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In this study, a numerical discrete derivative technique for solutions of Kuramo-
to-Sivashinksy equation is considered. According to the procedure, differential 
quadrature algorithm is adapted in space by using Chebyshev polynomials and 
explicit scheme is constructed to discretize time derivative. Sample problems are 
presented to support the idea. Numerical solutions are compared with exact solu-
tions and also previous works. It is observed that the numerical solutions are well 
matched with the exact or existing solutions. 
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Introduction 

Numerical techniques to solve PDE which model many real life phenomenon, are 
widely used due to their fast and effective outcomes. Today, solving these kinds of problems 
both analytically or numerically attract many scientist. In this content differential quadrature 
(DQ) method is considered to solve Kuramoto-Sivasinsky (KS) equation.

The KS equation has been presented as models of phase turbulence in reaction-diffu-
sion systems [1, 2], plasma instabilities and flame front propagation [3]. The model equation 
has been widely studied analytically and numerically. Collocation methods based on Cheby-
shev spectral scheme [4], quintic B-splines [5], exponential cubic B-splines [6], have been 
considered.

Solutions of KS equation analyzed by using various methods such as finite difference 
methods [7], discontinuous Galerkin method [8], numeric meshless method for space deriva-
tives using radial basis function [9], He’s variational iteration method [10]. Rademacher and 
Wattenberg [11] studied on viscous shocks for the model equation. Also, some control results 
of the equation are presented [12, 13].

The DQ is discrete derivative method to solve ODE or PDE which gives numerical 
results effectively. The method presented by Bellman and Casti [14] and Bellman et al. [15]. 
The idea was to give a new perspective for previous numerical techniques in solving prob-
lems. Since then, the way has been adapted in a wide range of applications. As to the idea, the 
derivative of a function is defined as a weighted linear sum of the function values at all grid 
points related to the used direction. So, the term weighting coefficients occurs, and to obtain 
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these coefficients, generally polynomials are chosen as test functions which can be obtained by 
polynomial approximation theory.

In the beginning, Bellman proposed the idea of two polynomial-based methods for 
computation of the weighting coefficients for the first order derivative. Power function was 
used as test function for the first approach and for the second one he choose test function 
as Legendre polynomials [14, 15]. Shortly after, many new different approaches have been 
presented with applications to many different kind of engineering problems. Popular ways 
have been suggested such as polynomials, Spline functions or Fourier series expansion. Quan 
and Chang [16, 17] used Legendre interpolation polynomials as test functions then obtained 
explicit formulation to find the weighting coefficients. Shu [18], gave a powerful way as a 
combination Bellman’s and Quang-Chang’s approaches. Also, first and higher order derivative 
formulations were analyzed in detail based on polynomial approaches and Fourier series ex-
pansion approaches using different kind of grid points. Stability analysis based on eigenvalue 
distribution was explained together with different time integration schemes. Shu [18] also 
presented the relationships between finite difference and collocation methods with the DQ 
method. 

The DQ method has been effectively used in areas such as material science, thermal 
and structural mechanical analysis, physics and biology. It can be seen that this technique 
gives accurate solutions with time saving computations [19]. Civan and Spliepcevich [20] 
applied this method to both Poisson equation, and to multi-dimensional problems [21]. Saka 
et al. [22] considered equal width equation (EW) by using three methods including cosine ex-
pansion based differential quadrature. Korkwaz and Dag [23, 24], studied on a wide of range 
of problems using Spline functions or polynomials. For time discretization they used fourth 
order Runge-Kutta scheme and stability analysis is examined. Sari and Guraslan [25] inves-
tigated the polynomial based method for generalized Burgers-Huxley equation together third 
order third-order Runge-Kutta scheme for temporal discretization, without using linearization. 
Mittal and Arora [26] used Bernstein polynomials to acquire the weighting coefficients. In our 
work, we consider eigenvalue distribution to check the stability, also, several theoretical works 
have been established for stability analysis of non-linear PDE [27, 28].

The KS equation is a non-linear PDE given:
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and initial condition:

 0( ,0)u x u=  (3)

where α  represents growth of the linear stability and ν  shows surface tension. When 0ν = , the 
term surface tension is removed from the equation, then the equation becomes Burgers’ equa-
tion [5]. 

In this work, it is used Chebyshev polynomial approximations to obtain numeric solu-
tions. When the method is applied for the derivatives, differential equation is reduced to linear 
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system of equation, with the implementation of boundary or initial conditions, matrix equation 
can be solved to obtain the desired solution.

The differential quadrature method

Consider a sufficiently smooth function ( )f x  on a closed interval [ , ]a b . Derivative of 
the function at a grid point ix , is approximated by a linear sum of all functional values on the 
whole domain and the quadrature formula for first derivative is given:

 
1

( ) ( ), 1,2, ,d
d

i

N

x i ij j
jx

ff x w f x i N
x =

= = =∑   (4)

where ijw  represents the weighting coefficients to be evaluated, N  is the number of grid points 
[18]. The nth order derivative is defined as same idea given:
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where ( )n
ijw  represents the weighting coefficients, N  is the number of grid points. The main idea 

according to the procedure is to determine weighting coefficients. The DQ method offers using 
uniform or non-uniform selection of grid points but, it gives more effective and stable solutions 
using Chebyshev-Gauss Labotto points [18, 19]. Here, we choose grid points as the Chebyshev 
collocation points defined:

 cos( ), , 0,1,2, ,i i
ix i N
N
πθ θ= = =   (6)

which is applicable for only interval [1,–1]. If the problem is given on interval [ , ]a b  to obtain 
ix  following transformation is used [18]:

 (1 )
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When Lagrange interpolating polynomials are considered as test function:
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where ( )kr x  represents the test function and 
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Using polynomial approach theory, for first order derivative the weighting coeffi-
cients, given in eq. (4) becomes [18]:
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For the entries on main diagonal, the following relation becomes:

 ( )( )
2 ( )

i
ii

i

K xa x
K x
′′

=
′

 (11)



Yigit, G., et al.: Polynomial Based Differential Quadrature for Numerical Solutions of ... 
S132 THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 1, pp. S129-S137

By using the linear vector space spanning property as being represented by different 
kind of bases, on diagonal entries following formula can be used which is obtained by power 
functions, 1, 1,2, ,kx k N− =   when 1k = :
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0,
N N

ij ii ij
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= = −∑ ∑  (12)

Now, to obtain quadrature solutions of the model problem Chebyshev polynomial is 
used as a basis together with Chebyshev collocation points, the function ( )K x  can be obtained:

 2 (1)( ) (1 ) ( )NK x x T x= −  (13)

where (1) ( )NT x  represents first derivative of ( ) cos( ),NT x Nθ=  and arccos( )xθ = . Thus:

 (1) ( ) [cos( )] sin( )dNT x N N Nθ θ θ′= = −  (14)
where 
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The expression can be rewritten:

 ( ) ( ) sin( )sin( )K x K N Nθ θ θ= =  (16)

Since, derivative approximation is needed according to the structure of the method, 
by differentiating eq. (16):

 (1) ( ) [ sin( )sin( )]K x N Nθ θ ′=  (17)
or
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Since iN iθ = π , when sin( ) 0iθ ≠  that is 0, ,i N≠  then eq. (18) becomes:
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When sin( ) 0iθ = , to remove the undetermined form L’Hospital’s rule is applied:
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The reduced formulation related to find first derivative matrix interpreted as follows 
[18, 23]:
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where 0 2Nc c= =  and 1, 1 1.jc i N= ≤ ≤ −  The model equation requires rewriting higher or-
der derivatives in DQ formulations. In this manner, matrix multiplication method is used which 
mentioned in [18]. 

Quadrature discretization of model equation

The KS equation is rewritten:

 ( )t x xx xxxxU UU U Uα ν= − + +  (22)

To obtain the approximated solution, we apply the method for each grid points, as 
follows:

 [ ]( ) ( ) ( ) ( ) ( )t i i x i xx i xxxx iU x U x U x U x U xα ν= − + +  (23)

Then, spatial derivatives are replaced by the DQ equality:
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First order temporal discretization is obtained by forward Euler scheme:

 
1

( , )
n n

t i
U UU x t

t

+ −
=

∆
 (25)

Matrix stability has been studied for the DQ discretized systems. Discrete time-depen-
dent problem is of the form:

 ( )U U
t

∂
=

∂
  (26)

with proper initial and boundary conditions. Here,   represents spatial non-linear differential 
operator. After applying DQ method and linearization of the non-linear term ( ) ( )xU x U x  the 
equation becomes:

 { } [A]{ } { }d
d
U U g
t

= +  (27)

where { }U  is an unknown vector of the function values in the domain, { }g  is the vector con-
taining the non-homogeneous part and the boundary conditions and [A] is the discretized coef-
ficient matrix. The stability of the numerical discretized system depends on eigenvalues distri-
bution [18]. The condition for absolute stability of the forward scheme is given:

 |1 | 1tλ+ ∆ ≤  (28)

The stability region for the scheme is the circle with radius 1 and center (–1,0) on 
the complex tλ∆  plane [29]. When the idea is implemented for the test problem 1, the max-
imum real parts of the eigenvalues are determined as 3.8338∙10–8, and 5.1920∙10–4, for N = 
30, and N = 60, respectively. Eigenvalue distributions for each grid points are given by figs. 
1-2. The approximated solutions are obtained by combining the explicit scheme and quadra-
ture scheme by reducing the model to an algebraic system of equations. The solution of the 
matrix equation gives desired solution. We used two sample problems to illustrate the effi-
ciency of the presented method and all the results in terms of error norms are given in tables. 
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In the end, solutions are also compared with previous studies. Solutions show approximately 
same accuracy.

Numerical illustrations

Efficiency of the method is demonstrated using 2L  error norm which is given:

 
1/2

2
2

1
| | ( ) ( )

N

ex nu ex j nu j
j

L U U U U
=

 
= − = − 

  
∑  (29)

and maximum error norm given:
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To compare the accuracy with previous studies it is also measured global relative error 
(GRE) which is given:
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where exU  and nuU  represents the analytical and numerical solutions, respectively.
Test Problem 1. As a first case, KS equation is considered for 1α =  and 1ν = . Exact 

solution of the problem is [5]:

 { }3
0 0

15 11( , ) 9 tanh[ ( )] 11tanh [ ( )]
19 19

u x t b k x bt x k x bt x= + − − − + − −  (32)

The initial and boundary conditions can be computed by using exact solution given by 
eq (32). Number of partitions are considered 15, 30, 60, and 150, and b = 5, k = (1/2)(11/19)1/2, 
and x0 = –12. Comparisons between the exact and numerical solutions are tabulated for the in-
terval [–30, 30]. The solution models the shock wave propagation with speed b  and initial 
position 0x  [6]. Solutions are given by tab. 1 and fig. 3.

Figure 1. Eigenvalue distribution when N = 30 Figure 2. Eigenvalue distribution when N = 60
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Table 1. Error norms for Problem 1
Error norms N t = 0.001 t = 0.01 t = 1.0

L2

15 3.5043E–05 4.4490E–03 9.7979E–03
30 5.1571E–05 5.0774E–04 4.1705E–03
60 1.4117E–04 7.4159E–04 1.7145E–02
150 2.2567E–04 1.1758E–03 2.7408E–02

L∞

15 1.3189E–05 1.1675E–03 3.6482E–03
30 1.3286E–05 1.3080E–03 1.0742E–03
60 2.2529E–04 1.3102E–04 3.0704E–03
150 2.2529E–04 1.3108E–04 3.0718E–03

Test Problem 2. Now, we consider the problem for 1α = −  and 1ν = . Exact solution 
of the problem is given by [5]:

 { }3
0 0

15 1( , ) 3tanh[ ( )] 11tanh [ ( )]
19 19

u x t b k x bt x k x bt x= + − − − + − −  (33)

The initial and boundary conditions are obtained by using the exact solution given by 
eq. (33). We have computed the algorithm with parameters 5b = , k = 1/[2(19)1/2], 0 25x = − . 
Number of partitions are considered 15, 30, and 200. Comparisons between the exact and nu-
merical solutions are tabulated for the interval [ 50,50]−  (tab. 2 and fig. 4).

Table 2. Error norms for Problem 2
Error norms N t = 0.001 t = 0.01 t = 1.0

L2

15 1.3980E–07 1.3823E–06 1.2138E–05
30 2.0538E–07 2.0309E–06 1.7832E–05
200 2.0538E–07 5.4047E–06 4.7457E–05

L∞

15 4.7292E–08 4.6764E–07 4.1065E–06
30 4.6969E–08 1.3080E–06 4.1240E–06
200 4.7561E–08 4.7030E–07 4.1300E–06

Figure 3. Comparison between numerical and 
exact solutions of KS equation when N = 150 
Problem 1 (dotted line represents numerical 
solutions)

Figure 4. Comparison between numerical and 
exact solutions of KS equation when N = 200 
for Problem 2 (dotted line represents numerical 
solutions)
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Conclusion

In this study, the Chebyshev based DQ method is used for solutions of KS equation. 
The efficiency of the approach is examined by two examples. According to the tabs. 1 and 2 
as t increases, accuracy decreases, but as the number of partitions increases, we can see ap-
proximately same accuracy. Also by tabs. 3 and 4, comparison with other methods shows that 
effectiveness is approximately same for similar numerical techniques. It can be also seen that 
from the figures numerical and exact solutions are in good agreement. The method is easy to 
implement by using small number of grid points.
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