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Abstract: In this paper we concern with asymptotic stability, synchronization control and numerical solution of incommensurate order
fractional Shimizu–Morioka dynamical system. Firstly we prove the existence and uniqueness of the solutions via a new theorem.
After finding steady–state points, we obtain necessary and sufficient conditions for the asymptotic stability of the Shimizu–Morioka
system. We also study the synchronization control where we employ master–slave synchronization scheme. Finally, employing Adams–
Bashforth–Moulton’s technique we solve the Shimizu–Morioka system numerically. To the best of our knowledge, there exist not any
study about analysis of chaotic dynamics of fractional Shimizu–Moriokasystem in the literature. In this sense the present paper is going
to be a totally new contribution and highly useful research for synthesis ofa nonlinear system of fractional equations.
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1 Introduction

Albeit there exist a vast amount of research work
regarding the analysis of chaotic structures and solutions
of fractional order Chua, Lorenz, Lü, Chen and R̈ossler
systems, there exists not any study about analysis of
fractional Shimizu–Morioka dynamical system. In this
paper our major goals are to study asymptotic stability,
synchronization control and numerical solution of
fractional Shimizu–Morioka dynamical system.
Shimizu–Morioka system is defined as

dx

dt
= y

dy

dt
= x− ay − xz (1)

dz

dt
= −bz + x2

wherex, y, z are the state variables,a ∈ R andb ∈ R+

are parameters. Replacing the standard time derivative at

1 with a fractional time derivative of orderαi ∈ (0, 1],
i = 1, 2, 3, the incommensurate fractional order Shimizu–
Morioka system is defined as

dα1x

dtα1
= y

dα2y

dtα2
= x− ay − xz

dα3z

dtα3
= −bz + x2

Let us remember that ann−dimensional fractional
dynamical system

dαX(t)

dtα
= H(t,X(t)), X(0) = X0,

where X(t) = (x1(t), · · · , xn(t))
T and

α = (α1, · · · , αn), αi ∈ (0, 1) for i = 1, 2, · · · , n is said
to be a commensurate order ifα1 = α2 = · · · = αn,
otherwise it is said to be an incommensurate order. In this
paper we concern with both of the commensurate and
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incommensurate order fractional Shimizu–Morioka
systems.

Structure of this paper is in the following way. Section
2 reviews the fundamental concepts in the fractional
calculus. In Section 3 we prove existence and uniqueness
of solutions via anew theorem. In the section 4 we study
stability analysis of the fractional Shimizu–Morioka
system where we find the characteristic function of the
Jacobian matrix in terms of parametersa andb. Selecting
some different values fora and b, we obtain stability
conditions. In the Section 5 we study synchronization
control where we employ a technique namely
master–slave synchronization controller. In the Section 6
we solve the fractional Shimizu–Morioka dynamical
system numerically exploiting
Adams–Bashforth–Moulton method. Finally we complete
the paper with an overview of the present study.

2 Fractional calculus

Fractional calculus is one of the most popular calculus
types having a vast range of applications in many
different scientific and engineering disciplines. Order of
the derivatives in the fractional calculus might be any reel
number which separates the fractional calculus from the
ordinary calculus where the derivatives are allowed to be
only natural numbers. Fractional calculus is a highly
efficient and useful tool in the modeling of many sorts of
scientific phenomena including image processing,
earthquake engineering, biomedical engineering,
computational fluid mechanics and Physics. Fundamental
concepts of fractional calculus and applications of it to
different research areas can be seen in the references
[1]–[2] and [12]–[14].

In this section, we briefly overview the some
fundamental concepts of fractional calculus. As we
mentioned in the introductory part, orders of derivatives
and integrals in fractional calculus might be at any real
number. The most popular definitions of a fractional
derivative of a function are Riemann–Liouville,
Grunwald–Letnikow, Caputo and Generalized functions.
In this paper Caputo’s definition of fractional
differentiation will be employed.
Definition. A real functionf(x), x > 0, is said to be in
the spaceCρ, ρ ∈ R if there exists a real number(p >
ρ), such thatf(x) = xpf1(x) for a continuous function
f1(x) ∈ C[0,∞).
Definition. The Riemann–Liouville fractional integral
operator of orderα ≥ 0 of a functionf ∈ Cρ, ρ ≥ −1, is
defined as

Jv
0 f(x) =

1

Γ (v)

∫ x

0

(x− t)
v−1

f(t)dt, v > 0,

J0f(x) = f(x).

It has the following properties:

Forf ∈ Cρ, ρ ≥ −1, α, β ≥ 0 andγ > 1 :

i.)JαJβf(x) = Jα+βf(x),

ii.)JαJβf(x) = JβJαf(x),

iii.)Jαxγ = Γ (γ+1)
Γ (α+γ+1)x

α+γ .

Next we present the Caputo sense derivative.
Definition. The fractional derivative off(x) in the Caputo
sense is defined as

Dv
∗f(x) =

1

Γ (m− v)

∫ x

0

(x− t)m−v−1f (m)(t)dt,

for m− 1 < v < m, m ∈ N, x > 0, f ∈ Cm
−1.

Definition. For m to be the smallest integer that exceeds
α, the Caputo time-fractional derivative operator of order
α > 0 is defined asDα

∗tu(x, t) =





1
Γ (m−α)

∫ t

0
(t− ξ)m−α−1 ∂mu(x,ξ)

∂ξm dξ,m− 1 < α < m,

∂mu(x,t)
∂tm , α = m ∈ N

and the space-fractional derivative operator of orderβ > 0
is defined asDα

∗xu(x, t) =





1
Γ (m−β)

∫ x

0
(x− θ)m−β−1 ∂mu(θ,t)

∂θm dθ,m− 1 < β < m,

∂mu(x,t)
∂xm , β = m ∈ N.

Lemma. If m − 1 < α < m, m ∈ N and f ∈ Cm
ρ , ρ ≥

−1, then

Dα
∗ J

αf(x) = f(x),

JαDv
∗f(x) = f(x)−∑m−1

k=0 fk(0+)x
k

k! , x > 0.

The Caputo fractional derivative is considered here
because it allows traditional initial and boundary
conditions to be included in the formulation of the
problem.

3 Existence of solutions

While solving an equation or system of equations, the
first question to ask is about the existence and uniqueness
of solutions. In this section we will prove that the
commensurate order fractional Shimizu–Morioka system
has unique solution and point that the same ideas applies
for the incommensurate case as well.
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Theorem 1 ([6]). Suppose thatD = [0, T ∗]×[x0−ρ, x0+
ρ] with someT ∗ > 0 and someρ > 0. Let f : D → R be
a continuous function. Define

T := min

{
T ∗,

(
ρΓ (α+ 1)

||f ||∞

)1/α
}
, (2)

then there exists a functionx : [0, T ] → R which solves
the initial value problem

dαx(t)

dtα
= f(t, x(t)) with x(0) = x0, α ∈ (0, 1). (3)

Theorem 2 ([6]). Assume thatD = [0, T ∗]× [x0−ρ, x0+
ρ] with someT ∗ > 0 and someρ > 0. Let f : D → R

be a bounded function that satisfies the Lipschitz condition
with respect to second component. Then, there exist only
one functionx : [0, T ] → R which solves the initial value
problem (3) whereT is defined at (2).

Let α := α1 = α2 = α3 ∈ (0, 1]. Define
X := (x, y, z)T . It is not hard to show that one can
express the commensurate order fractional
Shimizu–Morioka system as

dαX

dtα
= AX+ xBX, (4)

where

A =



0 1 a
1 −a 0
0 0 −b


 , B =



0 0 0
0 0 −1
1 0 0


 . (5)

Theorem 3.Let 0 ≤ t ≤ T for someT ∈ R+. The initial
value problem of commensurate order fractional
Shimizu–Morioka dynamical system represented as in (4)
with X(0) = X0 has a unique solution.

Proof. DefineH(X(t)) := AX(t)+x(t)BX(t), whereA
andB are defined at (5). It is clear thatH(X(t)) defined
in this way is a continuous and bounded function on the
interval [x0 − ρ, x0 + ρ] for someρ ∈ R+. Now we show
thatH(X(t)) satisfies the Lipschitz condition with respect
toX.

|H(X(t))−H(Y(t))| = |AX(t) + x(t)BX(t)−
AY(t)− y(t)BY(t)| ≤ ||A|||X(t)−Y(t)|+

||B||(|X(t)|+ |y(t)|)|X(t)−Y(t)|
≤ K|X(t)−Y(t)|,

s whereK = ||A|| + ||B||(2|X0| + ρ) > 0, Y(t) ∈ R
3,

|| · || and | · | represent some suitable matrix and vector
norms, respectively. This proves thatH(X(t)) satisfies
the Lipschitz condition with respect toX(t). Therefore,
we conclude via Theorem 2 that the solution of the initial
value problem of commensurate order fractional
Shimizu–Morioka dynamical system uniquely exists.

4 Stability analysis

In this section we study stability analysis of
incommensurate order fractional Shimizu–Morioka
system. Let us again point that the ideas could be applied
for the commensurate order case as well. We can write
the incommensurate order fractional Shimizu–Morioka
system once again as

dα1x

dtα1
= y

dα2y

dtα2
= x− ay − xz (6)

dα3z

dtα3
= −bz + x2

Let us notice that the concepts regarding the stability
analysis of fractional dynamical systems have some
differences with respect to the ones about deterministic
systems. Before we present a theorem including the
conditions for the asymtotic stability of a fractional
system, let us remaind that the steady–state points (or
fixed points or equilibrium points) of a fractional system
like Shimizu–Morioka system is obtained by letting the
right–hand side of the equation equal to the zero.
Therefore, we can see that the steady–state solutions of
the Shimizu–Morioka system are given by

E1 = (
√
b, 0, 1), E2 = (−

√
b, 0, 1) (7)

whereb ∈ R+.

Theorem 4. For n−dimensional incommensurate order
fractional dynamical systems, if all eigenvalues
(λ1, · · · , λn) of the Jacobian matrix of a steady–state
point satisfy

|arg(λi)| >
απ

2
, α = max(α1, · · · , αn), i = 1, · · · , n,

then, the fractional dynamical system is locally
asymptotically stable at the steady-state point.

This theorem is the most well–known theorem
regarding the stability analysis of fractional systems and
its similar versions and proofs might be seen, for instance,
at the references [3]–[6] amongst many others.

The Jacobian matrix of the fractional Shimizu–Morioka
system is given by

J =




0 1 0
1− z −a −x
2x 0 −b


 . (8)

Characteristic equation of the Jacobian matrixJ is
obtained by

Det(J − λI3×3) = 0 (9)
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whereI3×3 is the identity matrix. Having calculated (9) at
both of the equilibrium points given at (7) we obtain the
same characteristic equation:

CHeq(λ) = λ3 + (a+ b)λ2 + abλ+ 2b. (10)

Next our major goals are to make computational
discussions about the stability of the Shimizu–Morioka
system for different cases ofa andb.

Fora = b = 1, (10) reduces to

CHeq(λ) = λ3 + 2λ2 + λ+ 2 = 0. (11)

Roots (eigenvalues of Jacobian matrix) of (11) are given
by λ1 = −2, λ2 = i andλ3 = −i. Becausearg(λ1) = π,
arg(λ2) = π/2 and arg(λ3) = 3π/2, employing
Theorem 4, we can say that the system is asymptotically
stable at both of the steady-state points (7) for every
α ∈ (0, 1).

Fora = b = −1, (10) reduces to

CHeq(λ) = λ3 − 2λ2 + λ− 2 = 0. (12)

Thus, the eigenvalues of Jacobian matrix areλ1 = 2, λ2 =
i andλ3 = −i. Becausearg(λ1) = 0, arg(λ2) = π/2 and
arg(λ3) = 3π/2, using Theorem 4, we can say that at the
equilibrium points (7), the system will never be stable for
anyα ∈ (0, 1).

Fora = 0 andb = 1, (10) reduces to

CHeq(λ) = λ3 + λ2 ++2 = 0. (13)

Hence, the eigenvalues of Jacobian matrix are
λ1 = −1.6956, λ2 = 0.3478 + 1.0289i and
λ3 = 0.3478 − 1.0289i. Since arg(λ1) = π,
arg(λ2) = 1.8968 andarg(λ3) = −1.8968, exploiting
Theorem 4, we can say that the system is asymptotically
stable at both of the equilibrium points (7) for every
α ∈ (0, 1).

Let us notice that (10) is a cubic equation (or cubic
polynomial equation) having the parametersa andb. The
most well–known solution algorithm for cubic equations
are due to the G. Cardano and the solution of these types
of equations might be seen, for example, at [7]. Either
exploiting Cardano’s solution method or in the way that
we proceeded above, interested readers can keep making
computational solutions for different values ofa and b,
analyse the stability of fractional Shimizu–Morioka
system.

5 Synchronization control

Synchronization control is a significant and highly
useful concept in the research area of fractional
dynamical systems. The underlying idea of the
synchronization control for ann−dimensional fractional
dynamical system is to choose a suitable control function

u = (u1, u2, · · · , un)
T such that the states of the driving

system and response system are synchronized. In the
literature there are several different models for
synchronization control including master–slave,
complete, chaos, robust, Q.–S. schemes. In the present
paper for the synchronization of the incommensurate
order fractional Shimizu–Morioka system, we adopt
master–slave technique that can be briefly outlined as
follows.

Let α ∈ (0, 1). Consider

dαx(t)

dtα
= f(x(t)), (namely, master system)

and
dαy(t)

dtα
= g(y(t)) + u, (slave system)

wherex, y ∈ Rn denote the states and response systems,
respectively,f, g : Rn → Rn are the vector fields of the
state and response systems, respectively. As we shortly
mentioned above, the main goal of any synchronization
method is to choose an appropriate control function
u = (u1, · · · , un) such that

limt→∞||y(t)− x(t)|| = 0.

Because the fractional Shimizu–Morioka system is a
3-dimensional system, the master–slave synchronization
scheme employed at [8] might be described as follows.
The master system is

dαixi(t)

dtαi

= fi(x1, x2, x3), i = 1, 2, 3. (14)

Assuming that the slave system defined by

ẏi = fi(y1, y2, y3) + ui

is an integer order system withui, i = 1, 2, 3 are control
parameters. Now, having defined the controllers as

ui = vi + ẏi −
dαiyi(t)

dtαi

,

the slave system is converted into the system

dαiyi(t)

dtαi

= fi(y1, y2, y3) + vi, (15)

for i = 1, 2, 3. Defining the error functionsei := yi −
xi, i = 1, 2, 3 and subtracting (14) from (15), we obtain
the error system as

dαiei(t)

dtαi

= fi(y1, y2, y3)−fi(x1, x2, x3)+vi, i = 1, 2, 3.

(16)
Choosing

ui = fi(x1, x2, x3)− fi(y1, y2, y3) + aie1 + bie2 + cie3,
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for i = 1, 2, 3, the error system (16) can be written as

dαiei(t)

dtαi

= aie1 + bie2 + cie3, i = 1, 2, 3. (17)

Finally, selecting suitable constantsai, bi, ci, i = 1, 2, 3,
one can design a stabilizing controller for the
synchronization control.

Now we apply this procedure to the incommensurate
order fractional Shimizu–Morioka system (6).

The master system is given by

dα1x

dtα1
= y

dα2y

dtα2
= x− ay − xz (18)

dα3z

dtα3
= −bz + x2

The slave system is defined by

˙̃x = ỹ + u1

˙̃y = x̃− aỹ − x̃z̃ + u2 (19)

˙̃z = −bz̃ + x̃2 + u3

Defining

ui = vi +
˙̃
Xi −

dαiX̃i(t)

dtαi

,

whereX̃ := (x̃, ỹ, z̃)T , the slave system is transformed
into fractional system

dα1 x̃

dtα1
= ỹ + v1

dα2 ỹ

dtα2
= x̃− aỹ − x̃z̃ + v2 (20)

dα3 z̃

dtα3
= −bz̃ + x̃2 + v3

Defining the error functione = (e1, e2, e3) = (x̃ −
x, ỹ− y, z̃− z), and subtracting (18) from (20), we obtain
the error system as

dα1e1
dtα1

= e1 + v1

dα2e2
dtα2

= e1 − ae2 − x̃z̃ + xz + v2 (21)

dα3e3
dtα3

= −be3 + x̃2 + x2 + v3

The identities (21) are the most crucial steps for the
synchronization control. One can design many different
types of controllers easily for the stabilizing controllers
for synchronization control by selecting suitable
parameters at (21) which shows one of the powers of the
master–slave synchronization control technique.

6 Numerical solution

In this section we solve the incommensurate fractional
order Shimizu–Morioka system numerically employing a
highly well-known technique known as
Adams–Bashforth–Moulton numerical scheme. Interested
reader can read, for instance, [12] in conjunction with the
present paper to see furhter applications of this method to
some other nonlinear fractional systems. One can employ
some other numerical methods such as the ones presented
at [9]–[11] as well as Milne’s and Adomian
decomposition methods.

Now, firstly let us write the incommensurate fractional
order Shimizu–Morioka dynamical system once again.

dα1x

dtα1
= y

dα2y

dtα2
= x− ay − xz (22)

dα3z

dtα3
= −bz + x2

whereαi ∈ (0, 1], i = 1, 2, 3.

Having applied the Adams–Bashforth–Moulton
scheme to the Shimizu–Morioka system (22), we obtain
the following system of discrete equations.

xn+1 = x0 +
hα1

Γ (α1 + 2)
ypn+1 +

hα1

Γ (α1 + 2)

n∑

j=0

β1,j,n+1yj

yn+1 = y0 +
hα2

Γ (α2 + 2)

(
xp
n+1 − aypn+1 − xp

n+1z
p
n+1

)

+
hα2

Γ (α2 + 2)

n∑

j=0

β2,j,n+1(xj − ayj − xjzj)

zn+1 = z0 +
hα3

Γ (α3 + 2)

(
−bzpn+1 + x2p

n+1

)

+
hα3

Γ (α3 + 2)

n∑

j=0

β3,j,n+1(−bzj + x2
j ),
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where

xp
n+1 = x0 +

1

Γ (α1)

n∑

j=0

γ1,j,n+1yj

ypn+1 = y0 +
1

Γ (α2)

n∑

j=0

γ2,j,n+1(xj − ayj − xjzj)

zpn+1 = z0 +
1

Γ (α3)

n∑

j=0

γ3,j,n+1(−bzj + x2
j ),

whereβi,j,n+1 =







nαi+1 − (n − αi)(n + 1)αi , j = 0;
(n − j + 2)αi+1 + (n − j)αi+1 − 2(n − j + 1)αi+1, 1 ≤ j ≤ n;
1, j = n + 1.

γi,j,n+1 =
hαi

αi
((n− j + 1)αi − (n− j)αi) , 0 ≤ j ≤ n,

for i = 1, 2, 3.

7 Conclusion

In this paper we studied asymptotic stability,
synchronization control and numerical solution of
incommensurate fractional order Shimizu–Morioka
dynamical system. Firstly we proved the existence and
uniqueness of the solutions via a new theorem. After
finding steady–state points, we obtained necessary and
sufficient conditions for the asymptotic stability of the
Shimizu–Morioka system. We also concern with the
synchronization control where we employed master–slave
synchronization method. Finally, employing
Adams–Bashforth–Moulton’s scheme we solve the
Shimizu–Morioka system numerically.
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