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This paper proposes a new technique which rests upon Legendre wavelets for solv-
ing linear and non-linear forms of fractional order initial and boundary value 
problems. In some particular circumstances, a new operational matrix of fraction-
al derivative is generated by utilizing some significant properties of wavelets and 
orthogonal polynomials. We approached the solution in a finite series with respect 
to Legendre wavelets and then by using these operational matrices, we reduced 
the fractional differential equations into a system of algebraic equations. Finally, 
the introduced technique is tested on several illustrative examples. The obtained 
results demonstrate that this technique is a very impressive and applicable mathe-
matical tool for solving fractional differential equations.
Key words: operational matrix, Legendre wavelets, Caputo fractional derivative, 

fractional differential equations

Introduction

Fractional calculus is the study of any real-order or complex-order derivative and in-
tegral composed of combining and extending the concepts of multiple integral and integer order 
derivative. Let D /d d= t  be a differential operator and n be a positive integer. It is well known 
that, the meaning of the D ( )n x t  is the nth derivative of the function ( )x t . But if n is not a positive 
integer, it is difficult to comment the meaning of the D−α  or Dα  for Re( ) 0>α . A variety of 
definitions that satisfy the idea of fractional derivative have been found by several great math-
ematician. But Riemann-Liouville and Caputo fractional derivatives are most commonly uti-
lized refinements in the world of fractional calculus [1-5].

For three centuries, analysis of fractional calculus has been restraint to the discipline 
of pure theoretical mathematics. Over the past several decades, fractional differential equa-
tions (FDE) have considerable attention, because of their suitability for the explanation of a 
great many scientific phenomena such as thermal science especially bio-heat transfer, fluid 
mechanics, image processing, fluid-dynamic traffic model, earthquake engineering, damping 
laws, biomedical engineering, diffusion process, solid mechanics, colored noise, control theory, 
viscoelasticity, electromagnetic, etc. We can list some well-established techniques for the nu-
merical solutions of FDE as operational matrix methods improved in [6-14] by using Bernstein, 
Genocchi, Legendre, Jacobi polynomials and Genocchi, Legendre, Chebyshev wavelets, per-
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turbation-iteration method [15], sinc-Galerkin method [16], computational matrix method [17], 
homotopy analysis method [18], variational iteration method, a hybrid technique [19], Adomian 
decomposition method [20].

The orthogonal functions and polynomial series are very important field in science 
and engineering. They are basis of several numerical methods developed for the solution of 
differential equations. The reason is that the use of orthogonal polynomials is easy. Because 
they have good convergence properties and they properly represent the weight distribution 
of a function on a definite network. Mentioned equations are solved by truncating series of 
orthogonal basis functions. Block-pulse functions, Legendre, Hermite, Jacobi, Laguerre and 
Chebyshev polynomials are the most commonly utilized among these functions. What makes 
these functions important is that they permit the undertaking problem to be reduced to system 
of algebraic equations and the approximation of analytic functions.

Wavelet theory is very significant in science, engineering and technology and in re-
cent years wavelets have achieved to attract an enormous attention in many fields of investi-
gation, such as spectroscopy, signal analysis, feature detection in earth science, time-frequen-
cy analysis, image manipulation, etc. Many scholars have contributed to the development of 
wavelets. Especially, Daubechies, Belkin, Meyer and Mallat are some of them. Thanks to their 
contribution, there has been a substantial increment in the number of studies on wavelets. There 
are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre, Legendre, Shan-
non, Lagrange, Hermitian and Chebyshev wavelets available. Among them, we chose Legendre 
wavelets in this study because of their orthonormality and explicatory. Many applications of 
Legendre wavelets can be viewed from [21-26]. In addition, in these papers [27, 28], applica-
tions of Legendre wavelets related to thermal sciences can be reached.

Preliminaries and notations

It is necessary to know some mathematical definitions to understand the applications 
of fractional analysis, shifted Legendre polynomials and wavelets required for this paper. Some 
of these definitions and theorems are presented.

The fractional derivative in the Caputo sense

Definition 1. The Caputo fractional derivative is defined [1]:
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This derivative has the following characteristics:
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Here, βë û  implies largest integer less than or equal to β  and βé ù indicates the smallest 
integer greater than or equal to β .
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Legendre wavelets 

There are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre, 
Legendre, Shannon, Lagrange, Hermitian and Chebyshev wavelets available. Among them, 
we chose Legendre wavelets in this study because of their orthonormality and explicity. This 
wavelet function can be defined.

Define:

 ( )
1

2 1 12 2 ,( ) 2 2 2
0, otherwise

+ +
 + − ≤ ≤= 



k
k

m k knm

n nm P t n ttψ  (4)

where 0,1,..., (2 1);   0,1,...,= − =kn m M . The coefficient 1/2[( 1)/2]+m  is for orthonormality. 
Shifted Legendre polynomials ( )mP t  are defined [21]: 
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Function approximation

A function ( )x t  defined over [0,1] can be expanded in the terms of Legendre wavelet:

 ( )
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where ( ( ), ( ))=nm nmw x t tψ  in which (.,.) indicates the inner product. Truncating infinite series 
in eq. (6), we get:

 
2 1

0 0
( ) ( ) ( )

−

= =

≅ =∑ ∑
k M

T
nm nm

n m
x t w t W tψ ψ  (7)

where W  and ( )tψ  are matrices given by [21]:
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The operational matrix of derivative and fractional derivative

Theorem 1. Let ( )tψ  be the Legendre wavelets vector presented in eq. (4), then ( )tψ
can be written [21]:

 ( ) ( )d
d

≅
t D t

t
ψ ψ  (9)

where D is the 2 ( 1)+k M  operational matrix of derivative expressed:
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where X  is an ( 1)( 1)+ +M M  matrix and its th( , )i j  element is expressed [21]:

 ( )( ) ( )1

,
2 2 1 2 1 , 2,..., 1 ,  1,..., 1 and ( ) odd

0, otherwise

+ − − = + = − += 


k

i j
i j i M j i i j

X  (11)

Corollary 1. If we use eq. (9), then the operational matrix for the nth derivative can be 
defined:

 ( ) ( )d
d

≅
n

n
n
t D t

t
ψ ψ  (12)

where nD  is the nth power of matrix D [8].
Lemma 1. Let ( )tψ  be the Legendre wavelets vector given in eq. (4) and assume that 

0=k  then: 

 ( ) 0,   0,1,..., 1,   0= = − >  rD t rβψ β β  (13)

Proof. Please see [29].
Theorem 2. Let ( )tψ  be the Legendre wavelets vector given in eq. (5). Assume that 

0=k  and 0>β , then: 

 ( )( ) ( )≅D t D tβ βψ ψ  (14)

where ( )D β  is the (M 1) (M 1)+ +x  the operational matrix of fractional derivative of the order 
0,   1> − < ≤N Nβ β  in the Caputo sense and is expressed:
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where , ,r s hϖ  is presented by:
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Take in consideration in ( )D β , the first βé ù  rows are all zero.
Proof. Please see [29].
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Solving linear fractional differential equations

This section introduces the application of Legendre wavelets optimization matrix 
(LWOM) of fractional derivative for solving linear FDE. Consider the following equation:

 ( ) 0 1
1( ) ( ) ... ( ) ( ) ( ) ( ) ( )−
−= + + + +k

o k kD x t v t D x t v t D x t v t x t f tζ ζβ  (17)
with these initial conditions:
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where 0 1( ), ( ),..., ( )kv t v t v t  can be any function and 0 1 10 ... , 1,−< < < < < < ≤ +k n nζ ζ ζ β β   
and Dβ  indicates the Caputo fractional derivative of order β .

First approximating ( )x t , ( )f t  and 0 1( ), ( ),..., ( )kv t v t v t  by the Legendre wavelets, then 
we obtain:
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where F and  ( 0,1,..., )=iV i k  are known vectors but W  is an unknown vector and ( )tψ  is the 
vector given in eq. (4). By utilizing eqs. (14) and (19), we get:

 ( ) ( )( ) ( )≅ ≅T TD x t W D t W D tβ β βψ ψ  (22)

 ( )( ) ( ) ( )≅ ≅i i iT TD x t W D t W D tζ ζ ζψ ψ , 0,..., ( 1).= −i k  (23)
Substituting eqs. (19)-(23) in eq. (17) the residual ( )R t can be expressed:
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We get ( )2 1+ −k M n  linear equations by employing:
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If we substitute eq. (19) in eq. (18) then we have:
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The 2 ( 1)+k M  set of linear equations are obtained eqs. (25) and (26). We can solve 
these linear equations for unknown coefficients of the vector W . Accordingly, ( )x t  presented in 
eq. (18) can be computed.
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Solving non-linear fractional differential equations

This section introduces the application of LWOM of fractional derivative for solving 
non-linear FDE. Consider the following equation:

 ( ) 1, ( ), ( ),..., ( ) =  
kD x t F t x t D x t D x tζβ ζ  (27)

with these initial conditions:
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where 1 21,   0 ...< ≤ + < < < < <kn nβ ζ ζ ζ β  and Dβ  indicates the Caputo fractional deriva-
tive of order β .

First approximating ( ),  ( )x t D x tβ  and for 1,2,...,=i k  ( )iD x tζ  by the Legendre wave-
lets as eqs. (19), (22), and (23), respectively, and substituting these equations in eq. (26), then 
we obtain:
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Also, if we substitute eq. (20) in eq. (29) then we have:
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First collocating eq. (29) at 2 ( 1)+ −k M n points, then we can obtain the solution x(t). 
We should use the first 2 ( 1)+ −k M n  roots of shifted Legendre 2 ( 1) ( )

+k MP t  to get a better result. 
Utilizing these equations together with eq. (30), then we have 2 ( 1)+k M  non-linear equations. 
We can solve these non-linear equations for unknown coefficients of the vector W . According-
ly, x(t) presented in eq. (27) can be computed.

Illustrative examples

Example 1. We first consider the following FDE of the linear form [12]:

 
5 3
2 2 14( 1) ( ) 4 ( ) ( )

1
+ + + = + π

+
t D x t D x t x t t

t
 

subject to: 

 (0) ,   (0) ,   (1) 2
2

d
d

π
= π = = π

xx x
t

 

The exact solution of the previous system is:

 ( )( ) 1= π +x t t  

If we implement the method illustrated in section Solving linear fractional differential 
equations with 3=M , 0=k  then we get:
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The approximate solution obtained by using Legendre wavelets operational matrix 
method (LWOMM) and the exact solution are displayed in tab. 1.

Table 1. Comparison of our solution ( )LWOMMx t  and the  
exact solution ( )x t for Example 1

t x(t) xLWOMM(t) Absolute error
0.0 1.772455923 1.772453851 0.2072∙10–5

0.1 1.858967455 1.859556019 –0.000588564
0.2 1.941628183 1.942759272 –0.001131089
0.3 2.020910686 2.022385308 –0.001474622
0.4 2.097198131 2.098755828 –0.001557697
0.5 2.170806302 2.172192531 –0.001386229
0.6 2.241999108 2.243017118 –0.001018010
0.7 2.310999784 2.311551286 –0.000551502
0.8 2.377999159 2.378116734 –0.000117575
0.9 2.443161886 2.443035165 0.000126721
1.0 2.506631205 2.506628274 0.2931∙10–5

Example 2. Consider the following fractional Bagley-Torvik differential equation of 
the linear form with the initial conditions [7]:

 
32
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2
( ) ( ) ( ) 1d

d
+ + = +

x t D x t x t t
t

 

 (0) 0,  (0) 1d
d

= =
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t

 

The exact solution of this problem is known as:

 ( ) 1= +x t t  
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If we apply the method introduced in section Solving linear fractional differential 
equations with 2=M  , 0=k  then we get:

 2

0 0 0 0 0 0
2 3 0 0 ,    0 0 0

0 2 15 0 4 3 15 0 0
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D D , 
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 =
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The numerical results which are attained by utilizing the LWOMM are shown in tab. 2.

Table 2. Comparison of our solution ( )LWOMMx t  and the exact  
solution ( )x t  for Example 2

t x(t) xLWOMM(t) Absolute error
0.0 1.0000000000 0.999999999 0.1∙10–8

0.1 1.1000000000 1.099999999 0.1∙10–8

0.2 1.2000000000 1.199999999 0.1∙10–8

0.3 1.3000000000 1.299999999 0.1∙10–8

0.4 1.4000000000 1.399999999 0.1∙10–8

0.5 1.5000000000 1.499999999 0.1∙10–8

0.6 1.6000000000 1.599999999 0.1∙10–8

0.7 1.7000000000 1.699999999 0.1∙10–8

0.8 1.8000000000 1.799999999 0.1∙10–8

0.9 1.9000000000 1.899999999 0.1∙10–8

1.0 2.0000000000 1.999999999 0.1∙10–8

Example 3. Consider the following FDE of the non-linear form with the initial con-
ditions [13]:

 
53

2 42
3
( ) ( ) ( )d

d
+ + =

x t D x t x t t
t

 

 
2

2(0) 0,   (0) 0,   (0)=2 d d
d d

= =
x xx
t t

 

The exact solution of the previous system is:

 2( ) =x t t  

If we apply the method introduced in section Solving non-linear fractional differential 
equations with 3=M  , 0=k  then we get:



Secer, A., et al.: Legendre Wavelet Operational Matrix Method for Solving Fractional ... 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 1, pp. S203-S214 S211

 

0 0 0 0

2 3 0 0 0
,  

0 2 15 0 0

0 0 2 35 0

 
 
 =  
 
  

D 2

0 0 0 0
0 0 0 0

 
4 3 15 0 0 0

0 4 15 35 0 0

 
 
 =  
 
  

D  

 3

0 0 0 0
0 0 0 0

,   0 0 0 0

8 3 15 35 0 0 0

 
 
 =  
 
  

D
5
2

0 0 0 0
0 0 0 0
0 0 0 0 

160 7 32 7 3 32 7 5 32
7 3

 
 
 

 
 
 
 =
 
 − π π π π 

D  

The numerical results of the exact solution and the approximate solution are displayed 
in tab. 3.

Table 3. Comparison of our solution ( )LWOMMx t  and the exact solution ( )x t for Example 3
t x(t) xLWOMM(t) Absolute error

0.0 0.00 0.8410661107∙10–12 -0.8410661107∙10–12

0.1 0.01 0.01000000006 –0.6∙10–9

0.2 0.04 0.04000000011 –0.11∙10–9

0.3 0.09 0.09000000014 –0.14∙10–9

0.4 0.16 0.16000000020 –0.2∙10–9

0.5 0.25 0.25000000020 –0.2∙10–9

0.6 0.36 0.36000000010 –0.1∙10–9

0.7 0.49 0.49000000010 –0.1∙10–9

0.8 0.64 0.64000000010 –0.1∙10–9

0.9 0.81 0.81000000000 0
1.0 1.00 0.99999999999 0.1∙10–9

Example 4. Consider the following FDE of the non-linear form with the boundary 
conditions [11]:

 
6 6 1 1 22

25 5 6 6
2
( ) 4 11 5 ( ) 1( ) ( ) 2

5 9 6 10
d d

dd
     + Γ + Γ − = +          

x t x tt D x t t D x t t
tt

 

subject to: 

 (0) 1,    (1) 2= =x x  

The exact solution of the previous system is:

 2( ) 1= +x t t  

If we apply the method illustrated in section Solving non-linear fractional differential 
equations with 2=M  , 0=k  then we get:
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The approximate solution obtained by using introduced method and the exact solution 
are shown in tab. 4.

Table 4. Comparison of our solution ( )LWOMMx t  and the exact solution 
( )x t for Example 4

t x(t) xLWOMM(t) Absolute error
0.0 1.00 0.9999999998 0.2∙10–9

0.1 1.01 1.009995734 0.4266∙10–5

0.2 1.04 1.039992417 0.7583∙10–5

0.3 1.09 1.089990047 0.9953∙10–5

0.4 1.16 1.159988625 0.000011375
0.5 1.25 1.249988151 0.000011849
0.6 1.36 1.359988625 0.000011375
0.7 1.49 1.489990047 0.9953∙10–5

0.8 1.64 1.639992416 0.7584∙10–5

0.9 1.81 1.809995734 0.4266∙10–5

1.0 2.00 2.000000000 0.000000000

Example 5. Consider the following FDE of the non-linear form with the initial con-
ditions:

 
0.7

1.3 2 420( ) ( )
7 (0.7)

+ = +
Γ

tD x t x t t  

subject to:

 (0) 0,   (0) 0d
d

= =
xx
t

 

The exact solution of the previous system is: 

 2( ) =x t t  

If we apply the method illustrated in section Solving non-linear fractional differential 
equations with 2=M , 0=k  then we get:

 ( )1.3

0 0 0 0 0 0
2 3 0 0 ,   0 0 0

17.37179094 7.800806362 0.81655116550 2 15 0

   
   = =   
   −  

D D  
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The numerical results of the approximate solution and the exact solution are shown 
in tab. 5.

Table 5. Comparison of our solution ( )LWOMMx t  and the exact  
solution ( )x t for Example 5

t x(t) xLWOMM(t) Absolute error
0.0 0.00 –0.1∙10–9 0.1∙10–9

0.1 0.01 0.01009304147 0.00009304147
0.2 0.04 0.04037216618 0.00037216618
0.3 0.09 0.09083737403 0.00083737403
0.4 0.16 0.16148866500 0.00148866500
0.5 0.25 0.25232603910 0.00232603910
0.6 0.36 0.36334949640 0.00334949640
0.7 0.49 0.49455903680 0.00455903680
0.8 0.64 0.64595466040 0.00595466040
0.9 0.81 0.81753636710 0.00753636710
1.0 1.00 1.00930415700 0.00930415700

Conclusion

In this study, we first introduced LWOMM shortly, and then utilized it to attain 
approximate solutions of FDE. These approximate solutions were clearly written and were 
matched against the exact solutions of the presented problems. A very effective algorithm is 
also formulated to obtain the numerical solution of these problems on the Maple. We produced 
all graphical representations and numerical results via Maple. The results illustrate that the 
LWOMM can solve FDE efficaciously and simply.
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