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Abstract—In this present work we concern with mathematical modelling of biological experiments.
The fractional hybrid iterative differential equations are suitable for mathematical modelling of
biology and also interesting equations since the structure are rich with particular properties. The
solution technique is based on the Dhage fixed point theorem that describes the mixed solutions by
monotone iterative technique in the nonlinear analysis. In this method we combine two solutions,
namely, lower and upper solutions. It is shown an approximate result for the hybrid fractional
differential equations in the closed assembly formed by the lower and upper solutions.
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1. INTRODUCTION

Calculus of fractional order is a field of mathematical analysis (nonlinear part). It follows the
traditional definition of derivatives and integrals of calculation operators in the form of fractional
order [1–3]. Using the fractional order differential operator in mathematical modeling has become more
and more interesting and extended in the last years. Recently, fractional order differential equations have
been revisited and become active research area and concentrate on several different studies since having
many interesting properties and their occurrence in diverse applications in economics, biology, physics
and engineering. Currently, there is a great development in the literature based on the applying nonlinear
differential equations of fractional order, see [4].

The class of fractional order differential equations is a generalization of the classical of ordinary
differential equations. One can argue that the fractional order differential equations are more appropriate
than the ordinary in mathematical modeling of biological, economics and also social systems, see [5–
7]. Thus fractional calculus is utilized in biology and medicine to explore the potential of fractional
differential equations in order to describe and understand the biological grow of organisms. Moreover, it
is also utilized to develop the structure and functional properties of populations. In order to extend this
concept we need to evaluate the changes which are associated with the diseases that contribute to the
understanding of the pathogenic processes of medicine, see [8]. The researchers have learned how to
employ bacteria as well as other microbes to making more mathematical and useful, such as to generate
genetically engineered human insulin, see [9].
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The importance of the differential equations of the hybrid type implies to study a number of dynamical
systems which dealt as special cases, [10, 11]. Dhage, Lakshmikantham and Jadhav proved some of
the major outcomes for hybrid linear differential equations in the first order and second type distur-
bances [12–14]. An interesting a mathematical modelling for bacteria growing by the iterative difference
equation were also described. Ibrahim [15] established the existence of solution for an iterative fractional
differential equation (Cauchy type) by using the technique of nonexpansive operator. Similiar studies
are also seen in [16–19].

In this work, we discuss a mathematical model of biological experiments, and how its influence on
our lives. The most prominent influence of biological organisms that is affect negative or positive in
our lives like a bacteria. Fractional hybrid iterative differential equations are equations that interested
in mathematical model of biology. Our technique is based on the Dhage fixed point theorem. This tool
describes mixed solutions by monotone iterative technique in the nonlinear analysis. This method is used
to combine two solutions: lower and upper. It is shown an approximate result for the hybrid fractional
differential equations iterative in the closed assembly formed by the lower and upper solutions.

2. PRELIMINARIES

First of all we need some preliminary results thus recall the following definitions.
Definition 2.1. The derivative of fractional (γ) order for the function φ(s), where 0 < γ < 1, is

introduced by

Dγ
aφ(s) =

d

ds

s∫

a

(s− β)−γ

Γ(s− β)
φ(β)dβ =

d

ds
I1−γ
a φ(s), (κ− 1)γ < κ,

in which κ is a whole number and γ is real number.
Definition 2.2. The integral of fractional (γ) order for the function φ(s), where γ > 0, is

introduced by

Iγaφ(s) =

s∫

a

(s− β)γ−1

Γ(γ)
φ(β)dβ.

While a = 0, it becomes Iγaφ(s) = φ(s) ∗Υγ(s), wherever (∗) signify the convolution product
Υγ(s) = sγ−1/Γ(γ) and Υγ(s) = 0, s ≤ 0, Υγ → δ(s) as γ → 0 wherever δ(s) is the delta function.

Further based on the Riemann–Liouville differential operator, we state the following definitions.
Definition 2.3. Assume the closed period bounded interval I = [s0, s0 + a] in � (� is the real

line), for some s0 ∈ �, a ∈ �. The problem of initial value problem in fractional iterative hybrid
differential equations (FIHDE) which can be formulated as

Dα[v(s)− ψ(s, v(s), v(v(s))] = ℵ(s, v(s), v(v(s))), s ∈ I, (1)

with v(s0) = v0, where ψ,ℵ : I ×� → � are continuous. A solution v ∈ C(I,�) of the FIHDE (1)
can be problem by

1. s → v − ψ(s, v, v(v))) is a function which is continuous ∀v ∈ �, and
2. v contented the equations in (1), where C(I,�) is the space of real-valued continuous

functions on I.
The definitions of the lower and upper solutions of (1) as follows.
Definition 2.4. The function ı ∈ C(I,�) is called a lower solution for the equation introduced

on I if
1. s 	→ (ı(s) − ψ(s, ı(s)), ı(ı(s)))) is continuous and
2. Dα[ı(s)− ψ(s, v(s), v(v(s)))] ≥ ℵ(s, ı(s), ı(ı(s))), s ∈ I, ı(s0) ≥ v0.
Similarly, the function τ ∈ C(I,R) is called an upper solution if
1. s 	→ (τ(s)− ψ(s, τ(s), τ(τ(s))) is continuous and
2. Dα[τ(s)− ψ(s, v(s), v(v(s)))] ≤ ℵ(s, τ(s), τ(τ(s))), s ∈ I, τ(s0) ≤ v0.
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Thus one can build the monotonous sequences of consecutive iterations that converge towards
the extremes values among the lower and upper solutions for the differential equation. here we treat
the case that if ψ is neither non-decreasing nor non-increasing in the state of the variable v. If the
function ℵ can be separated into two components as ℵ(s, v, v(v))) = ℵ1(s, v, v(v))) + ℵ2(s, v, v(v)),
where ℵ1(s, v, v(v))) is a non-decreasing component while another component is not ℵ2(s, v, v(v)))
increases in the state variables of v, then we may be construct the sequences by iteration which converge
to solutions extremal FIHDE (1) on I.

Definition 2.6. Currently we consider the following initial value problem FIHDE{
Dα[v(s)− ψ(s, v(s), v(v(s))] = ℵ1(s, v, v(v))) + ℵ2(s, v, v(v))), s ∈ I,

v(s0) = v0,
(2)

where ψ ∈ C(I ×R,R) and ℵ1,ℵ2 ∈ L(I ×R,R).
Thus the lower and upper solutions of (2) can be as defined as follows:
Definition 2.7. The functions σ, ρ ∈ C(I,�) fulfill the following condition: the maps s →

σ(s)− ψ(s, σ(s), σ(σ(s))) and s → ρ(s)− ψ(s, ρ(s), ρ(ρ(s))) are absolute continuous on I. Thus
the functions (σ, ρ) are supposed to be of the kind

(a) which is mixed lower solutions and upper solutions for (2) on I, sa following{
Dα[σ(s)− ψ(s, σ(s), σ(σ(s))] ≤ ℵ1(s, σ, σ(σ(s))) + ℵ2(s, ρ(s), ρ(ρ(s)))), s ∈ I,

σ(s0) ≤ v0
(3)

and {
Dα[ρ(s)− ψ(s, ρ(s), ρ(ρ(s))] ≥ ℵ1(s, ρ, ρ(ρ(s))) + ℵ2(s, σ(s), σ(σ(s))), s ∈ I,

ρ(s0) ≥ v0.
(4)

Whether the sign was of equality achieves in relationships (3) and (4), hence the even of
functions (σ, ρ) set is been calling a mixed solution of kind (a) for the FIHDE (2) on I.

(b) which is mixed lower solutions and upper for (2) on I, as follows{
Dα[σ(s)− ψ(s, σ(s), σ(σ(s))] ≤ ℵ1(s, ρ, ρ(ρ(s))) + ℵ2(s, σ(s), σ(σ(s)))), s ∈ I,

σ(s0) ≤ v0
(5)

and {
Dα[ρ(s)− ψ(s, ρ(s), ρ(ρ(s))] ≥ ℵ1(s, σ, σ(σ(s))) + ℵ2(s, ρ(s), ρ(ρ(s))), s ∈ I,

ρ(s0) ≥ v0.
(6)

Whether the sign was of equality achieves in relationships (5) and (6), hence the even of
functions (σ, ρ) set is been calling a mixed solution of kind (b) for the (2) on I.

2.1. Assumptions
In the next we consider the function ψ that is important in the studying of Eq. (2).
(a0) The function v 	→ (v − ψ(s0, v, v(v))) is injective in �.
(b0) ℵ is a bounded real-valued function on I ×�.
(a1) The function v 	→ (v − ψ(s, v, v(v))) is increasing in � for all s ∈ I.
(a2) There is a constant � > 0 so that

|ψ(s, v, v(v)) − ψ(s, z, z(z))| ≤ �|v − z|
M + |v − z| , M > 0, ∀s ∈ I, v, z ∈ � and � ≤ M.

(b1) There is a constant κ > 0 so that |ℵ(s, v, v(v)| ≤ κ ∀s ∈ I and ∀v ∈ �.
(b2) ℵ1(s, v, v(v)) is function which is non-decreasing in v function, and ℵ2(s, v, v(v)) is function

which is not increasing in v for each s ∈ I.
(b3) (σ0, ρ0) is functions which are mixing the lower and upper solutions for (2) kind(a) on I with

σ0 ≤ ρ0.
(b4) The pair is (σ0, ρ0), the upper and lower mixing solutions for (2) kinds (b) on I with σ0 ≤ ρ0.
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3. MAIN RESULTS

In the next, we discuss the approximate outcome for (2).

Lemma 3.1 [11]. Suppose the assumptions (a0)−(b0) are achieved. Then the function v is a
solution for Eq.(1) if and only if the solution of the fractional iterative hybrid type equation
satisfies

v(t) = [v0 − ψ(s0, v0, v(v0))] + ψ(s, v(s), v(v(s))) +

s∫

0

ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)
dβ

(s ∈ I, v(0) = v0). (7)

Theorem 3.1 [20]. Let 
 be a closed convex and bounded subset of the Banach space A.
Moreover, let Q : A → A and P : 
 → A be two operators so that

(i) Q is nonlinear D-contraction,

(ii) P is compact and continuous,

(iii) v = Qv + Pz for all v ∈ 
 ⇒ z ∈ 
.

Theorem 3.2. Let the assumptions (a1), (a2) and (b1) be hold. Then (1) has a solution on I.

Proof. Let A = C(I,R) be a set and ç ⊆ A, such that 
 = {v ∈ A|||A|| ≤ M}, where

M = |v0 − ψ(s0, v0, v(v(0))| + �+Ψ0 +
aα

Γ(α+ 1)
||ξ||�1

and Ψ0 = sups∈I |ψ(s, 0, 0)|. Obviously 
 is a convex, bounded and closed subset of the space A. By
using the assumptions (a1) and (b1) together with the help of the Lemma 3.1, we conclude that the
FIHDE (1) is tantamount to the nonlinear FIHIE (7). We define two operators Q : A → A and
P : 
 → A as follows: Qy(s) = ψ(s, v(s), v(v(s))), s ∈ I, and

Pv(s) = [v0 − ψ(s0, v0, v(v0))] +

s∫

0

ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)
dβ, s ∈ I.

Consequently, the FIHIE (7) is equivalent to the operator equation Qv(s) + Pv(s) = v(s), s ∈ I. We
demonstrate that the operators Q and P fulfill all the conditions of Theorem 3.1. Foremost, we examine
that Q is a nonlinear Υ-contraction on Q with a Υ function ϕ. Let v, z ∈ A. In view of assumption (a2),
we conclude that

|Qv(s)−Qz(s)| = |ψ(s, v(s)) − ψ(s, z(s))| ≤ �|v(s)− z(s)|
M + |v(s)− z(s)| ≤

�|v − z|
M + |v − z|

for all s ∈ I. Take the supremum over s yields

||Av −Az|| ≤ �|v − z|
M + |v − z|

∀v, z ∈ A. This proves that Q is a nonlinear D-contraction A with the D-function ϕ defined by
ϕ(r) = �r/(M + r).

Next, we examine that P is a continuous and compact operator on 
 into A. Let {vt} be a sequence
in 
 converging to a point v ∈ 
, thus we have

lim
t→∞

Pvt(s) = lim
t→∞

⎡
⎣v0 − ψ(s0, v0, v(v0)) +

s∫

0

ℵ(β, vt(β), vt(vt(β)))
(s − β)α−1

Γ(α)
dβ

⎤
⎦

= v0 − ψ(s0, y0, v(v0)) + lim
t→∞

s∫

0

ℵ(β, vt(β), vt(vt(β)))
(s − β)α−1

Γ(α)
dβ
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= v0 − ψ(s0, v0, v(v0)) +

s∫

0

lim
t→∞

[
ℵ(β, vt(β), vt(vt(β)))

(s − β)α−1

Γ(α)

]
dβ

= v0 − ψ(s0, v0, v(v0)) +

s∫

0

ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)
dβ = Pv(s)

for all s ∈ I. Now, we proceed to prove that {Pvt} is equi-continuous with respect to v. According
to [21], we attain that P is a continuous operator on 
. To show that P is a compact operator on 
. It
suffices to examine that 
 is a regularly bounded and equi-continuous set in A. Let v ∈ 
 be arbitrary,
then by the assumption (b1), we have

|Pv(s)| ≤ |v0 − ψ(s0, v0, v(v0))|+
s∫

0

∣∣∣∣ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)

∣∣∣∣ dβ

≤ |v0 − ψ(s0, v0, v(v0))|+
s∫

0

ξ(β)
(s − β)α−1

Γ(α)
dβ ≤ |v0 − ψ(s0, v0, v(v0))|+

aα

Γ(α+ 1)
||ξ||�1

for all s ∈ I . By taking the supremum over t, we obtain

|Pv(s)| ≤ |v0 − ψ(s0, v0, v(v0))|+
aα

Γ(α+ 1)
||ξ||�1

∀v ∈ 
. This proves that P is uniformly bounded on 
.

Also let s1, s2 ∈ I with s1 < s2. Then for any v ∈ 
, one has

|Pv(s1)− Pv(s2)|

=

∣∣∣∣∣∣
s1∫

s0

ℵ(β, v(β), v(v(β)))(s1 − β)α−1

Γ(α)
dβ −

s2∫

s0

ℵ(β, v(β), v(v(β)))(s2 − β)α−1

Γ(α)
dβ

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
s1∫

s0

ℵ(β, v(β), v(v(β)))(s1 − β)α−1

Γ(α)
dβ −

s1∫

s0

ℵ(β, v(β), v(v(β)))(s2 − β)α−1

Γ(α)
dβ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
s1∫

so

ℵ(β, v(β), v(v(β)))(s2 − β)α−1

Γ(α)
dβ −

s2∫

s0

ℵ(β, v(β), v(v(β)))(s2 − β)α−1

Γ(α)
dβ

∣∣∣∣∣∣
≤ ||ξ||�1

Γ(α+ 1)
[|(s2 − s2)

α − (s1 − s0)
α − (s2 − s1)

α|+ (s2 − s1)
α].

Hence, for δ > 0, there exists a ε > 0 so that |s1 − s2| < ε ⇒ |Pv(s1)− Pv(s2)| < δ ∀s1, s2 ∈ I and
∀v ∈ 
. This examines for P (
) is equi-continuous in A. presently P (
) is bounded and hence it is
compact by Arzela–Ascoli Theorem. Resulting, 
 is a continuous and compact operator on 
. Then, we
prove that assumptions (iii) of Theorem 3.1 is fulfilled. Let v ∈ A be fixed and z ∈ 
 be arbitrary such
that v = Qv + Pz. In view of the assumption (a2) yields

|v(s)| ≤ |Qv(s)|+ |Pz(s)|

≤ |v0 − ψ(s0, v0)|+ |ψ(s, v(s), v(v(s))| +
s∫

0

∣∣∣∣ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)

∣∣∣∣ dβ

≤ |v0 − ψ(s0, v0)|+ |ψ(s, v(s), v(v(s))| +
s∫

0

∣∣∣∣ℵ(β, v(β), v(v(β)))(s − β)α−1

Γ(α)

∣∣∣∣ dβ
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≤ |v0 − ψ(s0, v0, v(v0))|+ �+Ψ0 +

s∫

0

∣∣∣∣ξ(β)(s − β)α−1

Γ(α)

∣∣∣∣ dβ

≤ |v0 − ψ(s0, v0, v(v0))|+ �+Ψ0 +
aα

Γ(α+ 1)
||ξ||�1 .

Take the supremum over s, implies

||v|| ≤ |v0 − ψ(s0, v0, v(v0))|+ �+Ψ0 +
aα

Γ(α+ 1)
||ξ||�1 = M.

Thus, v ∈ 
. Therefore, fulfilled all conditions of the Theorem 3.1 and thus the operator equation
v = Qv + Pz has a solution in 
. Resulting, the FIHDE (1) has a solution introduced on I. This
completes the proof.

Theorem 3.3. Let ı, τ ∈ C(I,�) be lower and upper solutions of FIHDE (1) fulfilling ı(s) ≤
τ(s), s ∈ I and further if the assumptions (a1) − (a2) and (b1) are held. Then, there is a solution
v(s) of (1), in the closed set �, satisfying ı(s) ≤ v(s) ≤ τ(s), for s ∈ I.

Proof. Assume that Θ : I ×� 	→ � is a function defined by Θ(s, v, v(v)) = max {ı(s) ,
min v(s), τ(s)}, satisfying ℵ̌(s, v, v(v))) := ℵ(s,Θ(s, v, v(v)))). Moreover, define a continuous exten-
sion of ℵ on I ×� such that

|̌ℵ(s, v, v(v)))| = |ℵ(u,Θ(s, v, v(v))))| ≤ κ, s ∈ I ∀v ∈ �.
In view of Theorem 3.2, the FIHDE{

Dα[v(s)− ψ(s, v(s), v(v(s))] = ℵ̌(s, v, v(v))), s ∈ I,

v(u0) = v0 ∈ �

has a solution v defined on I. For any δ > 0, define

ıδ(s)ψ(s, ıδ(ıδ(s))) = (ı(s)− ψ(s, ı(s), ı(ı(s)))δ(1 + s)

and

τδ(s)ψ(s, τδ(τδ(s))) = (τ(s)− ψ(s, τ(s), τ(τ(s)))δ(1 + s)

for s ∈ I. In virtue of the assumptions (a1), we get ıδ(s) < ı(s) and τ(s) < τδ(s) for s ∈ I. Since
ı(s0) ≤ v0 ≤ τ(s0), one has ıδ(s0) < v0 < τδ(s0). To show that

ıδ(s) < v0 < τδ(s), s ∈ I, (8)

we define v(s) = v(s)− ψ(s, v(s), v(v(s)), s ∈ I. Likewise, we consider

�δ(s) = ıδ(s)− ψ(s, ıδ(ıδ(s))), �(s) = ı(u) − ψ(s, ı(s), ı(ı(s))

and

Tδ(s) = τδ(s)ψ(s, τδ(s), τ(τδ(s)), T (s) = τ(s)ψ(s, τ(s), τ(τ(s))

∀s ∈ I . If Eq. (8) is wrong, then there exists a sε ∈ (s0, s0 + a] such that v(ε) = τδ(sε) and ıδ(s) <
v(s) < τδ(s), s0 ≤ s < sε. If v(sε) > τ(sε), then Θ(sε, v(sε), v(v(sε))) = τ(sε). Furthermore, ı(sε) ≤
Θ(sε, v(sε), v(v(sε))) ≤ τ(sε). Now,

DαT (sε) ≥ ℵ(sε, τ(sε), τ(τ(sε))) = ℵ̌(sε, v(sε), v(v(sε)))) = DαV (s)

∀s ∈ I . Since Tδ(us) > DαT (s), ∀s ∈ I, we have

DαTδ(sε) > DαV (sε). (9)

But, V (sε) = Tδ(sε) also V (s) = Tδ(s), s0 ≤ s < sε, means that together

V (sε + ρ)− V (sε)

ρα
>

Tδ(sε + ρ)− Tδ(sε)

ρα
,
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if ρ < 0 a small. Take the limit ρ → 0 in the up variance yields DαV (sε) ≥ DαTδ(sε) that is a
contradiction to (9). Hence, v(s) < τδ(s) ∀s ∈ I. Consequently ıδ(s) < v(s) < τδ(s), s ∈ I. Letting
δ → 0 in the up inequality, we get ı(s) ≤ v(s) ≤ τ(s), s ∈ I. This completes the proof. �

Theorem 3.4 Let assumptions (a1)− (a2) and (b2)− (b3) are held. Then there are the
monotonous sequences {σt}, {ρt} such that σt → σ and ρt → ρ uniformly on I in which (σ, ρ) are
mixed extremal solutions FIHDE (2) type(a) on I.

Proof. Note the following a quadratic FIHDE⎧⎪⎨
⎪⎩
Dα[σt+1(s)− ψ(s, σt+1(s), σ(σt+1(s))] ≤ ℵ1(s, σt(s), σ(σt(s))) + ℵ2(s, ρt(s), ρ(ρt(s)))),

s ∈ I,

σt+1(s0) ≤ v0

(10)

and⎧⎪⎨
⎪⎩
Dα[ρt+1(s)− ψ(s, ρt+1(s), ρ(ρt+1(s))] ≥ ℵ1(s, ρt(s), ρ(ρt(s))) + ℵ2(s, σt(s), σ(σt(s))),

s ∈ I,

ρt+1(s0) ≥ v0

(11)

for t ∈ N . Obviously, the equations (10) and (11) having unique solutionsσt+1 and ρt+1 on I respectively
given Banach contraction mapping principle. We now want to demonstrate that

σ0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σt ≤ ρt ≤ . . . ≤ ρ2 ≤ ρ1 ≤ ρ0

on I for t = 0, 1, 2, . . . Let t = 0 and set

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σ0(s)− ψ(s, σ0(s), σ(σ0(s)))−)))σ1(s)− ψ(s, σ1(s), σ(σ1(s)))

for s ∈ I . Next by monotonicity of ℵ1 and ℵ2, we get

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[(σ0(s)− ψ(s, σ0(s), σ(σ0(s)))]

−Dα[σ1(s)− ψ(s, σ1(s), σ(σ1(s))))] ≤ ℵ1(s0, σ0(s), σ(σ0(s))) + ℵ2(s, ρ0(s), ρ(ρ0(s)))

− ℵ1(s0, ρ0(s), ρ(ρ0(s))) + ℵ2(s, σ0(s), σ(σ0(s))) = 0

∀s ∈ I and Θ(s0) = 0. This implies that σ0(s)− ψ(s, σ0(s), σ(σ0(s))) ≤ σ1(s)− ψ(s, σ1(s), σ(σ1(s)))
∀s ∈ I . In view of (a1), one can get σ0(s) ≤ σ1(s), ∀s ∈ I. Likewise it can be demonstrated which
ρ1(s) ≤ ρ0(s) on I. Setting

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σ1(s)− ψ(s, σ1(s), σ(σ1(s))))− (ρ1(s)− ψ(s, ρ1(s), ρ(ρ1(s))))

∀s ∈ I . By monotonicity of ℵ1 and ℵ2, we obtain

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[σ1(s)− ψ(s, σ1(s), σ(σ1(s))))]

−Dα[(ρ1(s)ψ(s, ρ1(s), ρ(ρ1(s))))] ≤ ℵ1(s0, σ0(s), σ(σ0(s))) + ℵ2(s, ρ0(s), ρ(ρ0(s)))

− ℵ1(s0, ρ0(s), ρ(ρ0(s))) + ℵ2(s, σ0(s), σ(σ0(s))) ≤ 0

∀s ∈ I and Θ(s0) = 0. This leads to σ1(s)ψ(s, σ1(s), σ(σ1(s))) ≤ ρ1(s)− ψ(s, ρ1(s), ρ(ρ1(s))) ∀s ∈ I.
By (a1), we attain to σ1(s) ≤ ρ1(s), ∀s ∈ I. Next, for j ∈ N , yields σj+1 ≤ σj ≤ ρj ≤ ρj−1 and hence
σj ≤ σj+1 ≤ ρj+1 ≤ ρj. Setting

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σj(s)− ψ(s, σj(s), σ(σj(s)))) − (σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s)))).

Then the humdrum of ℵ1 and ℵ2, we receive

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[(σj(s)− ψ(s, σj(s), σ(σj(s))))]

−Dα[(σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s))))] ≤ ℵ1(s, σj−1, σ(σj−1(s))

+ ℵ2(s, ρj−1, ρ(ρj−1))− ℵ1(s, σj, σ(σj))− ℵ2(s, ρj, ρ(ρj)) ≤ 0

∀s ∈ I and Θ(s0) = 0. This implies that σj − ψ(s, σj(s), σ(σj(s))) ≤ σj+1(s)− ψ(s, σj+1(s),
σ(σj+1(s))) for every s ∈ I. Since assumption (a1) achieved, we have σj(s) ≤ σj+1(s), ∀s ∈ I. Likewise
it can be demonstrated which ρj+1(s) ≤ ρj(s) on I . The same way it is assumed that the inequality
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σj−1 ≤ σj ≤ ρj ≤ ρj−1 achieves on I. We are going to demonstrate that σj ≤ σj+1 ≤ ρj+1 ≤ ρj on I.
Set
Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s)))) − (ρj+1(s)− ψ(s, ρj+1, ρ(ρj+1)))

for s ∈ I. So by monotonicity of ℵ1 and ℵ2 we get

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[(σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s))))]

−Dα[(ρj+1(s)− ψ(s, ρj+1, ρ(ρj+1)))] ≤ ℵ1(s, σj(s), σ(σj(s))) + ℵ2(s, ρj(s), ρ(ρj(s)))

− ℵ1(s, ρj+1, ρ(ρj+1))− ℵ2(s, σj(s), σ(σj(s))) ≤ 0

for the whole s ∈ I and Θ(s0) = 0. This means that

σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s)))) ≤ ρj+1 − ψ(s, ρj+1, ρ(ρj+1))

for every s ∈ I. Since assumption (a1) is achieved, we have σj+1(s) ≤ ρj+1(s), ∀s ∈ I.
Presently it is readily shown that the sequence {σ} and {ρ} are bounded uniformly and equi-

continuous sequences and have therefore converge uniformly on I. As are monotonous sequences,
{σt} and {ρt} converse uniformly monotonous σ and ρ on I respectively. Course, the pair (σ, ρ) is
a mixed solution of these equations (2) on I. Lastly, we establish which (σ, ρ) is a mixed solution of
minimum and maximum for the equations (2) on I. Let v whatever solution of the equations (2) on I
as σ0(s) ≤ v(s) ≤ ρ(s) onI. Assume that for j ∈ N , σj(s) ≤ v(s) ≤ ρj(s), s ∈ I. We will demonstrate
which σj+1(s) ≤ v(s) ≤ ρj+1(s), s ∈ I . Adjustment

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s)))) − (v(s)− ψ(s, v(s), v(v(s))))

for every s ∈ I . After, for the monotony of ℵ1 and ℵ2 we get

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[(σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s))))]

−Dα[(v(s)− ψ(s, v(s), v(v(s))))] ≤ ℵ1(s, σj(s), σ(σj(s))) + ℵ2(s, ρj(s), ρ(ρj(s)))

− ℵ1(s, v(s), v(v(s))) − ℵ2(s, v(s), v(v(s))) ≤ 0

for the whole s ∈ I and Θ(s0) = 0. This yields

σj+1(s)− ψ(s, σj+1(s), σ(σj+1(s))) ≤ v(s)− ψ(s, v(s), v(v(s)))

for every s ∈ I. Since assumption (a1) is valid, we get σj+1(s) ≤ v(s), ∀s ∈ I. Likewise it can be
demonstrated which v(s) ≤ ρj+1(s) on I. In principle, the method of induction, σt ≤ v ≤ ρt for every
s ∈ I. By taking t → ∞ limit, we get σ ≤ v ≤ ρ on I. So (σ, ρ) they are mixed type (a) extreme solutions
for the equations (2) on I., i.e,{

Dα[σ(s)− ψ(s, σ(s), σ(σ(s))] ≤ ℵ1(s, σ(s), σ(σ(s))) + ℵ1(s, ρ(s), ρ(ρ(s)))), s ∈ I,

σ(s0) = v0

and {
Dα[ρ(s)− ψ(s, ρ(s), ρ(ρ(s))] ≥ ℵ1(s, ρ(s), ρ(ρ(s))) + ℵ1(s, σ(s), σ(σ(s))), s ∈ I,

ρ(s0) = v0.

The proof is completed. �

Corollary 3.1. Suppose the hypothesis of Theorem 3.4 are fulfilled. Assume that for ı1 ≥ ı2,
ı1, ı2 ∈ �, then

ℵ1(s, ı1(s), ı(ı1(s))) − ℵ1(s, ı2(s), ı(ı2(s)))

≤ N1[ı1(s)− ψ(s, ı1(s), ı(ı1(s)))− (ı2(s)− ψ(s, ı2(s), ı(ı2(s))],

N1 > 0, and

ℵ2(s, ı1(s), ı(ı1(s))) − ℵ2(s, ı2(s), ı(ı2(s)))

≤ N2[ı1(s)− ψ(s, ı1(s), ı(ı1(s)))− (ı2(s)− ψ(s, ı2(s), ı(ı2(s))),

N2 > 0, thus σ(s) = v(s) = ρ(s) on I.
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Proof. For σ ≤ ρ on I, it suffices to demonstrate that ρ ≤ σ on I. Introduce a function Θ ∈ C(I,�)
Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (ρ(s)− ψ(s, ρ(s), ρ(ρ(s)))) − (σ(s)− ψ(s, σ(s), σ(σ(s)))).

Next, Θ(s0) = 0 and

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))]

= Dα[(ρ(s)− ψ(s, ρ(s), ρ(ρ(s))))] −Dα[(σ(s)− ψ(s, σ(s), σ(σ(s))))]

= ℵ1(s, ρ(s), ρ(ρ(s))) − ℵ1(s, σ(s), σ(σ(s))) + ℵ2(s, σ(s), σ(σ(s))) − ℵ2(s, ρ(s), ρ(ρ(s)))

≤ N1[(ρ(s)− ψ(s, ρ(s), ρ(ρ(s))) − (σ(s)− ψ(s, σ(s), σ(σ(s))))]

+N2[(σ(s)− σ(s, σ(s), σ(σ(s)))) − (ρ(s)− ψ(s, ρ(s), ρ(ρ(s))))]

= (N1 +N2)[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))].

This demonstrates that Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) ≤ 0 on I, demonstrating that ρ ≤ σ on I. Therefore
σ = ρ = v I, the proof is completed. �

Theorem 3.5. Let us suppose that the assumption (a1)−(a2) and (b2)−(b4) achieved. There-
fore, for any solution v(s) of (2) with σ0 ≤ v ≤ ρ0, and we are an iteration σt, ρt satisfactory for
s ∈ I, {

σ0 ≤ σ2 ≤ . . . ≤ σ2t ≤ v ≤ σ2t+1 ≤ . . . ≤ σ3 ≤ σ1,

ρ1 ≤ ρ3 ≤ . . . ≤ ρ2t+1 ≤ v ≤ ρ2t ≤ . . . ≤ ρ2 ≤ ρ0,

as long as σ0 ≤ σ2 and ρ2 ≤ ρ0 on I, in which iterating is given by⎧⎪⎨
⎪⎩
Dα[σ2t+1(s)− ψ(s, σ2t+1(s), σ(σ2t+1(s))] = ℵ1(s, ρt(s), ρ(ρt(s))) + ℵ2(s, σt(s), σ(σt(s))),

s ∈ I,

σ2t+1(s0) = v0

and⎧⎪⎨
⎪⎩
Dα[ρ2t+1(s)− ψ(s, ρ2t+1(s), ρ(ρ2t+1(s))] = ℵ1(s, σt(s), σ(σt(s))) + ℵ2(s, ρt(s), ρρt(s))),

s ∈ I,

ρ2t+1(s0) = v0

of t ∈ N . Furthermore, the monotonous sequences {σ2t}, {σ2t+1}, {ρ2t}, {ρ2t+1} converge uni-
formly to σ, ρ, σ�, ρ�, respectively, and fulfilling this assumptions:

(1) Dα[σ(s)− ψ(s, σ(s), σ(σ(s)))] = ℵ1(s, ρ(s), ρ(ρ(s))) + ℵ2(s, σ(s), σ(σ(s)));

(2) Dα[ρ(s)− ψ(s, ρ(s), ρ(ρ(s))] = ℵ1(s, σt(s), σ(σ(s))) + ℵ2(s, ρ(s), ρρ(s)));

(3) Dα[σ�(s)− ψ(s, σ�(s), σ(σ�(s)))] = ℵ1(s, ρ
�(s), ρ(ρ�(s))) + ℵ2(s, σ

�(s), σ(σ�(s)));

(4) Dα[ρ�(s)− ψ(s, ρ�(s), ρ(ρ�(s))] = ℵ1(s, σ
�(s), σ(σ�(s))) + ℵ2(s, ρ

�(s), ρρ�(s)))

for s ∈ I and σ ≤ v ≤ ρ, σ� ≤ v ≤ ρ�, s ∈ I, σ(0) = σ(0) = σ�(0) = ρ�(0) = v0.
Proof. By the assumptions of the theorem, we suppose that σ0 ≤ σ2 and ρ2 ≤ ρ0, on I. We

demonstrate that {
σ0 ≤ σ2 ≤ v ≤ σ3 ≤ σ1,

ρ1 ≤ ρ3 ≤ v ≤ ρ2 ≤ ρ0
(12)

on I . Set

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (v(s)− ψ(s, v(s), v(v(s)))) − (σ1(s)− ψ(s, σ1(s), σ(σ1(s))))

utilization that σ0 ≤ v ≤ ρ0 on I, as v is any solution of (2) and the monotonous the nature of functions
ℵ1 and ℵ2, this yields

Dα[Θ(s)− ψ(s,Θ(s),Θ(Θ(s)))] = Dα[(v(s) − ψ(s, v(s), v(v(s))))]

−Dα[(σ1(s)− ψ(s, σ1(s), σ(σ1(s))))] = ℵ1(s, v(s), v(v(s)))))
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+ ℵ2(s, v(s), v(v(s)))) − ℵ1(s, ρ0(s), ρ(ρ0(s))) − ℵ2(s, σ0(s), σ(σ0(s)))) ≤ 0

for every s ∈ I and Θ(s0) = 0. Thus, we reached the conclusion
v(s)− ψ(s, v(s), v(v(s))) ≤ σ1(s)− ψ(s, σ1(s), σ(σ1(s)))

or v(s) ≤ σ1(s) for every s ∈ I. In the same way, we can show that σ3 ≤ σ1, ρ1 ≤ v and σ2 ≤ v, taking
into account differences

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σ3(s)− ψ(s, σ3(s), σ(σ3(s))))− (σ1(s)− ψ(s, σ1(s), σ(σ1(s)))),

Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (ρ1(s)− ψ(s, ρ1(s), ρ(ρ1(s))))− (v(s)− ψ(s, v(s), v(v(s))))

and
Θ(s)− ψ(s,Θ(s),Θ(Θ(s))) = (σ2(s)− ψ(s, σ2(s), σ(σ2(s)))) − (v(s)− ψ(s, v(s), v(v(s))))

respectively. At each of these cases, we get Θ(s)− ψ(s,Θ(s),Θ(Θ(s)) ≤ 0, for all s ∈ I and represen-
tation (12) is established. This completed prove.
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16. R. W. Ibrahim, A. Kılıçman, and F. H. Damag, “Existence and uniqueness for a class of iterative fractional

differential equations,” Adv. Differ. Equat., No. 1, 1–13 (2015).
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18. F. H. Damag, A. Kılıçman, and R. W. Ibrahim, “Approximate solutions for non-linear iterative fractional

differential equations,” AIP Conf. Proc. 1739, 020015 (2016). https://doi.org/10.1063/1.4952495
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