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Abstract: In this paper we propose a new solution technique for numerical solution of fractional Benney equation, a fourth degree
nonlinear fractional partial differential equation with broad range of applications. The method could be described as a hybrid technique
which uses advantages of both wavelets and operational matrices. Having applied the present method, fractional Benney equation is
converted into a matrix equation, which is easy to solve. To the best of our knowledge, the fractional Benney equation has not been
solved with any numerical or analytical method in the literature. Solving this equation numerically and investigating the applicability
of the wavelets on this problem is the main goal of this paper. Haar wavelets and Caputo type fractional derivatives are employed in the
calculations. Computational results point the strength of Haar wavelets andfeasibility of the present solution algorithm.
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1. Introduction

Fractional calculus is one of the most popular calculus
types having a vast range of applications in many
different scientific and engineering disciplines. Order of
the derivatives in the fractional calculus might be any reel
number which separates the fractional calculus from the
ordinary calculus where the derivatives are allowed to be
only natural numbers. Fractional calculus is a highly
efficient and useful tool in the modeling of many sorts of
scientific phenomena including image processing,
earthquake engineering, biomedical engineering,
computational fluid mechanics and Physics. Fundamental
concepts of fractional calculus and applications of it to
different research areas can be seen in the references, [1],
[2], [8], [10], [13] and [14] (amongst many others).

In this paper we employ a hybrid technique which
uses advantages of both wavelets and fractional calculus
for the numerical solution of the fractional Benney
equation. The present numerical method could be
described as unification of wavelets with fractional
calculus which obtains the solution in a highly simple and
efficient manner. To the best of our knowledge, the
fractional Benney partial differential equation has not
been solved with the present method, solution of this
equation with a new method is the main goal of this
paper. Another important point to mention inhere is that
applicability of the wavelet techniques to the fractional

differential equations have not been studied in detail in
the literature. Therefore, investigating the applications of
wavelet based methods to the numerical solution of such a
high order and nonlinear partial differential equation shall
be a significant contribution to the subject.

Fractional calculus is a quite useful and significantly
important subject which usually involves challenging
problems, efficient solution algorithms, fast solvers and
high storage requirements. Nevertheless, a general
solution algorithm or technique which could be employed
at almost every sorts of problems has not yet been
established. Each solution method has been developed for
particular types of problems. As a consequence, a single
standard method for problems regarding fractional
calculus has not emerged. Therefore, finding reliable and
efficient solution techniques along with fast
implementation methods are useful and active research
areas. Some well known methods for the analytical and
numerical solutions of fractional differential and integral
equations might be listed as power series method [11],
differential transform method [3] and [9], homotopy
analysis method [4], variational iteration method [5] and
homotopy perturbation method [6]. Typical numerical
methods including collocation, finite differences and
elements are among the most popular numerical
techniques and detailed information about most of which
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can be obtained from the aforementioned references and
their own references.

Deterministic Benney partial differential equation is
defined as

ut + (un)x + uxx + kuxxx + uxxxx = 0, (1)

where k is a constant real number andn is a positive
integer number. Consideringn = 3, we can write1 as

ut + 3u2ux + uxx + kuxxx + uxxxx = 0. (2)

Benney equation has a broad range of applications at
solitons theory, computational fluid dynamics and Physics.
Some applications regarding the Benney equation can be
seen, for example, at [?].

In this paper, we are particularly concerning with the
numerical solution of fractional Benney equation defined
as a perturbation of the time derivative at (2). Fractional
Benney equation that we consider in this paper is

Dα
∗t
u+ 3u2ux + uxx + kuxxx + uxxxx = 0. (3)

This paper consists of four major parts. After the
present introduction section, in the second and third
sections we briefly overview some basic definitions and
theorems regarding wavelets and fractional calculus,
respectively. In section 4 we solve the equation (3)
numerically in an efficient manner. We complete the
paper with a discussion part where we summarize the
present paper and mention some future extensions.

2. Wavelets

Wavelets developed in the beginning of the last century
is a highly useful and efficient method in signal
processing and computational mathematics. Wavelet
theory involves representing functions via simple building
blocks at different scales and positions. The fundamental
idea behind wavelets is to analyze according to scale.
Some of the most popular wavelet types are Haar,
Daubechies, Shannon, Coiflet, spline, Battle-Lemaries,
some orthogonal wavelets such as Legendre, Hermite and
Chebyshev.

In the last decade wavelets have been employed in the
solutions of differential equations. The structure of
wavelets makes them quite appropriate for solving the
partial differential equations. Typical wavelet based
computational techniques employ some basis functions
which are differentiable and do not vanish on the compact
support. Some other related methods might be listed as
finite difference methods (FDM), finite volume methods
(FVM), finite elements methods (FEM), spectral methods.
FDM and FVM are an approximation to the differential
equation while other methods are an approximation to its
solution. Even though the spectral bases are infinitely
differentiable, they have global support which could be

considered as a negative point. Wavelets have the
capability of representing the solutions at different scales,
which make them particularly useful for developing
efficient solutions to the approximate solutions of partial
differential equations and fractional differential equations.

A functionψ ∈ L2(R) is said to be a wavelet if
∫

∞

−∞

ψ(t)dt = 0. (4)

Notice that ifψ ∈ L2(R)
⋂
L1(R) that satisfies

cψ = 2π

∫
∞

−∞

|ψ̂(w)|2

|w|
dw ≤ ∞ (5)

whereψ̂(w) is the Fourier transform ofψ, then (4) holds.

Lemma: Let ψ ∈ L2(R) have a compact support. The the
following two statements are equivalent.

(i.)ψ is a wavelet.
(ii.)The equality (5) is satisfied.

In the literature there are so many different types of
wavelets. In this paper we are interested in an orthogonal
wavelet having a compact support, namely, Haar wavelet
that could be defined as follows:

Define

ψ(x) =





1, 0 ≤ x < 1/2;
−1, 1/2 ≤ x < 1;
0, otherwise.

Is is clear thatψ(x) satisfies (4) and ψ(x) has a
compact support on[0, 1]. It is not hard to prove thatψ(x)
also satisfies (5). ψ(x) defined in this way is known as
Haar wavelet developed by A. Haar in 1909.

Discrete versions of continuous wavelets might be
defined as follows. A functionψ ∈ L2(R) is a discrete
wavelet if the family of functionsψj,k(t) defined by

ψj,k(t) = 2j/2ψ(2jt− k) (6)

where j and k are arbitrary integers, is an orthonormal
basis in the Hilbert spaceL2(R).

Wavelet coefficients of a functionf ∈ L2(R), denoted
by

dj,k =

∫

R

f(t)ψj,k(t)dt. (7)

The series

∑

j,k∈Z

ψj,k(t)

∫

R

f(t)ψj,k(t)dt (8)

is called the wavelet series off . The expression

f =
∑

j,k∈Z

ψj,k(t)

∫

R

f(t)ψj,k(t)dt (9)
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is called the wavelet representation off .
In the application section we shall illustrate an

approximation to au(x, t) ∈ L2([0, 1) × [0, 1)) function
with Haar wavelets, therefore we leave the information
regarding the applications by Haar wavelets to functions
to the main section. For detailed and further properties of
wavelets and particularly Haar wavelets, interested reader
can read, for instance, [7] in conjunction with the present
paper.

3. Fractional calculus

In this section, we briefly overview the some
fundamental concepts of fractional calculus. As we
mentioned in the introductory part, orders of derivatives
and integrals in fractional calculus might be at any real
number. The most popular definitions of a fractional
derivative of a function are Riemann–Liouville,
Grunwald–Letnikow, Caputo and Generalized functions.
In this paper Caputo’s definition of fractional
differentiation will be employed.
Definition. A real functionf(x), x > 0, is said to be in
the spaceCρ, ρ ∈ R if there exists a real number(p >
ρ), such thatf(x) = xpf1(x) for a continuous function
f1(x) ∈ C[0,∞).
Definition. The Riemann–Liouville fractional integral
operator of orderα ≥ 0 of a functionf ∈ Cρ, ρ ≥ −1, is
defined as

Jv0 f(x) =
1

Γ (v)

∫ x

0

(x− t)
v−1

f(t)dt, v > 0,

J0f(x) = f(x).

It has the following properties:
Forf ∈ Cρ, ρ ≥ −1, α, β ≥ 0 andγ > 1 :

i.)JαJβf(x) = Jα+βf(x),

ii.)JαJβf(x) = JβJαf(x),

iii.)Jαxγ = Γ (γ+1)
Γ (α+γ+1)x

α+γ .

Next we present the Caputo sense derivative.
Definition. The fractional derivative off(x) in the Caputo
sense is defined as

Dv
∗
f(x) =

1

Γ (m− v)

∫ x

0

(x− t)m−v−1f (m)(t)dt,

for m− 1 < v < m, m ∈ N, x > 0, f ∈ Cm
−1.

Definition. For m to be the smallest integer that exceeds
α, the Caputo time-fractional derivative operator of order
α > 0 is defined asDα

∗tu(x, t) =




1
Γ (m−α)

∫ t
0
(t− ξ)m−α−1 ∂

mu(x,ξ)
∂ξm dξ,m− 1 < α < m,

∂mu(x,t)
∂tm , α = m ∈ N

and the space-fractional derivative operator of orderβ > 0
is defined asDα

∗xu(x, t) =





1
Γ (m−β)

∫ x
0
(x− θ)m−β−1 ∂

mu(θ,t)
∂θm dθ,m− 1 < β < m,

∂mu(x,t)
∂xm , β = m ∈ N.

Lemma. If m − 1 < α < m, m ∈ N and f ∈ Cmρ , ρ ≥
−1, then

Dα
∗
Jαf(x) = f(x),

JαDv
∗
f(x) = f(x)−

∑m−1
k=0 f

k(0+)x
k

k! , x > 0.

The Caputo fractional derivative is considered here
because it allows traditional initial and boundary
conditions to be included in the formulation of the
problem. In the next section we solve (3).

4. Main results: Numerical solution of
fractional Benney equation

Consider an orthonormal matrixΨ(τ), approximate
solution ofn−times integral ofΨ(τ) is defined by

∫ t

0

· · ·

∫ t

0

Ψ(τ)(dτ)n ∼= ΥnΦΨ(t), n ∈ N

whereΨ(t) = [Φ0(t), · · · , Φm−1(t)]
T
. Here,Φi(t), i =

0, · · ·m− 1 are orthogonal basis functions on the interval
[0, 1), ΥΦ is matrix representation for integral ofΨ(t).

Let u(x, t) ∈ L2([0, 1) × [0, 1)). u(x, t) can be
represented by Haar wavelet basis as

u(x, t) =

m−1∑

i=0

m−1∑

j=0

wijhi(x)hj(t), (10)

where the coefficients are defined as

wij :=

∫ 1

0

u(x, t)hi(x)dx

∫ 1

0

u(x, t)hj(t)dt,

i, j = 0, 1, · · · ,m− 1.

By taking step∆ = 1
m of x, t, (10) can be written in

discrete form as

U(x, t) = HT (x)WH(t),

whereW = [wij ]m−1,m−1 is the coefficient matrix of
U(x, t) andhi(x) is the Haar wavelet basis consisting of
the Haar wavelet matrixH. The corresponding
operational matrix is defined in terms of the well-known
and so useful block matrix as

ΥαH = HΥαBH
T ,

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1636 M. A. Akinlar et. al. : Numerical Solution of Fractional...

whereΥαB is the Block pulse function. The operational
matrix for integration of the block pulse function is given
by

ΥαBm
:=

1

m




1/2 1 · · · 1
0 · · · · · · · · ·
· · · 0 1/2 1
0 · · · 0 1/2




m×m

.

Equipped with these machinery, we can write the
approximations of each term in the (3) in the following
way.

Dα
∗t
u =

∂αu

∂tα
≈
∂αU

∂tα
= HT (x)W

∂α

∂tα
H(t)

= HT (x)WΥ−α
H H(t),

ux(x, t) =
∂u(x, t)

∂x
≈ HT (x)(Υ−1

H )TWH(t),

uxx(x, t) =
∂2u(x, t)

∂x2
≈ HT (x)(Υ−2

H )TWH(t),

uxxx(x, t) =
∂3u(x, t)

∂x3
≈ HT (x)(Υ−3

H )TWH(t),

uxxxx(x, t) =
∂4u(x, t)

∂x4
≈ HT (x)(Υ−4

H )TWH(t),

(11)

Letα = 2
3 . Then, using the identities given at (11), we

can express the fractional Benney equation (3) as follows:

HTWΥ
−2/3
H H + 3HTWHHTWHHT (Υ−1

H )TWH +

HT (Υ−2
H )TWH + kHT (Υ−3

H )TWH +

HT (Υ−4
H )TWH = 0.

Multiplying this equation withH from left andHT from
right, we obtain

WΥ
−2/3
H + 3W 2(Υ−1

H )TW + (Υ−2
H )TW +

kH(Υ−3
H )TW + (Υ−4

H )TW = 0. (8)

It is clear that (9) is a matrix equation which can be
solved by any convenient matrix solver softwares
including Mathematica, Maple and Matlab. In order to
obtain W, one can obtain experimental results for
different cases of the size of the operation matrixm (such
asm = 8, 16, 32, 64, 128), and different values oft andα.

5. Conclusion and future plans

In this paper we presented a new solution technique for
numerical solution of fractional Benney equation. The
method could be described as a hybrid technique which
uses advantages of both wavelets and fractional calculus.
In fact, the present method could be described as a
wavelet Galerkin method that employs the techniques on

multi resolution analysis and use the advantage of
multiscale methods, which make them more powerful
methods than traditional numerical techniques. Haar
wavelets and Caputo type fractional derivatives are
employed in the calculations. Computational results point
the strength of Haar wavelets and the present solution
algorithm. Employing some other orthogonal wavelets
and investigating the applicability of the present method
to some other nonlinear fractional (stochastic) differential
and integral equations might be useful problem as a future
extensions of the present method.
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