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A B S T R A C T

In this paper, the practice of the extended direct algebraic method (EDAM) is used to solve fractional Regularized
Long Wave Burgers (RLW-Burgers) equation by means of the conformable derivative. Firstly, this fractional
equation is changed into the ordinary differential equation by using the traveling wave transformation. Then
new soliton solutions are obtained by using EDAM. This presented form is important in physics and engineering.
The created soliton solutions play a major task for scientists about an agreement the physical event of this
equation. The graphics of some solutions are drawn at fitting values of parameters. The obtained outcomes
appear clarity, accuracy, and potentiality of the presented scheme.

1. Introduction

Nonlinear differential equations have been briefly studied in the
literature since they act as a bridge between mathematics and physics
[1–12]. Recently, there has been considerable interests and significant
theoretical developments in fractional calculus used in many fields and
in fractional differential equations and its applications [13–36]. In [13];
M. Ekici et al. used the first integral method by using fractional deri-
vative of conformable type for getting the soliton solutions, Yang et al.
found the solutions of the sub-diffusion and wave equations via FVIM in
[14], Yang et al. obtained the solutions for local fractional KdV equa-
tion in [15], in [16]; is found the solutions of two-dimensional frac-
tional Burgers equations and Zhang et al. obtained the solutions of
transport equations by using the series expansion method with local
fractional derivative in [17] and in [18], H. Rezazadeh et al. obtained
some new solutions of nonlinear time fractional Phi-four equation with
conformable derivative. There are many more researches related to
fractional derivatives.

In this work, we analyze the time fractional RLW-Burger equation
by means of conformable derivative operator [19,20] to form solitons
using the EDAM. When arguments affect this process are accepted to be
specific values we can achieve the solitary wave solutions which are
deduced from other methods such as, the (G’/G)–expansion method
[21], auxiliary equation method [22], the direct algebraic method
[23,24] and so on [25–30]. Difference between the direct algebraic

method and extended direct algebraic method are special functions
used in the solution. It is clear that this extended direct algebraic
method, by using characteristic calculation, contributes a more influ-
ential mathematical tool for several other solving fractional differential
equations.

The time fractional RLW-Burgers equation with conformable deri-
vative is presented as follow [19,20]:

+ + + + = > <q q qq q q t0, 0, 0 1.t x x xx xxt
( ) (1.1)

where qt
( ) is the conformable derivative operator ( =q q x t( , ));

, , and are real valued constants. In [19] Korkmaz A. used the
modified Kudryashov method obtain to construct the solution of this
equation. Zhao and Xuan [20] analyse the existence and convergence
cases of solutions for the RLW-Burgers equation. In [26]; scientists
studied integer ordered type of this equation in 1981 to investigate
surface water waves propagation in a channel. In [27], are analyzed
oscillatory and monotone kink type waves for the presented equation.
Some exact solutions as hyperbolic and trigonometric type are obtained
via some expansion methods [28]. In [29], are found some complex
solutions of this equation by the using direct algebraic method.

The conformable fractional derivative was proposed in [30], which
can rectify the shortcomings of the previous definitions. This derivative
is the simplest and most natural and efficient definition of the fractional
derivative of order (0,1]. We should remark that the definition can
be generalized to include any . However, the case (0,1] is the most
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important one.
The conformable derivative of order (0, 1) defined as the fol-

lowing expression [30]

= +D f t f t t f t f( ) lim ( ) ( ) , : 0, .t
0

1

(1.2)

The definition seems to be a natural extension of normal derivatives.
But the form of the definition shows that it is the most natural defini-
tion, and the most fruitful one. The definition for <0 1 coincides
with the classical definitions on polynomials (up to a constant).

Some of the features of the conformable derivative as follows
[30,31].

=a D t t) , ,t

= +b D fg f D g g D f) ( ) ,t t t

=c D fog t g t f g t) ( ) ( ) ( ( )),t
1

=d D f
g

g D f f D g
g

.t
t t

2

It’s very easier to work with this fractional derivative. Recently,
several studies have been done related to the conformable type of
fractional calculations [31–35].

2. Analysis of the extended direct algebraic method

Assume the general nonlinear partial differential equation,

… =A q q q q q( , , , , , ) 0.t x xx tt
( ) (2 ) (2.1)

where q is an unknown function depending on x and t A, is a poly-
nomial in =q q x t( , ) and the sub-indices represent the partial fractional
derivatives.

• Suppose the traveling wave variable:
= =q x t u x Q t, ( ), ,

(2.2)

Then, from Eq. (2.2), Eq. (2.1) is turn to an ordinary differential
equation for u ( ):

… =B u u u u( , , , , ) 0. (2.3)

where the sub-indices represent the ordinary derivatives with re-
spect to .
• Consider the solution of Eq. (2.3),

=
=

u G( ) ( ),
i

N

i
i

0 (2.4)

where a 0n and can be expressed as follows:

= + +G A fG gG h A( ) ln( )( ( ) ( ) ), 0, 1,2 (2.5)

where h g f, , are arbitrary constants.
• N is found by balancing between the nonlinear terms and the highest
order derivatives in Eq. (2.3).
• Replacing Eq. (2.4) together with Eq. (2.5) into the Eq. (2.3), then
equating each coefficient of the polynomials to zero, give a set of
algebraic equations for i = …i N f g h( 1, 2, , ), , , and Q.
• Solving the obtained system, we obtain values for i = …i N( 1, 2, , )
and Q. Then, solutions of Eq. (2.3) are obtained.

Where some special solutions of Eq. (2.3) as follows;

1)When <g hf4 02 and f 0,

= +

= +

±

= +

G

G g hf

g hf

G

( ) tan ,

( ) cot ( 4 )

csc ( 4 ) ,

( ) tan cot .

g
f

g hf
f A

g hf

g
f

g hf
f A

A

g
f

g hf
f A

g hf
A

g hf

1 2
( 4 )

2
( 4 )

2

2 2
( 4 )

2
2

2

3 2
( 4 )

2
( 4 )

4
( 4 )

4

2 2

2

2 2 2

2)When >g hf4 02 and f 0,

=

= +

±

= + +

G

G g hf

i h g hf

G

( ) tanh ,

( ) ( tanh ( 4 )

sec ( 4 )),

( ) tanh coth .

g
f

g hf
f A

g hf

g
f

g hf
f A

A

g
f

g hf
f A

g hf
A

g hf

4 2
4

2
4

2

5 2
4

2
2

2

6 2
4

4
4

4
4

4

2 2

2

2 2 2

3)When >hf 0 and =g 0,

=

= ±

=

G hf

G hf hf

G

( ) cot ,

( ) tan 2 sec 2 ,

( ) tan cot .

h
f A

h
f A A

h
f A

hf
A

hf

7

8

9
1
2 2 2

4)When <hf 0 and =g 0,

=

= ±

= +

G hf

G hf i h hf

G

( ) coth ,

( ) ( tanh (2 ) sec (2 )),

( ) tanh coth .

h
f A

h
f A A

h
f A

hf
A

hf

10

11

12
1
2 2 2

5)When =h f and =g 0,

=
= ±

= ( )( ) ( )

G h
G h h

G

( ) tan ( ),
( ) cot (2 ) csc (2 )),

( ) tan cot .

A

A A

A
h

A
h

13

14

15
1
2 2 2

6)When =h f and =g 0,

=
= ±

= +( )( ) ( )

G h
G h i h h

G

( ) coth ( ),
( ) tanh (2 ) sec (2 ),

( ) tanh coth .

A

A A

A
h

A
h

16

17

18
1
2 2 2

7)When =g hf4 ,2

= +G h g A
g A

( ) 2 ln( ) 2
ln( )

.19 2

8)When = =g k h mk, m( 0) and =f 0,

=G A m( ) .k
20
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9)When = =g f 0,

=G h A( ) ln( ).21

10)When = =g h 0,

=G
f A

( ) 1
ln( )

.22

11)When =h 0 and g 0,

=

=
+

+
+ +

G

G

( ) ,

( ) .

g
f g g

g g g
f g g

23 (cosh ( ) sinh ( ) )

24
(sinh ( ) cosh ( ))

(sinh ( ) cosh ( ) )

A A

A A
A A

12)When = =g k h, 0 and =f mk m( 0),

=G A
m A

( ) .
k

k25

Remark 1. The generalized triangular and hyperbolic functions are
defined as [36];

= =

= =

= =

= =

= =

= =

+

+
+

+
+

+
+

+

i i

h h

sin ( ) , cos ( ) ,

tan ( ) , cot ( ) ,

sec ( ) , csc ( )

sinh ( ) , cosh ( ) ,

tanh ( ) , coth ( ) ,

sec ( ) , csc ( ) .

A
A A

i A
A A

A
A A
A A A

A A
A A

A A A A
i

A A

A
A A

A
A A

A
A A
A A A

A A
A A

A A A A A A

2 2

2 2

2 2

2 2

i i i i

i i
i i

i i
i i

i i i i

where > 0 and > 0 are deformation parameters and is an
independent variable.

3. The fractional RLW-Burgers equation

By placing Eq. (2.2) into Eq. (1.1), is obtained nonlinear equation as
follows,

+ + + =Q u u u u Q u( ) ( ) ( ) ( ) ( ) ( ) ( ) 0, (3.1)

By integrating once according to Eq. (3.1), is obtained nonlinear
equation as follows,

+ + + + =Q u u u Q u K( ) ( )
2

( ) ( ) 0,2

(3.2)

where K integration constant.
Assumed the solution of Eq. (3.2) is demonstrable as a finite series

as follows:

=
=

u G( ) ( )
j

N

j
j

0 (3.3)

where satisfies Eq. (2.5) = x Q, t and j for =j N1, are values to
be definited.

By balancing u with u2 in Eq. (3.2), is obtained =N 2.
We can select the solution of Eq. (3.2) as following shape:

= + +u G G( ) ( ) ( ) ,0 1 2
2 (3.4)

where satisfied Eq. (2.5).
Substituting (3.2) and (2.5) into (3.2), collecting the coefficients of ,

and solving the obtaining system, the following groups of some solu-
tions are found:

One of the five groups of values as follows

= =

= =

+ + +

Q

, ,

, ,

g A f A

f A

0
5 6 ln( )

5 1

12 ln( ) 1

5

2
12 ln( )

5 5

fh A g A12 ln( )2 ln( )

2 2

(3.5)

=
+ +

K
5 2 5

50
,

2 36

2

2 4
2

where = g fh A( 4 )ln( )2 2 2 .
The solutions of Eq. (1.1) are obtained as follows;

1)When <g hf4 02 and f 0, the singular periodic solutions are
as below

= +

+ +

+ +

+ + +

( )
q x t

x

x

( , )

tan

tan

,

g A f A

g
f

g hf
f A

g hf t

f A g
f

g hf
f A

g hf t

1
5 6 ln( )

5

12 ln( ) 1

5

2
( 4 )

2
( 4 )

2 5

12 ln( )
5 2

( 4 )
2

( 4 )
2 5

2

fh A g A12 ln( )2 ln( )

2 2

2 2 2 2

= +

+

+

± +

+

+

± +

= +

+

+

+ +

+ +

+

+

( )

( )
( )

( )

( )
( )

q x t

g hf x

g hf x

g hf x

g hf x

q x t

( , )

cot ( 4 )

csc ( 4 )

cot ( 4 )

csc ( 4 ) ,

( , )

tan cot

tan cot .

g A f A g
f

g hf
f

A
t

A
t

f A g
f

g hf
f

A
t

A
t

g A f A g
f

g hf
f

A
g hf

A
g hf

f A g
f

g hf
f

A
g hf

A
g hf

2
5 6 ln( )

5

12 ln( ) 1

5 2

( 4 )
2

2
5

2
5

12 ln( )
5 2

( 4 )
2

2
5

2
5

2

3
5 6 ln( )

5

12 ln( ) 1

5 2

( 4 )
2

( 4 )
4

( 4 )
4

12 ln( )
5 2

( 4 )
2

( 4 )
4

( 4 )
4

2

fh A g A

fh A g A

12 ln( )2 ln( )

2

2 2 2

12 ln( )2 ln( )

2

2 2

2 2 2

2 2

2)When >g hf4 02 and f 0, thus the dark and the singular
soliton solutions are as below

= +

+

+

+ + +

( )
( )

q x t

x

x

( , )

tanh

tanh ,

g A f A

g
f

g hf
f A

g hf t

f A g
f

g hf
f A

g hf t

4
5 6 ln( )

5

12 ln( ) 1

5

2
4

2
4

2 5

12 ln( )
5 2

4
2

4
2 5

2

fh A g A12 ln( )2 ln( )

2 2

2 2 2 2
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= +

+

+

± +

+

+

± +

= +

+

+ + +

+ +

+ +

+ +

+ +

+

+

( )

( )
( )

( )

( )
( )

( )
( )

( )

q x t

g hf x

i h g hf x

g hf x

i h g hf x

q x t

x x

x

x

( , )

tanh 4

sec 4

tanh 4

sec 4 ,

( , )

tanh coth

tanh

coth ,

g A f A
g
f

g hf
f

A
t

A
t

f A g
f

g hf
f

A
t

A
t

g A f A
g
f

g hf
f

A
g hf t

A
g hf t

f A g
f

g hf
f A

g hf t

A
g hf t

5
5 6 ln( )

5

12 ln( ) 1

5 2

4
2

2
5

2
5

12 ln( )
5 2

4
2

2
5

2
5

2

6
5 6 ln( )

5

12 ln( ) 1

5 2

4
4

4
4 5

4
4 5

12 ln( )
5 2

4
4

4
4 5

4
4 5

2

fh A g A

fh A g A

12 ln( )2 ln( )

2

2 2 2

12 ln( )2 ln( )

2

2 2

2 2 2 2

2

3)When >hf 0 and =g 0, thus the singular periodic solutions are as
below

= +

+

+

+ + +

( )
( )

( )
( )

q x t

hf x

hf x

( , )

cot

cot

g A f A

h
f A

t

f A h
f A

t

7
5 6 ln( )

5

12 ln( ) 1

5

5

12 ln( )
5 5

2

fh A g A12 ln( )2 ln( )

2 2

= +

+ ± +

+ ± +

= +

+ +

+ +

+ + +

+ + +

( ) ( )

( )

( ) ( )

( )

( )
( ) ( )

q x t

hf x hf x

hf x hf x

q x t

x x

x x

( , )

tan 2 sec 2

tan 2 sec 2 ,

( , )

tan cot

tan cot ,

g A fh A f A g A

h
f A

t
A

t

f A

h
f A

t
A

t

g A fh A f A g A

h
f A

hf t
A

hf t f A

h
f A

hf t
A

hf t

8
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

5 5

12 2 ln( )2

5

5 5

2

9
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

1
2 2 5 2 5

12 2 ln( )2

5

1
2 2 5 2 5

2

4)When <hf 0 and =g 0, thus the dark, bright and singular soliton
solutions are as below

= +

+

+

+ + +

( )
( )

( )
( )

q x t

hf x

hf x

( , )

coth

coth ,

g A f A

h
f A

t

f A h
f A

t

10
5 6 ln( )

5

12 ln( ) 1

5

5

12 ln( )
5 5

2

fh A g A12 ln( )2 ln( )

2 2

= +

+

± +

+

± +

= +

+ + +

+ + +

+ + +

+ + +

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )

q x t

hf x

i h hf x

hf x

i h hf x

q x t

x x

x x

( , )

tanh 2

sec 2

tanh 2

sec 2

,

( , )

tanh coth

tanh coth ,

g A fh A f A g A

h
f A

t

A
t

f A h
f A

t

A
t

g A fh A f A g A

h
f A

hf t
A

hf t

f A

h
f A

hf t
A

hf t

11
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

5

5

12 2 ln( )2

5 5

5

2

12
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

1
2 2 5 2 5

12 2 ln( )2

5

1
2 2 5 2 5

2

5)When =h f and =g 0, thus the singular periodic solutions are as
below

=

+ +

+

+ + +

( )
( )

( )
( )

q x t

h x

h x

( , )

tan

tan ,

g A

f A

A
t

f A
A

t

13
5 6 ln( )

5

12 ln( ) 1

5 5

12 ln( )
5 5

2

fh A

g A

12 ln( )2

ln( )

2 2

= +

+ ±

+

+

± +

=

+ +

+

+ +

+ + +

+ + +

( )
( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )
( )

( )

q x t

h x

h x

h x

h x

q x t

x

x

x x

( , )

cot 2

csc 2

cot 2

csc 2

,

( , )

tan

cot

tan cot ,

g A fh A f A g A

A
t

A
t

f A
A

t

A
t

g A fh A

f A g A

A
h t

A
h t

f A
A

h t
A

h t

14
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

5

5

12 2 ln( )2

5 5

5

2

15
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5
1
2 2 5

2 5

12 2 ln( )2

5
1
2 2 5 2 5

2

6)When =h f and =g 0, thus the dark, bright and singular soliton
solutions are as below
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=

+ +

+

+ + +

( )
( )

( )
( )

q x t

h x

h x

( , )

coth

coth ,

g A

f A
A

t

f A
A

t

16
5 6 ln( )

5

12 ln( ) 1

5 5

12 ln( )
5 5

2

fh A

g A

12 ln( )2

ln( )

2 2

= +

+ ±

+

+ ± +

= +

+

+ +

+ + +

+ + +

+ + +

( )
( )

( ) ( )

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( )

q x t

h x i

h h x

h x i h h x

q x t

x

x

x x

( , )

tanh 2

sec 2

tanh 2 sec 2 ,

( , )

tanh

coth

tanh coth

,

g A fh A f A g A

A
t

A
t

f A

A
t

A
t

g A fh A f A g A

A
h t

A
h t

f A
A

h t
A

h t

17
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

5

5

12 2 ln( )2

5

5 5

2

18
5 6 ln( ) 12 ln( )2

5

12 ln( ) 1 ln( )

5

1
2 2 5

2 5

12 2 ln( )2
5

1
2 2 5 2 5

2

7)When =g hf42 , thus the rational solution is as below

= +
+ +

+ +

+

+ +

+

+

q x t

h h

( , )

2 2 ,

g A f A

g x A

g x A

f A
g x A

g x A

19
5 6 ln( )

5

12 ln( ) 1

5

ln( ) 2

ln( )

12 ln( )
5

ln( ) 2

ln( )

2

fh A g A

t

t

t

t

12 ln( )2 ln( )

5

2
5

2 2 5

2
5

8)When = =g k h mk, m( 0) and =f 0, thus the rational solution
is as below

= +
+ + +

+

+

q x t A

m

A m

( , )

,

g A f A k x

f A k x

20
5 6 ln( )

5

12 ln( ) 1

5

12 ln( )
5

2

fh A g A
t

t

12 ln( )2 ln( )

5

2 2 5

9)When = =g f 0, thus the rational solution is as below

=

+ +

+

+ + +

( )( )
q x t

h x A

h x A

( , )

ln( )

ln( ) ,

g A

f A t

f A t

21
5 6 ln( )

5

12 ln( ) 1

5 5

12 ln( )
5 5

2

fh A

g A

12 ln( )2

ln( )

2 2

10)When = =g h 0, thus the rational solution is as below

= +
+ + +

+

+

q x t( , )

,

g A fh A f A g A

f x t A

f A
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11)When =h 0 and g 0, thus the dark-like and bright solitons are
as below
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12)When = =g k h, 0 and =f mk m( 0), thus the rational solu-
tion is as below
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4. Graphical representation of the solutions

The surface graphics of the obtained solutions are showed below in
the figures by using Mathematica. In Figs. 1–3, we drawn some math-
ematical simulations for q x t q x t q x t q x t q x t( , ), ( , ), ( , ), ( , ), ( , )1 5 10 15 18 and
q x t( , )23 in 3D plots when x5 5 and t5 5.

We wrote the some of solutions found for the presented fractional
RLW-Burgers equation via conformable derivative operator. Besides we
showed 3D and 2D graphics for some of solutions in Figs. 1–3. The
graphics above were drawn for =A

= = = = = = =2.7, 1.2, 0.5, 1.5, 0.4, 0.9, 1 and =x 0.5
(for 2D graphics).

5. Conclusion

In this paper, the extended direct algebraic method is used to find
new soliton solutions of the fractional RLW-Burgers equation. These
solutions consist of twelve different cases. The existences of solutions
derived from these functions are all guaranteed through constraint
conditions that are also listed beside the solutions. The obtained soliton
solutions are important for scientists about the agreement the physical
event of this equation. By selecting appropriate values of parameters,
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the behaviors of some solutions have been viewed with the help 3D and
2D graphics. We say that the presented method is suitable to examine
the many problems located in science and engineering.
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