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Abstract: In this paper, by considering a Frenet curve lying on an oriented hypersurface, we extend the Darboux frame

field into Euclidean 4-space E4 . Depending on the linear independency of the curvature vector with the hypersurface’s

normal, we obtain two cases for this extension. For each case, we obtain some geometrical meanings of new invariants

along the curve on the hypersurface. We also give the relationships between the Frenet frame curvatures and Darboux

frame curvatures in E4 . Finally, we compute the expressions of the new invariants of a Frenet curve lying on an implicit

hypersurface.
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1. Introduction

In differential geometry, frame fields constitute an important tool while studying curves and surfaces. The most

familiar frame fields are the Frenet–Serret frame along a space curve, and the Darboux frame along a surface

curve. In Euclidean 3-space, the Darboux frame is constructed by the velocity of the curve and the normal

vector of the surface whereas the Frenet–Serret frame is constructed from the velocity and the acceleration of the

curve. Expressing the derivatives of these frames’ vector fields in terms of the vector fields themselves includes

some real valued functions. These functions are called the curvature and the torsion for the Frenet–Serret frame,

and the normal curvature, the geodesic curvature, and the geodesic torsion for the Darboux frame [2,6–8,10].

The generalizations of the Frenet–Serret frame into higher dimensional spaces are well known. However, the

generalization of the Darboux frame even into 4-space is not available (in the literature, we do not come across

any work that extends the above three curvatures of a surface curve in E3 into the hypersurface curve in E4 ).

In this paper, we construct a frame field (in which the first three vectors span the tangent space of the

hypersurface along the curve) along a Frenet curve lying on an oriented hypersurface, and call this new frame

field an “extended Darboux frame field” (we think that this extension will be a useful tool for studying curves on

hypersurfaces in E4 ). Later, we obtain the derivative equations of this new frame field and give the geometrical

meanings of the new curvatures of the curve with respect to the hypersurface. Finally, the expressions of our

new curvatures are obtained for a curve lying on hypersurfaces defined by implicit equations. By using the

obtained expressions for the new invariants, an example is also presented.
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2. Preliminaries

2.1. Darboux frame in E3

Let S ⊂ E3 be an oriented surface and γ : I ⊂ R → S be a unit speed curve. Let T denote the unit tangent

vector field of γ and U denote the unit normal vector field of S restricted to the curve γ . Then the Darboux

frame field along γ is given by {T,V,U} , where V = U×T . Thus, we can express the derivatives according

to the arc-length of each vector field along the curve γ as [6] T′ = κgV + κnU,
V′ = −κgT+ τgU,
U′ = −κnT− τgV,

where κg, κn , and τg denote the geodesic curvature, the normal curvature, and the geodesic torsion of the curve

γ , respectively.

2.2. Curves on a hypersurface in E4

Definition 1 Let {e1, e2, e3, e4} be the standard basis of R4 . The ternary product (or vector product) of the

vectors x =
4∑

i=1

xiei , y =
4∑

i=1

yiei , and z =
4∑

i=1

ziei is defined by [5, 9]

x⊗ y ⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ .
The ternary product has the following properties [9]:

1) x⊗ y ⊗ z = −y ⊗ x⊗ z = y ⊗ z⊗ x

2) ⟨x,y ⊗ z⊗w⟩ = det{x,y, z,w}
3)

(
x+ y

)
⊗ z⊗w = x⊗ z⊗w + y ⊗ z⊗w

Let M ⊂ E4 denote a regular hypersurface and β : I ⊂ R → M be a unit speed curve. If {t,n,b1,b2}
is the moving Frenet frame along β , then the Frenet formulas are given by [4]

t′ = k1n,
n′ = −k1t+ k2b1,
b′
1 = −k2n+ k3b2,

b′
2 = −k3b1,

(1)

where t,n,b1 , and b2 denote the unit tangent, the principal normal, the first binormal, and the second binormal

vector fields; k1, k2, k3 are the curvature functions of the curve β .

Theorem 1 Let α : I → E4 be an arbitrary-speed regular curve. Then the Frenet vectors of the curve are given

by [1]

t =
α̇

||α̇||
, b2 =

α̇⊗ α̈⊗ ...
α

||α̇⊗ α̈⊗ ...
α ||

, b1 =
b2 ⊗ α̇⊗ α̈

||b2 ⊗ α̇⊗ α̈||
, n =

b1 ⊗ b2 ⊗ α̇

||b1 ⊗ b2 ⊗ α̇||
(2)
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and the curvatures of the curve are given by

k1 =
⟨n, α̈⟩
||α̇||2

, k2 =
⟨b1,

...
α⟩

||α̇||3k1
, k3 =

⟨b2,
....
α ⟩

||α̇||4k1k2
, (3)

where “⟨, ⟩” denotes the scalar product.

Definition 2 A unit speed curve β : I → En of class Cn is called a Frenet curve if the vectors β′(s), β′′(s), ..., β(n−1)(s)

are linearly independent at each point along the curve.

3. The extended Darboux frame field

3.1. The construction of the extended Darboux frame field

Let M be an orientable hypersurface oriented by the unit normal vector field N in E4 and β be a Frenet curve

of class Cn (n ≥ 4) with arc-length parameter s lying on M . We denote the unit tangent vector field of the

curve by T , and denote the hypersurface unit normal vector field restricted to the curve by N , i.e.

T(s) = β′(s) and N(s) = N(β(s)).

We can construct the extended Darboux frame field along the Frenet curve β as follows:

Case 1. If the set {N,T, β′′} is linearly independent, then using the Gram–Schmidt orthonormalization method

gives the orthonormal set {N,T,E} , where

E =
β′′ − ⟨β′′,N⟩N

||β′′ − ⟨β′′,N⟩N||
. (4)

Case 2. If the set {N,T, β′′} is linearly dependent, i.e. if β′′ is in the direction of the normal vector N ,

applying the Gram–Schmidt orthonormalization method to {N,T, β′′′} yields the orthonormal set {N,T,E} ,
where

E =
β′′′ − ⟨β′′′,N⟩N− ⟨β′′′,T⟩T

||β′′′ − ⟨β′′′,N⟩N− ⟨β′′′,T⟩T||
. (5)

In each case, if we define D = N ⊗ T ⊗ E , we have four unit vector fields T,E,D , and N , which are mutually

orthogonal at each point of β . Thus, we have a new orthonormal frame field {T,E,D,N} along the curve β

instead of its Frenet frame field. It is obvious that E(s) and D(s) are also tangent to the hypersurface M for

all s . Thus, the set {T(s),E(s),D(s)} spans the tangent hyperplane of the hypersurface at the point β(s). We

call these new frame fields

“extended Darboux frame field of first kind” or in short “ED-frame field of first kind”

in case 1,

and

“extended Darboux frame field of second kind” or in short “ED-frame field of second kind”

in case 2, respectively.

Remark 1 The Darboux frame field {T,V,U} along the Frenet curve γ in 3-space can also be constructed by

the method explained in Case 1 and Case 2 depending on the linear independency of {U,T, γ′′} .
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Remark 2 If a Frenet curve β parametrized by arc-length s lies in a hyperplane with the unit normal vector

N , we may write ⟨β(s) − β(0),N⟩ = 0 . Thus, we have ⟨β′(s),N⟩ = 0 , ⟨β′′(s),N⟩ = 0 , ⟨β′′′(s),N⟩ = 0 , i.e.

Case 1 is valid. If we substitute ⟨β′′(s),N⟩ = 0 into (4), we obtain E(s) = n(s) . Moreover, since β′, β′′, β′′′ are

perpendicular to N , using (2) we get N and b2 are parallel. Hence, if we take N = b2 , we obtain D(s) = b1(s) ,

i.e. ED-frame field of first kind coincides with the Frenet frame.

Remark 3 If a Frenet curve β parametrized by arc-length s is a geodesic on a hypersurface, by the proper

orientiation of the hypersurface with N(s) = n(s) , Case 2 is valid. In this case, since β′′ = k1n , substituting

β′′′ = −k21t+ k′1n+ k1k2b1 into (5) yields E ∥ b1 . If we take E(s) = b1(s) , we obtain D(s) = b2(s) , i.e. the

frame {T,E,D,N} coincides with the frame {T,b1,b2,n} .

3.2. The derivative equations

Let us now express the derivatives of these vector fields in terms of themselves in each case. Since {T,E,D,N}
is orthonormal we have

T′ = ⟨T′,E⟩E + ⟨T′,D⟩D + ⟨T′,N⟩N,
E′ = ⟨E′,T⟩T + ⟨E′,D⟩D + ⟨E′,N⟩N,
D′ = ⟨D′,T⟩T + ⟨D′,E⟩E + ⟨D′,N⟩N,
N′ = ⟨N′,T⟩T + ⟨N′,E⟩E + ⟨N′,D⟩D.

(6)

Case 1. In this case, ED-frame field is first kind. Since we have

E =
β′′ − ⟨β′′,N⟩N

||β′′ − ⟨β′′,N⟩N||
=

T′ − ⟨T′,N⟩N
||T′ − ⟨T′,N⟩N||

,

we get

T′ = ||T′ − ⟨T′,N⟩N||E+ ⟨T′,N⟩N

i.e. ⟨T′,D⟩ = 0.

Case 2. In this case, ED-frame field is second kind. Thus {N,T, β′′} is linearly dependent and

E =
β′′′ − ⟨β′′′,N⟩N− ⟨β′′′,T⟩T

||β′′′ − ⟨β′′′,N⟩N− ⟨β′′′,T⟩T||
. (7)

The linear dependency of {N,T, β′′} gives β′′ = λN , that is, ⟨T′,E⟩ = ⟨T′,D⟩ = 0. Moreover, if we substitute

β′′′ = λ′N+ λN′ into (7), we obtain ⟨N′,D⟩ = 0.

We denote

⟨E′,N⟩ = τ1g , ⟨D′,N⟩ = τ2g (8)

and call τ ig the geodesic torsion of order i . Similarly, we put

⟨T′,E⟩ = κ1g, ⟨E′,D⟩ = κ2g (9)

and define κig as the geodesic curvature of order i .

1631
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Lastly, if we use ⟨T′,N⟩ = κn , we obtain the differential equations of ED− frame fields in matrix notation
as

Case 1:


T′

E′

D′

N′

 =


0 κ1g 0 κn

−κ1g 0 κ2g τ1g
0 −κ2g 0 τ2g

−κn −τ1g −τ2g 0




T
E
D
N

 , (10)

Case 2:


T′

E′

D′

N′

 =


0 0 0 κn
0 0 κ2g τ1g
0 −κ2g 0 0

−κn −τ1g 0 0




T
E
D
N

 . (11)

3.3. Geometrical interpretations

Now let us investigate the geometrical interpretations of the real valued functions κn , κ
1
g , κ

2
g , τ

1
g , τ

2
g .

3.3.1. κn , κ
1
g and their geometrical interpretations

It is obvious from its definition that κn = ⟨T′,N⟩ is the normal curvature of the hypersurface in the direction

of the tangent vector T in each case. Hence, β is an asymptotic curve if and only if κn = 0 along β .

The following result can be easily seen according to the corollary 3.1 given by [3]:

Theorem 2 Let β(s) be a unit-speed curve on an oriented hypersurface M in Euclidean 4-space, and M1 , M2

be the hyperplanes at β(s0) ∈ M determined by {T(s0),E(s0),N(s0)} and {T(s0),D(s0),N(s0)} , respectively.
Then the first curvature, at the point β(s0) , of the intersection curve of the hypersurfaces M , M1 , and M2

is |κn(s0)| , where κn is the normal curvature of the hypersurface M in the direction of the tangent vector T .

Theorem 3 Let β(s) be a unit-speed curve on an oriented hypersurface M in Euclidean 4-space. If α denotes

the orthogonal projection of the curve β onto the tangent hyperplane at the point β(s0) , then the first curvature

of the projection curve α is given by kα1 (s0) = |κ1g(s0)| .

Proof Since α denotes the orthogonal projection curve of β onto the tangent hyperplane at β(s0), we may

write
α(s) = β(s)− ⟨β(s)− β(s0),N(s0)⟩N(s0).

Differentiating both sides of the last equation with respect to s yield

α′(s0) = T(s0),

α′′(s0) = κ1g(s0)E(s0),

α′′′(s0) =
{
−(κ1g)

2(s0)− (κn)
2(s0)

}
T(s0)

+
{
(κ1g)

′(s0)− κn(s0)τ
1
g (s0)

}
E(s0)

+
{
κ2g(s0)κ

1
g(s0)− κn(s0)τ

2
g (s0)

}
D(s0)

at the point α(s0) = β(s0). Hence, using Theorem 1 gives the result as we desired. 2
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Theorem 4 Let β(s) be a unit-speed asymptotic curve on an oriented hypersurface M in Euclidean 4-space.

If γ denotes the orthogonal projection of the curve β onto the hyperplane determined by {T(s0),E(s0),N(s0)}
at the point β(s0) , then the first curvature of γ is given by kγ1 (s0) = |κ1g(s0)| .

Proof The proof can be given similar to the proof of Theorem 3. 2

Now let us consider the moving Frenet frame {T,n,b1,b2} along β . Since n , b1 , b2 , E , D , N are

perpendicular to T , we may write n
b1

b2

 =

 cosϕ1 cosϕ2 cosϕ3
cosψ1 cosψ2 cosψ3

cos θ1 cos θ2 cos θ3

 E
D
N

 .
Using the orthogonality of above 3× 3 coefficient matrix, we get E

D
N

 =

 cosϕ1 cosψ1 cos θ1
cosϕ2 cosψ2 cos θ2
cosϕ3 cosψ3 cos θ3

 n
b1

b2

 . (12)

Hence, using Frenet formula T′ = k1n we obtain

κ1g = ⟨T′,E⟩ = k1 cosϕ1, κn = ⟨T′,N⟩ = k1 cosϕ3. (13)

3.3.2. τ1g , τ
2
g , κ

2
g and their geometrical interpretations

It is clear that the curve β lying on M is a line of curvature if and only if

τ1g (s) = τ2g (s) = 0, in Case 1.

On the other hand, since we have τ1g = ⟨E′,N⟩ , (12) gives us

τ1g =

⟨
d

ds

{
(cosϕ1)n+ (cosψ1)b1 + (cos θ1)b2

}
, (cosϕ3)n+ (cosψ3)b1 + (cos θ3)b2

⟩
.

Thus, by using the Frenet formulas for β , we get the geodesic torsion of order 1 as

τ1g = −ϕ′1 sinϕ1 cosϕ3 − ψ′
1 sinψ1 cosψ3 − θ′1 sin θ1 cos θ3

+k2(cosϕ1 cosψ3 − cosψ1 cosϕ3) + k3(cosψ1 cos θ3 − cos θ1 cosψ3). (14)

Similarly, for the geodesic torsion of order 2 and the geodesic curvature of order 2, we obtain

τ2g = −ϕ′2 sinϕ2 cosϕ3 − ψ′
2 sinψ2 cosψ3 − θ′2 sin θ2 cos θ3

+k2(cosϕ2 cosψ3 − cosψ2 cosϕ3) + k3(cosψ2 cos θ3 − cos θ2 cosψ3) (15)

and

κ2g = −ϕ′1 sinϕ1 cosϕ2 − ψ′
1 sinψ1 cosψ2 − θ′1 sin θ1 cos θ2

+k2(cosϕ1 cosψ2 − cosψ1 cosϕ2) + k3(cosψ1 cos θ2 − cos θ1 cosψ2), (16)

respectively. Therefore, τ1g , and κ2g have the following geometrical interpretations for a geodesic curve.
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Theorem 5 Let β be a unit-speed geodesic curve parametrized by arc-length s on an oriented hypersurface M
in Euclidean 4-space. Let {T,n,b1,b2} and {T,E,D,N} denote the Frenet frame field and ED-frame field of

β , respectively. Then we have

κ2g = k3, τ1g = −k2, κn = k1,

where ki (i = 1, 2, 3) denotes the i-th curvature functions of β .

Proof Since β is a geodesic curve on M , the curvature vector is perpendicular to the tangent hyperplane,

i.e. n and N are linearly dependent (Case 2 is valid). Thus, if we use Remark 3 we have

ϕ1(s) = ϕ2(s) = ψ2(s) = ψ3(s) = θ1(s) = θ3(s) =
π

2
, ϕ3(s) = ψ1(s) = θ2(s) = 0

along β . Substituting these equations into (13), (14), and (16) yields the desired results. 2

Theorem 6 Let β be a unit-speed asymptotic curve parametrized by arc-length s on an oriented hypersurface

M in Euclidean 4-space. Let {T,n,b1,b2} and {T,E,D,N} denote the Frenet frame field and ED-frame field

of β , respectively. Then we have

κ1g = k1, κ2g = k2 cosφ, τ1g = −k2 sinφ, τ2g = k3 +
dφ

ds
,

where φ denotes the angle between D and b1 , and ki (i = 1, 2, 3) denotes the i-th curvature functions of β .

Proof Since β is an asymptotic curve on M , we have κn = 0, i.e. t′ = k1n = κ1gE . In this case n and E

are linearly dependent (Case 1 is valid). Thus, we obtain

ϕ1(s) = 0, ϕ2(s) = ϕ3(s) = ψ1(s) = θ1(s) =
π

2

along β . Furthermore, since in this particular case D,N,b1,b2 lie in a plane, we also have

ψ2(s) = θ3(s) = φ(s), θ2(s) =
π

2
− φ(s), ψ3(s) =

π

2
+ φ(s).

Substituting these equations into (13)–(16) yields the desired results. 2

As a consequence of the above theorem, we may give the following corollaries:

Corollary 1 Let β be an asymptotic curve on M . If φ(s) = constant , then the geodesic torsion of order 2 of

β is equal to its third curvature, i.e. τ2g = k3 .

Corollary 2 Let β be an asymptotic curve on M . If φ(s) = 0 , then we obtain κ1g = k1, κ
2
g = k2, τ

1
g = 0, τ2g =

k3 , i.e. the ED-frame field of first kind along β coincides with the Frenet frame.

Corollary 3 Let β be an asymptotic curve on M . If φ(s) = −π/2 , then the geodesic torsion of order 1,2 of

β is equal to its second and third curvatures, respectively, i.e. τ1g = k2, τ
2
g = k3 .

Corollary 4 Let β be an asymptotic curve on M . In this case, we have
(
τ1g
)2

+
(
κ2g

)2
= (k2)

2
.
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4. Computations of new invariants on implicit hypersurfaces

Let us consider a hypersurface M given by its implicit equation f(x, y, z, w) = 0, and let β(s) = (x(s), y(s), z(s), w(s))

be a Frenet curve of class Cn (n ≥ 4) on M . Then the unit normal vector field along β is given by

N(s) = ∇f
||∇f || (s). Moreover, we have [1]

⟨∇f, β′⟩ = 0, (17)

⟨∇f, β′′⟩ = −β′Hf (β
′)
t
, (18)

⟨∇f, β′′′⟩ = −3β′Hf (β
′′)

t − β′ d(Hf )

ds
(β′)

t
, (19)

where β′ = [x′ y′ z′ w′] , β′′ = [x′′ y′′ z′′ w′′] , β′′′ = [x′′′ y′′′ z′′′ w′′′] , ∇f = [fx fy fz fw] , and

Hf =


fxx fxy fxz fxw
fyx fyy fyz fyw
fzx fzy fzz fzw
fwx fwy fwz fww

 ,
d (Hf )

ds
=

[
∂Hf

∂x (β′)
t · · · ∂Hf

∂w (β′)
t

]
,

∂Hf

∂x
=


fxxx fxyx fxzx fxwx

fyxx fyyx fyzx fywx

fzxx fzyx fzzx fzwx

fwxx fwyx fwzx fwwx

 , · · ·, ∂Hf

∂w
=


fxxw fxyw fxzw fxww

fyxw fyyw fyzw fyww

fzxw fzyw fzzw fzww

fwxw fwyw fwzw fwww

 .
We may also write

(∇f)′ = β′Hf , (20)

(∇f)′′ = β′′Hf + β′ d(Hf )

ds
. (21)

Let us now compute the expressions of the new invariants of β with respect to the hypersurface in each case.

4.1. Extended Darboux frame field of first kind (Case 1)

4.1.1. The expressions for κ1g and κn

Since κ1g = ⟨T′,E⟩ , κn = ⟨T′,N⟩ and E = T′−⟨T′,N⟩N
||T′−⟨T′,N⟩N|| , we obtain

κ1g =

⟨
T′,

T′ − ⟨T′,N⟩N
||T′ − ⟨T′,N⟩N||

⟩
=

√
⟨T′,T′⟩ − ⟨T′,N⟩2

or

κ1g =

{
β′′(β′′)t − 1

||∇f ||2
(
β′Hf (β

′)t
)2

} 1
2

(22)

and

κn = ⟨T′,N⟩ = 1

||∇f ||
⟨β′′,∇f⟩ = −1

||∇f ||
β′Hf (β

′)t. (23)
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4.1.2. The expression for τ1g

If we differentiate E = T′−⟨T′,N⟩N
||T′−⟨T′,N⟩N|| with respect to s , we get

E′ =
1

||T′ − ⟨T′,N⟩N||

(
T′′− < T′′,N > N− < T′,N′ > N− < T′,N > N′

)
(24)

+
d

ds

(
1

||T′ − ⟨T′,N⟩N||

)(
T′ − ⟨T′,N⟩N

)
.

Thus, we deduce

τ1g = ⟨E′,N⟩ = −⟨T′,N′⟩
||T′ − ⟨T′,N⟩N||

or

τ1g =
−1

||T′ − ⟨T′,N⟩N||

⟨
T′,

(∇f)′

||∇f ||
− 1

||∇f ||3
⟨∇f, (∇f)′⟩∇f

⟩
.

Hence, in matrix notation we have

τ1g = −1

ξ

{
1

||∇f ||
β′Hf (β

′′)t +
1

||∇f ||3
(
β′Hf (∇f)t

)(
β′Hf (β

′)t
)}

, (25)

where

ξ =

{
β′′(β′′)t − 1

||∇f ||2
(
β′Hf (β

′)t
)2

} 1
2

.

4.1.3. The expression for κ2g

If we use (24), and ⟨T′,D⟩ = 0, we obtain

κ2g = ⟨E′,D⟩ = 1

ξ

(
⟨T′′,D⟩ − ⟨T′,N⟩⟨N′,D⟩

)
. (26)

On the other hand, substituting E = T′−⟨T′,N⟩N
||T′−⟨T′,N⟩N|| into D = N⊗ T⊗ E yields D = ξ−1N⊗ T⊗ T′ . Then from

(26) we have the expression for the geodesic curvature of order 2 as

κ2g =
1

ξ2||∇f ||


∣∣∣∣∣∣∣∣
x′ y′ z′ w′

x′′ y′′ z′′ w′′

x′′′ y′′′ z′′′ w′′′

fx fy fz fw

∣∣∣∣∣∣∣∣+
1

||∇f ||2
β′Hf (β

′)t

∣∣∣∣∣∣∣∣
x′ y′ z′ w′

x′′ y′′ z′′ w′′

a b c d
fx fy fz fw

∣∣∣∣∣∣∣∣
 , (27)

where (∇f)′ = α′Hf = [a b c d] .

4.1.4. The expression for τ2g

Since τ2g = ⟨D′,N⟩ = −⟨N′,D⟩ = −
⟨

(∇f)′

||∇f || −
1

||∇f ||3 ⟨∇f, (∇f)
′⟩∇f,D

⟩
, we obtain

τ2g =
−1

||∇f ||

⟨
(∇f)′,D

⟩
=

−1

ξ||∇f ||2

∣∣∣∣∣∣∣∣
x′ y′ z′ w′

x′′ y′′ z′′ w′′

a b c d
fx fy fz fw

∣∣∣∣∣∣∣∣ . (28)
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4.2. Extended Darboux frame field of second kind (Case 2)

4.2.1. The expression for κn and κ2g

The normal curvature κn = ⟨T′,N⟩ is obtained by (23).

On the other hand, since β′′ = λN in Case 2, from (5) we obtain

E =
N′ − ⟨N′,T⟩T

||N′ − ⟨N′,T⟩T||

and

E′ =
1

||N′ − ⟨N′,T⟩T||

(
N′′− < N′′,T > T− < N′,T′ > T− < N′,T > T′

)

+
d

ds

(
1

||N′ − ⟨N′,T⟩T||

)(
N′ − ⟨N′,T⟩T

)
.

Thus, since ⟨T′,D⟩ = 0, ⟨N′,D⟩ = 0 in Case 2 we find

κ2g = ⟨E′,D⟩ = ⟨N′′,D⟩
||N′ − ⟨N′,T⟩T||

=
−⟨N′,D′⟩

||N′ − ⟨N′,T⟩T||
=

−1

µ

⟨
N′,N⊗ T⊗ N′′

⟩
,

where

µ = ||N′ − ⟨N′,T⟩T||2 =
⟨
N′,N′

⟩
−

⟨
N′,T

⟩2

.

If we substitute N′ = (∇f)′

||∇f || −
1

||∇f ||3

⟨
∇f, (∇f)′

⟩
∇f into the last equations, we obtain

κ2g =
−1

µ||∇f ||3
⟨
(∇f)′,∇f ⊗ T⊗ (∇f)′′

⟩
or

κ2g =
1

µ||∇f ||3

∣∣∣∣∣∣∣∣
x′ y′ z′ w′

fx fy fz fw
a b c d
p q r s

∣∣∣∣∣∣∣∣ , (29)

and

µ =
1

||∇f ||2
{⟨

(∇f)′, (∇f)′
⟩
− 1

||∇f ||2
⟨
∇f, (∇f)′

⟩2

−
⟨
(∇f)′,T

⟩2}

=
1

||∇f ||2
{
β′Hf (β

′Hf )
t − 1

||∇f ||2
(
β′Hf (∇f)t

)2 − (
β′Hf (β

′)t
)2}

, (30)

where (∇f)′ = [a b c d] , (∇f)′′ = β′′Hf + β′ d(Hf )
ds = [p q r s] .
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4.2.2. The expression for τ1g

Similarly, for the geodesic torsion of order 1, we may write

τ1g = ⟨E′,N⟩ = 1

||N′ − ⟨N′,T⟩T||

(⟨
N′′,N

⟩
+

⟨
T′,N

⟩2)

= −
{⟨

N′,N′
⟩
−
⟨
N′,T

⟩2} 1
2

or we have

τ1g = − 1

||∇f ||

{
β′Hf (β

′Hf )
t − 1

||∇f ||2
(
β′Hf (∇f)t

)2 − (
β′Hf (β

′)t
)2} 1

2

. (31)

5. Example

Example 1 Let us consider the unit-speed curve

β(s) =

(
cos

(
s√
5

)
, sin

(
s√
5

)
, cos

(
2s√
5

)
, sin

(
2s√
5

))

lying on the hypersphere M...x2+y2+z2+w2 = 2 . The unit normal vector field of M along β is N(s) = 1√
2
β(s)

and the unit tangent vector field of β is

T(s) =

(
− 1√

5
sin

(
s√
5

)
,
1√
5
cos

(
s√
5

)
,− 2√

5
sin

(
2s√
5

)
,
2√
5
cos

(
2s√
5

))
.

Since the curvature vector field

T′(s) = β′′(s) =

(
−1

5
cos

(
s√
5

)
,−1

5
sin

(
s√
5

)
,−4

5
cos

(
2s√
5

)
,−4

5
sin

(
2s√
5

))
is linear independent with N(s) , Case 1 is valid. Thus, if we apply the method given in Case 1, we obtain

E(s) =

(
1√
2
cos

(
s√
5

)
,
1√
2
sin

(
s√
5

)
,− 1√

2
cos

(
2s√
5

)
,− 1√

2
sin

(
2s√
5

))
,

D(s) =

(
2√
5
sin

(
s√
5

)
,− 2√

5
cos

(
s√
5

)
,− 1√

5
sin

(
2s√
5

)
,
1√
5
cos

(
2s√
5

))
.

On the other hand, if we use the formulas (22), (23), (25), (27), and (28), the geodesic curvatures of order 1,

2 are obtained as κ1g(s) =
3

5
√
2
, κ2g(s) =

−4
5
√
2
, the geodesic torsions of order 1, 2 are τ1g (s) = τ2g (s) = 0 , and the

normal curvature of β is κn(s) =
−1√
2
. As expected, β is a line of curvature on M .

6. Conclusion

The Darboux frame field in Euclidean 3-space E3 is extended into E4 . By using Gram–Schmidt orthonormal-

ization, we construct the extended Darboux frame field along a Frenet curve lying on an oriented hypersurface.

We obtain some geometrical meanings of new invariants of the new frame field. The relationships between the
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new invariants according to the hypersurface and the curvatures according to E4 are given. Finally, the expres-

sions of the new invariants of a Frenet curve lying on an implicit hypersurface are obtained. These expressions

are given in matrix notation to shorten the formulas. Computing the expressions of these new invariants for a

curve lying on a parametric hypersurface is a future work.
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