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A B S T R A C T

In this paper, the process of the extended direct algebraic method (EDAM) is used to solve two fractional
Boussinesq-like equations by means of conformable derivatives. Firstly, these fractional equations are changed
into the ordinary differential equations by using the traveling wave transformation. Then new solutions are
obtained by using EDAM. This dynamical model plays a key role in engineering and physics. The constructed
solitons solution help researchers in understanding the physical phenomenon of this equation. The standard
linear stability analysis is utilized and the stability of the model is investigated which substantiate that all results
are stable and exact. Graphically, the movements of some solutions are depicted at appropriate values of
parameters. The achieved results show simplicity, reliability, and power of the current schemes.

Introduction

There has been considerable interests and significant theoretical
developments in fractional calculus used in many fields and in frac-
tional differential equations and its applications [1–8]. There have been
much research for nonlinear fractional partial differential equations
(FPDEs) which are a specific form of NPDEs. Because FPDEs are im-
portant for various analysis due to their recurrent appearing, versatile
and potentiality put into operations in nonlinear optics, water wave
hypothesis, plasma physics, fluid dynamics, optical fiber, signal pro-
cessing, quantum mechanics and so on. Numerous authors have ef-
forted to obtain the wave solutions of NPDEs by using a lot of mathe-
matical processes. Ekici et al. [9] used the first integral method by using
the fractional derivative of conformable type for getting the soliton
solutions, Bhrawy et al. [10] analyzed the Jacobi spectral collocation
approximate solution for various Schrödinger equations, Yang et al.
[11] found the solutions of the sub-diffusion and wave equations via
FVIM, Gao and Yang [12] used the fractional Euler’s method with local
case to investigate approximate solution of the fractional heat-relaxa-
tion equation with local case, Yang et al. [13] obtained the solutions for
local fractional KdV equation, Yang et al. [14] found the solutions of
two-dimensional fractional Burgers equations and Zhang et al. [15]
obtained the solutions of transport equations by using the series

expansion method with local fractional derivative, Rezazadeh et al.
[16] obtained new exact solutions of nonlinear time-fractional Phi-4
equation with conformable derivative. There are many more researches
related to fractional derivatives. Besides, it can be said very easier to
work with conformable fractional derivatives [17–20]. Using these
methods, the researchers investigate different kinds of traveling wave
solutions of different NPDEs and fractional NPDEs, e.g. see [21–27].
Moreover, various recent studies show the richness of another kind of
exact solutions called lump solutions and their interactions for PDEs
[28–33].

In this work, we analyze two different types of fractional
Boussinesq-like equations by means of conformable derivative opera-
tors [34–36]. Four different types of the fractional Boussinesq-like
equations by means of conformable derivative operators given in the
following forms,

+ =q q q q q(6 ) 0,tt xx x xxx x
(2 ) 2 (1.1)

+ =q q q q q(6 ) 0,tt xx x xtt x
(2 ) 2 (2 ) (1.2)

+ =q q q q q(6 ) 0,tt xt x xxt x
(2 ) ( ) 2 ( ) (1.3)

+ =q q q q(6 ) 0,.tt x xxx x
(2 ) 2 (1.4)

https://doi.org/10.1016/j.rinp.2019.102339
Received 22 March 2019; Received in revised form 6 May 2019; Accepted 7 May 2019

⁎ Corresponding author.
E-mail address: minc@firat.edu.tr (M. Inc).

Results in Physics 13 (2019) 102339

Available online 21 May 2019
2211-3797/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2019.102339
https://doi.org/10.1016/j.rinp.2019.102339
mailto:minc@firat.edu.tr
https://doi.org/10.1016/j.rinp.2019.102339
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2019.102339&domain=pdf


where >t 0, < q0 1, t
( ) is the conformable derivative operator

( =q q x t( , )). Eqs. (1.1),(1.2),(1.3),(1.4) are non-integrable equations
that are used as model in ocean and coastal sciences when = 1. Some
applications of these equations when they are represented by tsunami
wave modeling and mathematical modeling of tidal oscillations. Fur-
thermore, they can be used in studying the dynamics of the thin in
viscid layers with free surface, the wave propagation in elastic rods, and
in the continuum limit of lattice dynamics or some particular forms of
electrical circuits.

Eslami and Mirzazadeh applied the first integral method to look for
exact solutions of these equations in [34]. Darvishi et al. investigated
soliton solutions for these equations with spatio-temporal dispersion in
[35].

The conformable derivative of order (0, 1) defined as the fol-
lowing expression

= +D f t f t t f t f( ) lim ( ) ( ) , : 0, .t
0

1

(1.5)

Some of the features of conformable derivative as follows:

(a) =D t t , ,t
(b) = +D fg f D g g D f( ) ,t t t
(c) =D fog t g t f g t( ) ( ) ( ( )),t

1

(d) =( )D .t
f
g

g D f f D g
g

t t
2

In this work, we analyze the first and second fractional Boussinesq-
like equations by means of the conformable derivative to obtain solu-
tions using the extended direct algebraic method (EDAM) [16,36].
Rezazadeh studied new solitons solutions of the complex Ginzburg-
Landau equation with Kerr law nonlinearity by using EDAM in [36].

This study is organized as follows: Firstly, we give the process of
EDAM for Boussinesq-like equations with conformable derivatives.
Also, these fractional equations are changed into the ordinary differ-
ential equations by using the traveling wave transformation. Finally, we
obtain new soliton solutions for the model problem by using EDAM.

Analysis of the extended direct algebraic method

Assume the general nonlinear partial differential equation,

… =A q q q q q( , , , , , ) 0.t x xx tt
( ) (2 ) (2.1)

where q is an unknown function depending on x and t A, is a poly-
nomial in =q q x t( , ) and the sub-indices represent the partial fractional
derivatives.

• Suppose the traveling wave variable:
= =q x t u x Q t, ( ), ,

(2.2)

Then, from Eq. (2.2), Eq. (2.1) is turn to an ordinary differential
equation for u ( ):

… =B u u u u( , , , , ) 0. (2.3)

where the sub-indices represent the ordinary derivatives with re-
spect to .
• Consider the solution of Eq. (2.3),

=
=

u G( ) ( ),
i

N

i
i

0 (2.4)

where a 0n and G ( ) can be expressed as follows:

= + +G A fG gG h A( ) ln( )( ( ) ( ) ), 0, 1,2 (2.5)

where h g f, , are arbitrary constants. The general solution to the
basis Eq. (2.5) is given by the formulas (40)–(42) in [37].

• N is found by balancing between the nonlinear terms and the highest
order derivatives in Eq. (2.3).
• Replacing Eq. (2.4) together with Eq. (2.5) into the Eq. (2.3), then
equating each coefficient of the polynomials to zero, give a set of
algebraic equations for i = …i N f g h( 1, 2, , ), , , and Q.
• Solving the obtained system, we obtain values for i = …i N( 1, 2, , )
and Q. Then, solutions of Eq. (2.3) are obtained.

Where some special solutions of Eq. (2.3) as follows;

(1) When = <g hf4 02 and f 0,

= +

= +

= + ±

= + ±

= + ( )( ) ( )

( )
( )

G

G

G

G

G

( ) tan ,

( ) cot ,

( ) (tan ( ) sec ( )),

( ) ( cot ( ) csc ( )),

( ) tan cot .

g
f f A

g
f f A

g
f f A A

g
f f A A

g
f f A A

1 2 2 2

2 2 2 2

3 2 2

4 2 2

5 2 2 4 4

(2) When = >g hf4 02 and f 0,

=

=

= + ±

= + ±

= + +( )

( )
( )

( ) ( )

G

G

G i h

G h

G

( ) tanh ,

( ) coth ,

( ) tanh sec ,

( ) ( coth ( ) csc ( )),

( ) tanh coth .

g
f f A

g
f f A

g
f f A A

g
f f A A

g
f f A A

6 2 2 2

7 2 2 2

8 2 2

9 2 2

10 2 4 4 4

(3) When >hf 0 and =g 0,

=

=

= ±

= ±

=

G hf

G hf

G hf hf

G hf hf

G

( ) tan ,

( ) cot ,

( ) (tan (2 ) sec (2 )),

( ) ( cot (2 ) csc (2 )),

( ) tan cot .

h
f A

h
f A

h
f A A

h
f A A

h
f A

hf
A

hf

11

12

13

14

15
1
2 2 2

(4) When <hf 0 and =g 0,

=

=

= ±

= ±

= +

G hf

G hf

G hf i h hf

G hf h hf

G

( ) tanh ,

( ) coth ,

( ) tanh 2 sec 2 ,

( ) ( coth (2 ) csc (2 )),

( ) tanh coth .

h
f A

h
f A

h
f A A

h
f A A

h
f A

hf
A

hf

16

17

18

19

20
1
2 2 2

(5) When =h f and =g 0,
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=
=
= ±
= ±

= ( )

G h
G h
G h h
G h h

G

( ) tan ( ),
( ) cot ( ),
( ) tan (2 ) sec (2 ),
( ) cot (2 ) csc (2 ),

( ) tan cot .

A

A

A A

A A

A
h

A
h

21

22

23

24

25
1
2 2 2

(6) When =h f and =g 0,

=
=
= ±
= ±

= + ( )

G h
G h
G h i h h
G h h h

G

( ) tanh ( ),
( ) coth ( ),
( ) tanh (2 ) sec (2 ),
( ) coth (2 ) csc (2 ),

( ) tanh coth .

A

A

A A

A A

A
h

A
h

26

27

28

29

30
1
2 2 2

(7) When =g hf4 ,2

= +G h g A
g A

( ) 2 ln( ) 2
ln( )

.31 2

(8) When = =g k h mk, m( 0) and =f 0,

=G A m( ) .k
32

(9) When = =g f 0,

=G h A( ) ln( ).33

(10) When = =g h 0,

=G
f A

( ) 1
ln( )

.34

(11) When =h 0 and g 0,

=

=
+

+
+ +

G

G

( ) ,

( ) .

g
f g g

g g g
f g g

35 (cosh ( ) sinh ( ) )

36
(sinh ( ) cosh ( ))

(sinh ( ) cosh ( ) )

A A

A A
A A

(12) When = =g k h, 0 and =f mk m( 0),

=G A
m A

( ) .
k

k37

Remark. The generalized triangular and hyperbolic functions are
defined as [36];

= =

= =

= =

= =

= =

= =

+

+
+

+
+

+
+

+

i i

h h

sin ( ) , cos ( ) ,

tan ( ) , cot ( ) ,

sec ( ) , csc ( )

sinh ( ) , cosh ( ) ,

tanh ( ) , coth ( ) ,

sec ( ) , csc ( ) .

A
A A

i A
A A

A
A A
A A A

A A
A A

A A A A
i

A A

A
A A

A
A A

A
A A
A A A

A A
A A

A A A A A A

2 2

2 2

2 2

2 2

i i i i

i i
i i

i i
i i

i i i i

where is an independent variable, and are arbitrary constants

greater than zero and called deformation parameters.

Fractional Boussinesq-like equations with conformable derivative

First fractional Boussinesq-like equation

By placing Eq. (2.2) into Eq. (1.1), is obtained nonlinear equation as
follows,

+ =u Q u u u u u( ) ( 1) ( ) 12 ( ) ( ) 6 ( ) ( ) 0,2 2 2 (3.1)

By integrating twice according to Eq. (3.1) and by assuming both
of the integration constants zero, is obtained nonlinear equation as
follows,

+ =u u Q u( ) 2 ( ) ( 1) ( ) 0.3 2 (3.2)

Assumed the solution of Eq. (3.2) is demonstrable as a finite series
as follows:

=
=

u G( ) ( )
N

j
j

j0
(3.3)

where G ( ) satisfies Eq. (2.5) = x Q, t and j for =j N1, are va-
lues to be definited.

By balancing u with u3 in Eq. (3.2), is obtained =N 1. We can select
the solution of Eq. (3.2) as following shape:

= +u G( ) ( ),0 1 (3.4)

where G ( ) satisfied Eq. (2.5).
Substituting (3.4) and (2.5) into (3.2), collecting the coefficients of

G ( ), and solving the obtaining system, the following groups of some
solutions are found:

One of the six groups of values as follows

= =ig A if A1
2

ln( ), ln( ),0 1 (3.5)

=Q g fh A1 1
2

4 ln( ) .2 2

The solutions of Eq. (1.1) are obtained as follows;

(1) When = <g fh4 02 and f 0, then the singular periodic
solutions are given by

= + +

= + +

q x t ig A if A x A

q x t ig A if A x A

( , ) ln( ) ln( ) tan 1 ln( ) ,

( , ) ln( ) ln( ) cot 1 ln( ) ,

g
f f A

t

g
f f A

t

1
1
2 2 2 2

1
2

2

2
1
2 2 2 2

1
2

2

= + +

±

= + +

±

= + +

q x t ig A if A x A

x A

q x t ig A if A x A

x A

q x t ig A if A

( , ) ln( ) ln( ) tan 1 ln( )

sec 1 ln( ) ,

( , ) ln( ) ln( ) cot 1 ln( )

csc 1 ln( ) ,

( , ) ln( ) ln( ) tan cot ,

g
f f A

t

A
t

g
f f A

t

A
t

g
f f A A

3
1
2 2 2

1
2

2

1
2

2

4
1
2 2 2

1
2

2

1
2

2

5
1
2 2 2 4 4

(2) When = >g hf4 02 and f 0, then the dark and the singular
soliton solutions are given by
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= +

= +

q x t ig A if A x A

q x t ig A if A x A

( , ) ln( ) ln( ) tanh 1 ln( ) ,

( , ) ln( ) ln( ) coth 1 ln( ) ,

g
f f A

t

g
f f A

t

6
1
2 2 2 2

1
2

2

7
1
2 2 2 2

1
2

2

= + +

±

= + +

±

= + +

+

q x t ig A if A x A

i h x A

q x t ig A if A x A

h x A

q x t ig A if A x A

x A

( , ) ln( ) ln( ) tanh 1 ln( )

sec 1 ln( ) ,

( , ) ln( ) ln( ) coth 1 ln( )

csc 1 ln( ) ,

( , ) ln( ) ln( ) tanh 1 ln( )

coth 1 ln( ) ,

g
f f A

t

A
t

g
f f A

t

A
t

g
f f A

t

A
t

8
1
2 2 2

1
2

2

1
2

2

9
1
2 2 2

1
2

2

1
2

2

10
1
2 2 4 4

1
2

2

4
1
2

2

(3) When >hf 0 and =g 0, then the singular periodic solutions are
given by

= +

= +

q x t ig A if A hf x A

q x t ig A if A hf x A

( , ) ln( ) ln( ) tan 1 ln( ) ,

( , ) ln( ) ln( ) cot 1 ln( ) ,

h
f A

t

h
f A

t

11
1
2

1
2

2

12
1
2

1
2

2

= +

±

= +

±

= +

q x t ig A if A hf x A

hf x A

q x t ig A if A hf x A

hf x A

q x t ig A if A x A

x A

( , ) ln( ) ln( ) tan 2 1 ln( )

sec 2 1 ln( ) ,

( , ) ln( ) ln( ) cot 2 1 ln( )

csc 2 1 ln( ) ,

( , ) ln( ) ln( ) tan 1 ln( )

cot 1 ln( ) ,

h
f A

t

A
t

h
f A

t

A
t

h
f A

hf t

A
hf t

13
1
2

1
2

2

1
2

2

14
1
2

1
2

2

1
2

2

15
1
2

1
2 2

1
2

2

2
1
2

2

(4) When <hf 0 and =g 0, then the singular, dark and bright soliton
solutions are given by

= +

= +

q x t ig A if A hf x A

q x t ig A if A hf x A

( , ) ln( ) ln( ) tanh 1 ln( ) ,

( , ) ln( ) ln( ) coth 1 ln( ) ,

h
f A

t

h
f A

t

16
1
2

1
2

2

17
1
2

1
2

2

= +

±

= +

±

= +

+

q x t ig A if A hf x A

i h hf x A

q x t ig A if A hf x A

h hf x A

q x t ig A if A x A

x A

( , ) ln( ) ln( ) tanh 2 1 ln( )

sec 2 1 ln( ) ,

( , ) ln( ) ln( ) coth 2 1 ln( )

csc 2 1 ln( ) ,

( , ) ln( ) ln( ) tanh 1 ln( )

coth 1 ln( ) ,

h
f A

t

A
t

h
f A

t

A
t

h
f A

hf t

A
hf t

18
1
2

1
2

2

1
2

2

19
1
2

1
2

2

1
2

2

20
1
2

1
2 2

1
2

2

2
1
2

2

(5) When =h f and =g 0, then the singular periodic solutions are
given by

= +

= +

( )
( )

q x t ig A if A h x A

q x t ig A if A h x A

( , ) ln( ) ln( )tan 1 ln( ) ,

( , ) ln( ) ln( ) cot 1 ln( ) ,

A
t

A
t

21
1
2

1
2

2

22
1
2

1
2

2

= +

±

= +

±

= +

( )
( )

( )
( )

( )
( )

q x t ig A if A h x A

h x A

q x t ig A if A h x A

h x A

q x t ig A if A x A

x A

( , ) ln( ) ln( ) tan 2 1 ln( )

sec 2 1 ln( ) ,

( , ) ln( ) ln( ) cot 2 1 ln( )

csc 2 1 ln( ) ,

( , ) ln( ) ln( ) tan 1 ln( )

cot 1 ln( ) ,

A
t

A
t

A
t

A
t

A
h t

A
h t

23
1
2

1
2

2

1
2

2

24
1
2

1
2

2

1
2

2

25
1
2

1
2 2

1
2

2

2
1
2

2

(6) When =h f and =g 0, then the singular, dark and bright soliton
solutions are given by

= +

= +

( )
( )

q x t ig A if A h x A

q x t ig A if A h x A

( , ) ln( ) ln( ) tanh 1 ln( ) ,

( , ) ln( ) ln( ) coth 1 ln( ) ,

A
t

A
t

26
1
2

1
2

2

27
1
2

1
2

2

= +

±

= +

±

= +

+

q x t ig A if A h x A

i h h x A

q x t ig A if A h x A

h h x A

q x t ig A if A x A

x A

( , ) ln( ) ln( ) tanh 2 1 ln( )

sec 2 1 ln( ) ,

( , ) ln( ) ln( ) coth 2 1 ln( )

csc 2 1 ln( ) ,

( , ) ln( ) ln( ) tanh 1 ln( )

coth 1 ln( ) ,

A
t

A
t

A
t

A
t

A
h t

A
h t

28
1
2

1
2

2

1
2

2

29
1
2

1
2

2

1
2

2

30
1
2

1
2 2

1
2

2

2
1
2

2

(7) When =g hf42 , then the rational solution is given by

= +
+

q x t ig A if A h
g x A A

g x A A
, 1

2
ln( ) ln( ) 2

1 ln( ) ln( ) 2

1 ln( ) ln( )
,

t

t
31

1
2

2

2 1
2

2

(8) When = =g k h mk, m( 0) and =f 0, then the rational solution
is given by

= +q x t ig A if A A m, 1
2

ln( ) ln( ) ,
k x A t

32
1 1

2 ln( )2

(9) When = =g f 0, then the rational solution is given by

= +q x t ig A if A h x A t A, 1
2

ln( ) ln( ) 1 1
2

ln( ) ln( ) ,33
2

(10) When = =g h 0, then the rational solution is given by
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= +q x t ig A if A
f x A A

, 1
2

ln( ) ln( ) 1

1 ln( ) ln( )
,

t
34

1
2

2

(11) When =h 0 and g 0, then the bright and dark-like solitons are
given by

(12) When = =g k h, 0 and =f mk m( 0), then the rational solution
is given by

= + ( )q x t ig A if A A

m A
, 1

2
ln( ) ln( ) .

k x A

k x A
37

1 ln( )

1 ln( )

t

t

1
2

2

1
2

2

Second fractional Boussinesq-like equation

By placing Eq. (2.2) into Eq. (1.2), is obtained nonlinear equation as
follows,

+ =Q u Q u u u u u( ) ( 1) ( ) 12 ( ) ( ) 6 ( ) ( ) 0,2 2 2 2 (3.6)

By integrating twice according to Eq. (3.6) and by assuming both
of the integration constants zero, is obtained nonlinear equation as
follows,

+ =Q u u Q u( ) 2 ( ) ( 1) ( ) 0.2 3 2 (3.7)

Assumed the solution of Eq. (3.6) is demonstrable as a finite series
as follows:

=
=

u G( ) ( )
j

N
j

j
0 (3.8)

where G ( ) satisfies Eq. (2.5), = x Q t and j for =j N1, are va-
lues to be definited.

By balancing u with u3 in Eq. (3.7), is obtained =N 1. We can select
the solution of Eq. (3.7) as following shape:

= +u G( ) ( ),0 1 (3.9)

where G ( ) satisfied Eq. (2.5).

Substituting (3.9) and (2.5) into (3.7), collecting the coefficients of
G ( ), and solving the obtaining system, the following groups of some
solutions are found:

One of the six groups of values as follows

=
+

=
+

ig A
g fh A

if A
g fh A

ln( )
4 2( 4 )ln( )

, 2 ln( )
4 2( 4 )ln( )

,0 2 2 1 2 2 (3.10)

=
+

Q
g fh A

2
2 ( 4 )ln( )

.
2 2

The singular, rational, dark and bright soliton solutions of Eq. (1.2)
are obtained similar to the first fractional Boussinesq-like equation.
Graphs of some of these solutions found were drawn in the next section.

Graphical representation of the solutions

The surface graphics of the obtained solutions are showed below in
the figures by using Mathematica. In Figs. 1–6, we present some nu-
merical simulations for q x t q x t q x t q x t q x t( , ), ( , ), ( , ), ( , ), ( , )1 8 17 25 30 and
q x t( , )35 in 3D plots when x0 5 and t0 5.

We wrote the some of solutions found for the presented first and
second fractional Boussinesq-like equation via conformable derivative
operator. Besides we showed 3D graphics for some of solutions in
Fig. 1–6. The graphics above were drawn for

= = = =A 2.7, 0.9, 1.
The fig.7 above were drawn for = = = =A t2.7, 1, 0.5.

Conclusion

In this paper, the extended direct algebraic method is used to find
new soliton solutions of the first and second fractional Boussinesq-like
equation. These solutions consist of twelve different cases. The ex-
istences of solutions derived from these functions are all guaranteed
through constraint conditions that are also listed beside the solutions.
The constructed soliton solutions are helpful to researchers and have
important key applications mathematical physics and engineering. By
choosing suitable values of parameters, the movements of a few solu-
tions are presented which help the researcher for understanding the

= +

= +

+

+

+ +

q x t ig A if A

q x t ig A if A

( , ) ln( ) ln( ) ,

( , ) ln( ) ln( ) ,

g

f g x A g x A

g g x A g x A

f g x A g x A

35
1
2

cosh 1 ln( ) sinh 1 ln( )

36
1
2

sinh 1 ln( ) cosh 1 ln( )

sinh 1 ln( ) cosh 1 ln( )

A
t

A
t

A
t

A
t

A
t

A
t

1
2

2 1
2

2

1
2

2 1
2

2

1
2

2 1
2

2

Fig. 1. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the first fractional Boussinesq-like equation (a) q x t( , )1 = = =h f g( 2, 1), (b) q x t( , )8
= = =h f g( 1, 3).
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Fig. 2. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the first fractional Boussinesq-like equation (a) q x t( , )17 = = =h f g( 2, 1, 0), (b) q x t( , )25
= = =h f g( 1, 0).

Fig. 3. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the first fractional Boussinesq-like equation (a) q x t( , )30 = = =h f g( 1, 1, 0), (b) q x t( , )35
= = =h f g( 0, 1, 2).

Fig. 4. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the second fractional Boussinesq-like equation (a) q x t( , )1 = = =h f g( 2, 1), (b) q x t( , )8
= = =h f g( 1, 3).

Fig. 5. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the second fractional Boussinesq-like equation (a) q x t( , )17 = = =h f g( 2, 1, 0), (b) q x t( , )25
= = =h f g( 1, 0).
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physical interpretation of this dynamical model. We say that the pre-
sented method is suitable to examine the many problems located in
science and engineering. We will study the some different applications
of this method for different fractional differential operators in future
works and we will try to reduce the absolute error.

Declaration of Competing Interest

None.

Acknowledgement

This research project was supported by a grant from the Research
Center of the Center for Female Scientific and Medical Colleges,
Deanship of Scientific Research, King Saud University.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.rinp.2019.102339.

References

[1] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional dif-
ferential equations. Amsterdam: Elsevier; 2006.

[2] Podlubny I. Fractional differential equation. San Diego: Academic Press; 1999.
[3] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: theory and

applications. Switzerland: Gordon and Breach; 1993.
[4] Korpinar ZS, Inc M. Numerical simulations for fractional variation of (1+1)-di-

mensional Biswas-Milovic equation. Optik 2018;166:77–85.
[5] Mirzazadeh M, et al. Analytical study of solitons to nonlinear time fractional

parabolic equations. Nonlinear Dyn 2016;85(4):2569–76.
[6] Triki H, Hamaizi Y, Zhou Q, et al. Chirped singular solitons for Chen-Lee-Liu

equation in optical fibers and PCF. Optik 2018;157:156–60.

[7] Inc M, Korpinar ZS, Al Qurashi MM, Baleanu D. A new method for approximate
solution of some nonlinear equations: Residual power series method. Adv Mech Eng
2016;8(4):1–7.

[8] Korpinar Z. On numerical solutions for the Caputo-Fabrizio fractional heat-like
equation. Thermal Sci 2018;22(1):87–95.

[9] Ekici M, Mirzazadeh M, Eslami M, et al. Optical soliton perturbation with fractional-
temporal evolution by first integral method with conformable fractional derivatives.
Optik 2016;127:10659–69.

[10] Bhrawy AH, Alzaidy JF, Abdelkawy MA, et al. Jacobi spectral collocation approx-
imation for multi-dimensional time-fractional Schrödinger equations. Nonlinear
Dyn 2016;84:1553–67.

[11] Yang XJ, Baleanu D, Khan Y, et al. Local fractional variational iteration method for
diffusion and wave equations on cantor sets. Rom J Phys 2014;59:36–48.

[12] Gao F, Yang XJ. Local fractional Euler’s method for the steady heat-conduction
problem. Thermal Sci 2016;20:735–8.

[13] Yang XJ, Tenreiro Machado JA, Baleanu D, et al. On exact traveling-wave solutions
for local fractional Korteweg-de Vries equation. Chaos: An Interdisciplinary. J
Nonlinear Sci 2016;26:084312.

[14] Yang XJ, Gao F, Srivastava HM. Exact travelling wave solutions for the local frac-
tional two-dimensional Burgers-type equations. Comput Math Appl
2017;73:203–10.

[15] Zhang Y, Baleanu D, Yang XJ. New solutions of the transport equations in porous
media within local fractional derivative. Proc Romanian Acad 2016;17:230–6.

[16] Rezazadeh H, Tariq H, Eslami M, et al. New exact solutions of nonlinear con-
formable time-fractional Phi-4 equation. Chinese J Phys 2018;56:2805–16.

[17] Mirzazadeh M, et al. Optical solitons with complex Ginzburg-Landau equation.
Nonlinear Dyn 2016;85(3):1979–2016.

[18] Liu X, et al. Generation and control of multiple solitons under the influence of
parameters. Nonlinear Dyn 2019;95:143–50.

[19] Mirzazadeh M, et al. Optical solitons in nonlinear directional couplers by sine–co-
sine function method and Bernoulli’s equation approach. Nonlinear Dyn
2015;81(4):1933–49.

[20] Zhang Y, et al. Interactions of vector anti-dark solitons for the coupled nonlinear
Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn 2018;94:1351–60.

[21] Yepez-Martinez H, Gomez-Aguilar JF, et al. The Feng’s first integral method applied
to the nonlinear mKdV space-time fractional partial differential equation. Rev Mex
Fisica 2016;62(4):310–6.

[22] Ghanbari B, Gomez-Aguilar JF. Optical soliton solutions of the Ginzburg-Landau
equation with conformable derivative and Kerr law nonlinearity. Revista Mexicana
de Física 2018;65(1):73–81.

[23] Yepez-Martinez H, Gomez-Aguilar JF. Fractional sub-equation method for Hirota-
Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s

Fig. 6. The 3D and 2D graphics for the q x t| ( , )|2 analytical solution of the second fractional Boussinesq-like equation (a) q x t( , )30 = = =h f g( 1, 1, 0), (b) q x t( , )35
= = =h f g( 0, 1, 2).

Fig. 7. The 2D graphics for the q x t| ( , )|2 analytical solution of the fractional Boussinesq-like equation for different value of . (a) The solution q x t( , )8 of first fractional
Boussinesq-like equation = = =h f g( 1, 3), (b) The solution q x t( , )17 of second fractional Boussinesq-like equation = = =h f g( 2, 1, 0).

Z. Korpinar, et al. Results in Physics 13 (2019) 102339

7

https://doi.org/10.1016/j.rinp.2019.102339
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0005
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0005
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0010
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0015
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0015
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0020
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0020
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0025
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0025
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0030
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0030
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0035
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0035
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0035
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0040
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0040
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0045
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0045
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0045
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0050
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0050
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0050
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0055
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0055
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0060
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0060
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0065
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0065
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0065
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0070
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0070
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0070
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0075
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0075
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0080
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0080
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0085
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0085
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0090
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0090
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0095
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0095
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0095
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0100
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0100
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0105
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0105
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0105
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0110
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0110
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0110
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0115
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0115


conformable derivative. Waves Random Complex Media 2018;1:1–16.
[24] Yepez-Martinez H, Gomez-Aguilar JF, Atangana A. First integral method for non-

linear differential equations with conformable derivative. Math Modell Nat
Phenomena 2018;13(1):1–14.

[25] Yepez-Martinez H, Gomez-Aguilar JF. Optical solitons solution of resonance non-
linear Schrödinger type equation with Atangana’s-conformable derivative using
sub-equation method. Waves Random Complex Media 2019;1:1–24.

[26] Yepez-Martinez H, Gomez-Aguilar JF. M-derivative applied to the soliton solutions
for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical
fibers. Opt Quantum Electron 2019;51(1):1–21.

[27] Ma WX, Lee JH. A transformed rational function method and exact solutions to the
3+1 dimensional Jimbo-Miwa equation. Chaos, Solitons Fractals
2009;42:1356–63.

[28] Ma WX, Zhou Y. Lump solutions to nonlinear partial differential equations via
Hirota bilinear forms. J Diff Eqs 2018;264:2633–59.

[29] Ma WX, Li J, Khalique CM, A study on lump solutions to a generalized Hirota-
Satsuma-Ito equation in (2+1)-dimensions, Complexity 2018; 2018: Article ID

9059858, 7 pp.
[30] Chen ST, Ma WX. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff

equation. Comput Math Appl 2018;76:1680–5.
[31] Ma WX, Yong XL, Zhang HQ. Diversity of interaction solutions to the (2+1)-di-

mensional Ito equation. Comput Math Appl 2018;75:289–95.
[32] Ma WX. Abundant lumps and their interaction solutions of (3+1)-dimensional

linear PDEs. J Geometry Phys 2018;133:10–6.
[33] Ma WX, A search for lump solutions to a combined fourth-order nonlinear PDE in

(2+1)-dimensions, Journal of Applied Analysis and Computation in press.
[34] Eslami M, Mirzazadeh M. First integral method to look for exact solutions of a

variety of Boussinesq-like equations. Ocean Eng 2014;83:133–7.
[35] Darvishi MT, Naja M, Wazwaz AM. Soliton solutions for Boussinesq-like equations

with spatio-temporal dispersion. Ocean Eng 2017;130:228–40.
[36] Rezazadeh H. New solitons solutions of the complex Ginzburg-Landau equation

with Kerr law nonlinearity. Optik 2018;167:218–27.
[37] Ma WX, Fuchssteiner B. Explicit and exact solutions to a Kolmogorov-Petrovskii-

Piskunov equation. Int J Non-Linear Mech 1996;31:329–38.

Z. Korpinar, et al. Results in Physics 13 (2019) 102339

8

http://refhub.elsevier.com/S2211-3797(19)30922-2/h0115
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0120
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0120
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0120
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0125
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0125
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0125
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0130
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0130
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0130
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0135
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0135
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0135
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0140
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0140
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0150
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0150
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0155
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0155
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0160
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0160
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0170
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0170
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0175
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0175
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0180
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0180
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0185
http://refhub.elsevier.com/S2211-3797(19)30922-2/h0185

	New solutions of the fractional Boussinesq-like equations by means of conformable derivatives
	Introduction
	Analysis of the extended direct algebraic method
	Fractional Boussinesq-like equations with conformable derivative
	First fractional Boussinesq-like equation
	Second fractional Boussinesq-like equation

	Graphical representation of the solutions
	Conclusion
	mk:H1_8
	Acknowledgement
	Supplementary data
	References




