

– 13.4634* 
(0.0616) 

7.7057 
(0.3593) 

 41.4992** 
(0.0483) 
 

lnBIOCAPt  3.7009 
(0.8135) 

12.558* 
(0.0836) 

14.4243** 
(0.0441) 

–  2.7183 
(0.9098) 

 36.0371 
(0.1417)   
       

lnTPt  3.4420 
(0.8413) 

3.4422 
(0.8413) 

8.8377 
(0.2645) 

7.71307 
(0.3586) 

–   46.9183*** 
(0.0140) 

Notes:  ***, ** and * denote rejection of the null hypothesis at 1% , 5% and 10% level of significance. The lag 
length selected using Akaike Information Criteria (AIC) 6+1. 
 

 

Results of Innovative Accounting Test  

In furtherance to the UECM/ARDL bounds testing technique, we use the innovative accounting 

tests to properly understand the dynamic contribution of each variable to ecological footprints. 

These tests are the combinations of the error forecast variance decomposition and impulse 

response functions. Table 8 reveals the analysis of the error forecast variance decomposition 

using 10 periods ahead of the sample period. Based on the results, the error forecast variance 

decomposition of the ecological footprint (environmental degradation) attributed to its 

innovative shock is the largest contributor with 65.1%. This is followed by the contribution of 

biocapacity with about 10.4% while policy of trade and economic growth contribute about 

9.6% and 8.7% to ecological footprints in the US. The last contributor to the ecological 

footprints is the renewable energy consumption with about 6.3%.   
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Our results further show that the contribution of renewable energy to its own shocks is as high 

as 81.09%. This is followed by 16.85% following the shocks in ecological footprints. The 

contribution of GDP, biocapacity and trade policy to the error forecast of renewable energy 

consumption is as low as 0.60%, 1.00% and 0.46%. Furthermore, the results depict that the 

contribution of GDP to own shocks is 61.86%, and distantly followed by biocapacity with 

14.79%, ecological footprints with 13.23%, trade policy with 8.41% and renewable energy 

consumption with just 1.71%. In the case of the biocapacity, the results demonstrate that 

ecological footprint is its major contributor. As shown by the result, ecological footprint 

contributes about 49.50% to the error forecast decomposition of biocapacity. This is followed 

by its own shocks with about 43.48% and GDP with about 5.68%. The contribution of 

renewable energy consumption and trade is just 0.92% and 0.41% respectively. Finally, the 

error forecast variance decomposition of trade policy due to its innovative shocks is about 

84.10%, followed by ecological footprints with about 9.88%, and biocapacity with about 

2.92%, while renewable energy and GDP contribute 1.62% and 1.48% to trade policy. The 

implication for these results is that the variables in the model estimations have bidirectional 

relationships.  

 

Following these results, the major finding we observe that an increase in renewable energy 

consumption to improve economic growth causes lower deterioration in the environmental 

quality while an increase in trade policy to improve growth deteriorates environmental quality 

drastically. As shown by Table 8, it is unequivocally clear that a 14.79% increase in renewable 

energy consumption is corresponded with just about 0.60% rise in environmental degradation 

while a 8.41% increase in trade policy lead to about 9.88% increase in environmental 

deterioration. These results, therefore, align with our earlier model estimation, which 

emphatically revealed the importance of renewable energy consumption in the pursuit of 

economic growth on the basis that it releases less pollution to the environment compared to 

fossil fuel energies. 

 

The second part of the innovative accounting approach is the impulse response analysis. As 

disclosed by Figure 2, the response of the ecological footprints to a standard deviation shock 

to own variable is positive and significant. The results further show that the responses of 

ecological footprints to a shock in renewable energy consumption, biocapacity and trade policy 

are all negative. In the case of renewable energy consumption, it is found statistically 



16 
 

significant while in the case of trade policy its significance begin from the fifth quarter. 

Similarly, for biocapacity, it is only found significant between quarter five and seven. 

Regarding the response of renewable energy to a shock to own variable and other variables, we 

found interesting results. For example, the response of renewable energy consumption to own 

shock is positive and statistically significant. The result further displays that renewable energy 

consumption first responds positively and insignificantly to the shocks in GDP and trade 

policy. However, for GDP, the response becomes negative after the seventh quarters. In the 

case of trade policy, the response becomes unnoticeable and consequently negative after the 

seventh quarters. The response of renewable energy consumption to trade policy is initially 

negative up to the fifth quarters and crosses to positive thereafter even though the response is 

insignificant. The empirical result further demonstrates that the response of GDP to a shock in 

ecological footprint and renewable energy consumption is positive. This response is significant 

up to the seventh quarters in the case of a shock in ecological footprint while insignificant in 

the case of renewable energy consumption. The response of GDP to its shocks is positive and 

statistically significant while the response of GDP to biocapacity and trade policy is negative 

and statistically significant for biocapacity but in the case of trade policy, the response becomes 

statistically significant after the fourth quarters.  

 

Our empirical results further divulge that the response of biocapacity to a shock in ecological 

footprint is positive and statistically significant up to the fifth months and gradually declines 

until it becomes stabilized in the eighth quarters. For the renewable energy, it is found that the 

response to its shocks is positive and insignificant. This gradually falls to its steady state after 

the fourth quarters. The result of the response of GDP to biocapacity is negative and statistically 

significant up to the ninth quarters, after which it becomes neutral. More so, the response of 

biocapacity to own shock is positive and significant up to the fifth quarter. This perhaps 

declines gradually and then hits negative at the ninth quarters. Finally, the response biocapacity 

to a shock in trade policy is positive and insignificant. This declines gradually to its steady state 

after the ninth quarters. Similarly, as regards to the response of trade policy to a shock in 

ecological footprints, we observe it to have a negative and insignificant impact. For renewable 

energy consumption, the effect is not noticeable in the first three quarters even though it is 

positive and insignificant. The response of trade to a shock in GDP is negative and moves to 

its equilibrium after the second quarters. In addition, the result shows that trade policy 

positively responds to a shock in biocapacity. This becomes negative after the second quarters 
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and then move to it steady state gradually after the sixth quarters, while the response of trade 

policy to its own shock is positive and gradually decline to become neutral after the third 

quarters. 

 

 

 

Table 8: Innovative Accounting Approach 

Variance Decomposition of LNHFP: 
 Period S.E. LNHFP LNRE LNGDP LNBIOCAP LNTP 

               1  0.009796  100.0000  0.000000  0.000000  0.000000  0.000000 
 2  0.016893  97.95296  0.046272  1.692339  0.111747  0.196678 
 3  0.022700  94.02464  0.211570  3.392090  0.913724  1.457975 
 4  0.027403  88.74846  0.547173  4.900442  2.480738  3.323188 
 5  0.031255  83.18550  1.082313  6.161902  4.449336  5.120944 
 6  0.034471  78.03041  1.819478  7.150976  6.392767  6.606365 
 7  0.037198  73.63164  2.739255  7.861624  8.018014  7.749467 
 8  0.039535  70.07540  3.810252  8.317766  9.209122  8.587459 
 9  0.041557  67.28708  4.995957  8.563321  9.982108  9.171531 

 10  0.043326  65.12271  6.258070  8.648738  10.41857  9.551917 
              Variance Decomposition of LNRE: 

 Period S.E. LNHFP LNRE LNGDP LNBIOCAP LNTP 
               1  0.012037  0.000000  99.68959  0.310408  0.000000  0.000000 

 2  0.021659  0.219946  99.24795  0.127491  0.001157  0.403460 
 3  0.029774  0.476426  98.61033  0.621906  0.039815  0.251524 
 4  0.036472  0.593657  97.30525  1.841026  0.085723  0.174341 
 5  0.042001  0.584893  95.44018  3.735793  0.089960  0.149171 
 6  0.046625  0.509030  93.15334  6.140268  0.073050  0.124313 
 7  0.050596  0.432271  90.51198  8.839608  0.105154  0.110982 
 8  0.054124  0.408058  87.56464  11.62589  0.256246  0.145173 
 9  0.057369  0.465008  84.38689  14.33058  0.559837  0.257683 

 10  0.060435  0.604734  81.09218  16.83896  1.003697  0.460433 
              Variance Decomposition of LNGDP: 

 Period S.E. LNHFP LNRE LNGDP LNBIOCAP LNTP 
               1  0.005188  5.631263  0.000000  94.24394  0.124793  0.000000 

 2  0.008285  13.75165  1.292345  84.37146  0.565872  0.018668 
 3  0.011520  16.46393  3.909010  77.79547  0.975746  0.855846 
 4  0.014756  16.72182  6.801406  72.80514  1.301494  2.370134 
 5  0.017913  16.06493  9.330895  69.19627  1.526246  3.881653 
 6  0.020916  15.23546  11.30444  66.61433  1.663569  5.182198 
 7  0.023718  14.50182  12.73749  64.76917  1.733831  6.257679 
 8  0.026298  13.93228  13.72443  63.45297  1.756122  7.134196 
 9  0.028650  13.51883  14.37479  62.51853  1.745724  7.842123 
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 10  0.030786  13.23010  14.78641  61.85999  1.714147  8.409347 
              Variance Decomposition of LNBIOCAP: 

 Period S.E. LNHFP LNRE LNGDP LNBIOCAP LNTP 
               1  0.012183  53.47959  1.256648  0.916672  44.34709  0.000000 

 2  0.019867  52.68523  1.129229  2.490321  43.69480  0.000418 
 3  0.024365  51.57713  1.029717  3.623474  43.74944  0.020241 
 4  0.026519  50.64769  0.960791  4.505179  43.78859  0.097744 
 5  0.027335  50.05624  0.922409  5.111701  43.69704  0.212615 
 6  0.027563  49.77014  0.907756  5.459795  43.54602  0.316293 
 7  0.027608  49.65841  0.906430  5.618301  43.43809  0.378772 
 8  0.027624  49.60328  0.910333  5.672564  43.41120  0.402618 
 9  0.027642  49.55287  0.915895  5.685097  43.43966  0.406477 

 10  0.027659  49.50356  0.922604  5.687217  43.48066  0.405967 
              Variance Decomposition of LNTP: 

 Period S.E. LNHFP LNRE LNGDP LNBIOCAP LNTP 
               1  0.519783  0.720530  0.006664  1.367049  1.934229  95.97153 

 2  0.540562  2.474262  0.006250  1.503411  1.790483  94.22559 
 3  0.547921  4.471150  0.032302  1.516549  2.237004  91.74300 
 4  0.555048  6.327406  0.126109  1.503986  2.639078  89.40342 
 5  0.560232  7.678328  0.293407  1.486802  2.779966  87.76150 
 6  0.563711  8.539228  0.518310  1.469952  2.775423  86.69709 
 7  0.566259  9.069671  0.779782  1.457817  2.752595  85.94013 
 8  0.568473  9.414272  1.058431  1.455415  2.771070  85.30081 
 9  0.570634  9.666840  1.340335  1.463786  2.834720  84.69432 

 10  0.572817  9.881538  1.617903  1.479877  2.922844  84.09784 
              Cholesky Ordering: LNHFP LNRE LNGDP LNBIOCAP LNTP 
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Figure 1: Impulse Response Function (IRF) for Environmental Degradation Function. 
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5. Conclusion and policy recommendations 

Over the years, the attention of the world has been drawn to the adverse effect of environmental 

degradation resulting from human activities.  In other words, the changes in the natural levels 

and the distribution of chemical elements as well as their compounds have threatened the well-

being of the world. In the US, government has pursued devise of environmental and energy 

policies such as renewable energy consumption to lessen the consumption of energy from fossil 

fuels, which cause huge pollutions to the detriment of human health. Given this background, 

the paper investigates not only the dynamic impact of renewable energy consumption, 

economic growth, biocapacity and trade policy on the ecological footprint in the US using 

quarterly dataset from 1985Q1 to 2014Q4. To achieve this objective, we tested the stationarity 

properties of the variables and their cointegration using ADF and PP unit root tests as well as 

the bounds testing cointegration technique. The robustness of this cointegration was checked 

using Kripfganz and Scheneider (2018) critical values and approximate p-values of the original 

bounds testing cointegration. The results of the ADF and PP showed a mixed order of 

integration as well as cointegration among the variables. The results of the long-run and the 

short-run coefficients were obtained from the ARDL bounds testing approach. The results of 

the long-run showed that a 1% increase in renewable energy consumption and trade policy 

reduced ecological footprints to decline by 0.3508% and 0.0482%, and by implication 

increased environmental quality while a 1% increase in GDP and biocapacity increased 

ecological footprints by 0.1317% and 0.6364% which by implication reduced environmental 

quality. Similarly, in the short run, the coefficient of the renewable energy consumption is 

negatively related to ecological footprints but there was no evidence that it was statistically 

significant. However, a 1% increase in GDP, biocapacity and trade policy increased ecological 

footprints by 0.5475%, 0.5139% and 0.0038%.    

 

In order to check the causal relationship between the variables, we applied a conditional 

Granger causality test developed by Toda and Yamamoto (1995). The results of this test 

showed evidence of a feedback causal effect between GDP and ecological footprints as well as 

GDP and biocapacity. Also, the results divulged that a one-way causal relationship was 

evidently running from trade policy to renewable energy consumption and from renewable 

energy consumption to biocapacity. Complementing the causality test was the accounting 

innovative tests, which used error forecast variance decompositions and impulse responses. 

The results of the error forecast variance decomposition showed that apart from the effect of 
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own shocks, the shocks to biocapacity had the highest effect on ecological footprints, followed 

by trade policy, GDP and lastly renewable energy consumption. However, in terms of driving 

economic growth with less pollution to the environment, renewable energy consumption stood 

out. Furthermore, the results based on the impulse response function displayed that the response 

of the ecological footprint to itself was positive. More so, the responses of ecological footprints 

to a shock in renewable energy consumption, biocapacity and trade policy are negative while 

the response of ecological footprints to a shock in GDP was found positive.  

 

Therefore, to reduce environmental degradation and improve environmental quality, the pursuit 

of pollution-free economic growth and energy mix are essential. Based on the findings of this 

study, we suggest that more energy policies should encourage huge investments in renewables 

like nuclear power, solar power, hydropower, wind, and wave, biofuels, biomass etc. Another 

policy implication of our finding is the need to strengthen the existing environmental laws in 

such that less-polluted industries (based on a certain standard) are rewarded and those 

industries with excessive emission of carbon dioxide are taxed. This may be enforced carefully 

so that industries and firms will not relocate their base due to a heavy carbon emission tax. To 

this end, we propose that the following policy instrument issues raised by Panayotou (1994) 

and Rafindadi (2016) should be adhered to: 

(i) The issue of effectiveness of the environmental policy instrument: The central 

question in this case is whether the environmental policy instrument is capable of 

achieving the selected objectives given consideration to the time frame. 

(ii) The issue of effectiveness of the cost of policy instrument: The concern here is that 

the costs required for implementation of the policy should be minimized.  

(iii) The issue of flexibility of the policy instrument: The main concern here is flexibility 

of the instruments to adopt to the technological changes in the presence of scare 

resources and a dwindling revenue of the government. 

(iv) The issue of dynamic efficiency of the policy instrument: The central issue here is 

whether the instruments are capable of providing a sound environmental 

infrastructure that promotes incentive for technological innovation.   

(v) The issue of equitability of the cost of environmental policy instrument: The main 

concern here is that the cost of environmental protection ought to be beared by every 

individual based on their incomes. 
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(vi) The issue of legality of the policy instrument: The instrument ought to be legally 

bounded. In other words, the adoption of the instrument should be consistent with 

the provision of the existing laws. 

(vii) The issue of ease monitoring and enforcement of the policy instrument: The 

monitoring and enforcement processes ought to be less difficult and costly. 

(viii) The issue of predictability of the policy instrument: This is concerned with whether 

the policy instruments are predictably useful for a long-run without imposing 

predictable costs on the polluters. 

(ix) The issue of acceptability of the policy instrument. The main issue pertaining to 

acceptability is centred on the question of whether the instrument is understood by 

the individual, firms and industries who are the end-users.  
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