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validate the developed code, a simply supported conventional FGB problem is studied and the compar-
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The numerical calculations in terms of maximum dimensionless transverse deflections, dimensionless
axial and transverse shear stresses are performed based on different beam theories with varying grada-
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1. Introduction

One of the biggest problems that the engineers face with during
the new product development process is the selecting of the proper
material to be used for the engineering applications. There are
many factors to be considered for the optimization of the selection
process such as the cost of raw material and production, fabrica-
tion techniques, logistics, material properties, requirements of cus-
tomers with severe operating conditions. For instance; the material
should be hard but also ductile or the material can withstand very
high surface temperature of 2000 K and a temperature gradient of
1000 K across a 10 mm thickness and so on. In 1984, a group of
Japanese scientists working on a space shuttle project requiring a
thermal barrier with high performance properties introduced a
novel material called Functionally Graded Material (FGM). FGMs
can be classified as advanced materials which are inhomogeneous
and made up of two (or more) different materials combined in
solid states with varying properties as the dimension changes.

Among many modern engineering applications of the FGMs, the
most important ones are the aerospace, biomedical, defence,
energy, optoelectronics, automotive (engine components), turbine
blade, reactor components (nuclear energy) and etc. FGMs may be
used in different application areas with the development of new
fabrication technologies, the reduction in cost of production,
improvement in the properties of FGMs.
The advantages of the FGMs over the conventional and classical
composite materials are basically due to varying material proper-
ties over a changing dimension which allow to enhance the bond
strength through the layer interfaces, high resistance to tempera-
ture shocks, lower transverse shear stresses, etc. Researchers have
been devoted a considerable number of studies to predict and to
understand the mechanics of the FGM structures during the last
decade [1–31].

It is seen from the above literature survey that the most of the
analyses are related to conventional FGMs (or 1D-FGM) with mate-
rial properties which vary in one direction. However, there are
practical engineering applications as stated in [32], the conven-
tional FGMs are not efficient to fullfill the technical requirements
such as the temperature and stress distributions in two or three
directions for aerospace craft and shuttles.

To eliminate mentioned drawback of the conventional FGM, a
new type FGM whose material properties can vary in two or three
directions is needed. Motivated by this fact, the mechanical and
thermal behaviours of two-directional FG structures have been
investigated so far. For instance, by using the Element Free Galer-
kin Method, 2D steady-state free and forced vibrations of two-
directional FGBs are analysed in [33]. The elasticity solutions are
proposed for bending and thermal deformations of FGBs with var-
ious end conditions by using the state-space based differential
quadrature method in [34]. A semi-inverse method was employed
to investigate buckling of axially functionally graded beam [35].
The buckling of non-uniform axially graded beams was studied
with varying flexural rigidity based on the EBT in [36]. A
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Fig. 1. Compact support of the weight function Wðn;xÞ for the node located at
x ¼ ðxi; yiÞ.
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symplectic elasticity solution for static and free vibration analyses
of two-directional FGBs with the material properties varying expo-
nentially in both axial and thickness direction is presented in [37].
The buckling of Timoshenko beams composed of two dimensional
FGM was studied in [38].

As it is seen form above discussions, the studies related to ana-
lytical and semi-analytical solutions of two-directional FGBs which
have complex governing equations are very limited in the litera-
ture. Therefore, one may easily show that the numerical methods
such as finite element methods (FEM), meshless methods, GDQM,
etc. are widely used and have shown great progress for the analysis
of these complex problems. However, for convenience and general-
ity considerations at least to the best of the author’s knowledge,
there is no reported work regarding to the meshless methods of
which best fit in terms of accuracy, CPU time, flexibility for dealing
with the complex geometries, extendibility to multi-dimensional
problems and etc., for the static and dynamic analysis of the
two-directional FGBs based on the different beam theories.

Meshless methods are the most promising and have attracted
considerable attention for the analysis of engineering problems
with intrinsic complexity. Meshless methods are widely used in
static and dynamic analyses of the isotropic, laminated composite
and FGM beam problems [39–45]. To obtain the approximate solu-
tion of the problem by a meshless method, the selection of the
basis functions is almost the most important issue. The accuracy
of the computed solution can be increased by employing different
number of terms in TSE or increasing number of nodes in the prob-
lem domain or by increasing the degree of complete polynomials.
Many meshless methods have been proposed by researchers to
obtain the approximate solution of the problem. The Smoothed
Particle Hydrodynamics (SPH) method is proposed by Lucy [46]
to the testing of the fission hypothesis. However, this method
has two important shortcomings, lack of accuracy on the bound-
aries and the tensile instability. To remove these shortcomings,
many meshless methods have been proposed such as the Corrected
Smoothed Particle Method [47–48], Reproducing Kernel Particle
Method [49–51], Modified Smoothed Particle Hydrodynamics
(MSPH) method [52–56], the Symmetric Smoothed Particle Hydro-
dynamics method [57–62] and the Strong Form Meshless Imple-
mentation of Taylor Series Method [63–64], Moving Kringing
Interpolation Method [65–66], the meshless Shepard and Least
Squares (MSLS) Method [67], Spectral Meshless Radial Point Inter-
polation (SMRPI) Method [68].

The main scope of this work is to investigate the static beha-
viour of the two-directional FGBs based on various beam theories
such as EBT, TBT and the Reddy–Bickford Beam Theory (RBT) by
using the SSPH method employing the strong formulation.

Based on the above discussions, the main novelty of this work is
that there is no reported work on the bending analysis of the two-
directional functionally graded beams which are modelled with
the power-law variation in 2D based on various beam theories.
And also, as far as author is aware there is no work available for
static behaviour of the FGBs by using the SSPH method. Further,
the SSPH method has an advantage over the MLS, RKPM, MSPH
and the SMITSM methods, because basis functions used to approx-
imate the function and its derivatives are derived simultaneously
and even a constant weight function can be employed to obtain
the approximate solution [57–62].

In Section 2, the formulation of the basis function of the SSPH
method is given. In Section 3, the homogenization of material
properties of the FGB is presented. The formulation of the EBT,
TBT and RBT based on the studied two-directional FGB problems
and the SSPHmethod are given in Section 4. In Section 5, numerical
results are given for the problems with four different boundary
conditions which are simply supported (SS), clamped-simply
supported (CS), clamped-clamped (CC) and clamped-free (CF).
2. Formulation of Symmetric Smoothed Particle Hydrodynamics
method

Taylor Series Expansion (TSE) of a scalar function for 1D case
can be given by

f ðnÞ ¼ f ðxÞ þ ðn� xÞf 0ðxÞ þ 1
2!

ðn� xÞ2f 00ðxÞ þ 1
3!

ðn� xÞ3f 000ðxÞ

þ 1
4!

ðn� xÞ4f ðIVÞðxÞ þ 1
5!

ðn� xÞ5f ðVÞðxÞ

þ 1
6!

ðn� xÞ6f ðVIÞðxÞ þ . . . ð1Þ

where f ðnÞ is the value of the function at nlocated in near of x. If the
zeroth to sixth order terms are employed and the higher order
terms are neglected, the Eq. (1) can be written as follows

f ðnÞ ¼ Pðn; xÞQðxÞ ð2Þ
where

QðxÞ ¼ f ðxÞ;df ðxÞ
dx

;
1
2!

d2f ðxÞ
dx2

; . . . ;
1
6!

d6f ðxÞ
dx6

" #T
ð3Þ

Pðn; xÞ ¼ ½1; ðn� xÞ; ðn� xÞ2; . . . ; ðn� xÞ6� ð4Þ
The number of terms employed in the TSE can be increased to

improve the accuracy depending on the order of the governing
equations. However, increasing the number of terms to be
employed definitely increases the CPU time and may decrease
the effectiveness of the method. Determination of the number of
terms mainly depends on the experience of the researcher. To
determine the unknown variables given in the Q ðxÞ, both sides of
Eq. (2) are multiplied with Wðn; xÞPðn; xÞT and evaluated for every
node in the CSD. In the global numbering system, let the particle
number of the jth particle in the compact support of Wðn; xÞ be r
(j). The following equation is obtained

XNðxÞ
j¼1

f ðnrðjÞÞWðnrðjÞ; xÞPðnrðjÞ; xÞT

XNðxÞ
j¼1

½PðnrðjÞ; xÞTWðnrðjÞ; xÞPðnrðjÞ; xÞ�QðxÞ
ð5Þ

where NðxÞ is the number nodes in the compact support domain
(CSD) of the Wðn;xÞ as shown in Fig. 1

Then, Eq. (5) can be given by

Cðn; xÞQðxÞ ¼ Dðn; xÞFðxÞðn; xÞ ð6Þ
Where Cðn; xÞ ¼ Pðn; xÞTWðn; xÞPðn; xÞ and Dðn; xÞ ¼ Pðn; xÞT

Wðn; xÞ.
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The solution of Eq. (6) is given by

QðxÞ ¼ Kðn; xÞFðnÞ ð7Þ
where K ðxÞðn;xÞ ¼ Cðn;xÞ�1Dðn;xÞ. Eq. (7) can be also written as
follows

QIðxÞ ¼
XM
J¼1

KIJFJ ; I ¼ 1;2; . . . ;7 ð8Þ

where M is the number of nodes and FJ ¼ fðnJÞ. Seven
components of Eq. (8) for 1D case are written as

f ðxÞ ¼ Q1ðxÞ ¼
XM
J¼1

K1JFJ

df ðxÞ
dx

¼ Q2ðxÞ ¼
XM
J¼1

K2JFJ

d2f ðxÞ
dx2

¼ 2!Q3ðxÞ ¼ 2!
XM
J¼1

K3JFJ

d3f ðxÞ
dx3

¼ 3!Q4ðxÞ ¼ 3!
XM
J¼1

K4JFJ

d4f ðxÞ
dx4

¼ 4!Q5ðxÞ ¼ 4!
XM
J¼1

K5JFJ

d5f ðxÞ
dx5

¼ 5!Q5ðxÞ ¼ 5!
XM
J¼1

K6JFJ

d6f ðxÞ
dx6

¼ 6!Q6ðxÞ ¼ 6!
XM
J¼1

K7JFJ

ð9Þ

Details of the SSPH method can be found in [57–62].

3. Homogenization of material properties

We assume that the two-directional functionally graded beam
of length L, width b, thickness h is made of two different con-
stituents. Further, the material properties vary not only in z direc-
tion (thickness direction) but also in x direction (along the length
of the beam) as shown in Fig. 2.

The rule of mixture is used to find the effective material prop-
erties ar a point. According to the rule of mixtures, the effective
material properties of the beam, Young’s modulus E and shear
modulus G can be given by

Eðx; zÞ ¼ E1V1ðx; zÞ þ E2V2ðx; zÞ
Gðx; zÞ ¼ G1V1ðx; zÞ þ G2V2ðx; zÞ

ð10Þ

where E1; E2;G1 and G2 are the material properties of two con-
stituents, V1 and V2are volume fractions of the constituents. The
relation of the volume fractions can be expressed as follows;

V1ðx; zÞ þ V2ðx; zÞ ¼ 1 ð11Þ
According to the power law form, the volume fraction of the

constitute 1 can be given by
Fig. 2. The variation of elasticity modulus in a two-directional FGB.
V1ðx; zÞ ¼ 1� x
2L

� �px 1
2
þ z
h

� �pz

ð12Þ

where px and pz are the gradation exponents (power-law index)
which determine the material properties through the thickness
and length of the beam, respectively. When the px and pz are set
to zero the beam becomes homogeneous. The effective material
properties can be found by using the Eqs. (10), (11) and (12) as
follows

Eðx; zÞ ¼ ðE1 � E2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þ E2

Gðx; zÞ ¼ ðG1 � G2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þ G2

ð13Þ
4. Formulation of beam theories

The kinematics of deformation of a beam can be represented by
using various beam theories. Among them, the Euler Bernoulli
Beam Theory (EBT), the Timoshenko Beam Theory (TBT) and the
Reddy-Bickford Beam Theory (RBT) are commonly used. The effect
of the transverse shear deformation neglected in the EBT is allowed
in the latter two beam theories.

Euler Bernoulli beam theory is the simplest beam theory and
assumes that the cross sections which are normal to the mid-
plane before deformation remain plane/straight and normal to
the mid-plane after deformation. Both transverse shear and
transverse normal strains are neglected by using these assump-
tions. In the TBT, the normality assumption of the EBT is relaxed
and the cross sections do not need to normal to the mid-plane
but still remain plane. The TBT requires the shear correction fac-
tor (SCF) to compensate the error due to the assumption of the
constant transverse shear strain and shear stress through the
beam thickness. The SCF depends on the geometric and material
parameters of the beam but the loading and boundary conditions
are also important to determine the SCF [68,69]. In the third
order shear deformation theory which is named as the RBT,
the transverse shear strain is quadratic trough the thickness of
the beam [70].

The need for the further extension of the EBT is raised for the
engineering applications of the beam problems often characterized
by high ratios, up to 40 for the composite structures, between the
Young modulus and the shear modulus [71]. Various higher order
beam theories are introduced in which the straightness assump-
tion is removed and the vanishing of shear stress at the upper
and lower surfaces are accomodated. For this purpose, higher order
polynomials incorporating either one, or more, extra terms [72–78]
or trigonometric functions [79,80] or exponential functions [81]
are included in the expansion of the longitudinal point-wise dis-
placement component through the thickness of the beam. The
higher order theories introduce additional unknowns that make
the governing equations more complicated and provide the solu-
tions much costly in terms of CPU time. The theories which are
higher than the third order shear deformation beam theory are sel-
dom used because the accuracy gained by these theories which
require much effort to solve the governing equations is so little
[70].

To describe the EBT, TBT and RBT, the following coordinate sys-
tem is introduced. The x-cordinate is taken along the axis of the
beam and the z-coordinate is taken through the height (thickness)
of the beam. In the general beam theory, all the loads and the dis-
placements (u,w) along the coordinates (x,z) are only the functions
of the x and z coordinates [70]. The formulations of the EBT, TBT
and RBT based on the FGM and the SSPH formulations are given
below.
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4.1. Euler Bernoulli beam theory

The following displacement field is given for the EBT,

uðx; zÞ ¼ �z
dw0

dx
wðx; zÞ ¼ w0ðxÞ

ð14Þ

where w0 is the transverse deflection of the point (x,0) which is on
the mid-plane (z = 0) of the beam. By using the assumption of the
smallness of strains and rotations, the only the axial strain which
is nonzero is given by,

exx ¼ du
dx

¼ �z
d2w0

dx2
ð15Þ

The virtual strain energy of the beam in terms of the axial stress
and the axial strain can be expressed by

dU ¼
Z L

0

Z
A
rxxdexxdAdx ð16Þ

where d is the variational operator, A is the cross sectional area, L is
the length of the beam, rxx is the axial stress. The bending moment
of the EBT is given by,

Mxx ¼
Z
A
zrxxdA ð17Þ

By using Eq. (15) and Eq. (17), Eq. (16) can be rewritten as,

dU ¼ �
Z L

0
Mxxz

d2dw0

dx2
ð18Þ

The virtual potential energy of the load q(x) which acts at the
centre axis of the beam is given by

dV ¼ �
Z L

0
qðxÞdw0dx ð19Þ

If a body is in equilibrium, dW ¼ dU þ dV , the total virtual work
ðdWÞ done equals zero. Then one can obtain,

dW ¼ �
Z L

0
Mxxz

d2dw0

dx2
þ qðxÞdw0

 !
dx ¼ 0 ð20Þ

After performing integration for the first term in Eq. (20) twice
and since dw0 is arbitrary in (0 < x < L), one can obtain following
equilibrium equation

� d2Mxx

dx2
¼ qðxÞ for 0 < x < L ð21Þ

By introducing the shear force Qx and rewrite the Eq. (21) in the
following form

� dMxx

dx
þ Qx ¼ 0;� dQx

dx
¼ qðxÞ ð22Þ

By using Hooke’s law, one can obtain

rxx ¼ Eðx; zÞexx

¼ � ðE1 � E2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þ E2

� �
z
d2w0

dx2
ð23Þ

If the Eq. (23) is put into the Eq. (17), it is obtained,

Mxx ¼ �
Z þh=2

�h=2
ðE1 � E2Þ 1� x

2L

� �px 1
2
þ z
h

� �pz

þ E2

� �
z2

d2w0

dx2
dz

¼ �Dxx
d2w0

dx2
ð24Þ
where

Dxx ¼
Z þh=2

�h=2
ðE1 � E2Þ 1� x

2L

� �px 1
2
þ z
h

� �pz

þ E2

� �
z2dz ð25Þ

The EBT governing equation for a FGB subjected to the dis-
tributed load is given by

d2

dx2
Dxx

d2w0

dx2

 !
¼ qðxÞ for 0 < x < L ð26Þ
4.2. Timoshenko beam theory

The following displacement field is given for the TBT,

uðx; zÞ ¼ z/ðxÞ
wðx; zÞ ¼ w0ðxÞ

ð27Þ

where /ðxÞ is the rotation of the cross section. By using the Eq. (27),
the strain-displacement relations are given by

exx ¼ du
dx

¼ z
d/
dx

cxz ¼
du
dz

þ dw
dx

¼ /þ dw0

dx

ð28Þ

The virtual strain energy of the beam including the virtual
energy associated with the shearing strain can be written as,

dU ¼
Z L

0

Z
A
ðrxxdexx þ rxzdcxzÞdAdx ð29Þ

where rxz is the transverse shear stress and cxz is the shear strain.
The bending moment and the shear force can be written
respectively

Mxx ¼
Z
A
zrxxdA;Qx ¼

Z
A
rxzdA ð30Þ

By using Eq. (28) and Eq. (30), one can rewrite the Eq. (29) as,

dU ¼
Z L

0
Mxx

dd/
dx

þ Qx d/þ ddw0

dx

� �� �
dx ð31Þ

The virtual potential energy of the load q(x) which acts at the
centre axis of the Timoshenko beam is given by

dV ¼ �
Z L

0
qðxÞdw0dx ð32Þ

Since the total virtual work done equals zero and the coeffi-
cients of d/ and dw0in 0 < x < L are zero, one can obtain the fol-
lowing equations

�dMxx

dx
þ Qx ¼ 0; � dQx

dx
¼ qðxÞ ð33Þ

The constituve equations can be written as follows

rxx ¼ Eðx; zÞexx ¼ ðE1 � E2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þ E2

� �
z
d/
dx

ð34Þ

rxz ¼ Gðx; zÞcxz ¼ ðG1 � G2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þ G2

� �
/þ dw0

dx

� �
ð35Þ

The bending moment and shear force can be expressed in terms
of generalized displacement ðw0;/Þ by using the constituve
equations given above
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Mxx ¼
Z þh=2

�h=2
zrxxdz¼

Z þh=2

�h=2
ðE1�E2Þ 1� x

2L

� �px 1
2
þ z
h

� �pz

þE2

� �
z2
d/
dx

dz¼Dxx
d/
dx

Qx ¼js

Z þh
2

�h
2

rxzdz¼js

Z þh
2

�h
2

ðG1�G2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þG2

� �
/þdw0

dx

� �
dz

¼jsAxz /þdw0

dx

� �
ð36Þ

where js is the shear correction factor to be used to compensate the
error caused by the assumption of a constant transverse shear stress
distribution along the beam thickness and

Dxx ¼
Z þh=2

�h=2
ðE1 � E2Þ 1

2
þ x
L

� �px 1
2
þ z
h

� �pz

þ E2

� �
z2dz

Axz ¼
Z þh

2

�h
2

ðG1 � G2Þ 1
2
þ x
L

� �px 1
2
þ z
h

� �pz

þ G2

� �
dz

ð37Þ

The governing equations of the TBT is obtained in terms of
generalized displacements as follows

� d
dx

Dxx
d/
dx

� �
þ jsAxz /þ dw0

dx

� �
¼ 0 ð38Þ

� d
dx

jsAxz /þ dw0

dx

� �� �
¼ qðxÞ ð39Þ
4.3. Reddy-Bickford beam theory

The following displacement field is given for the RBT,

uðx; zÞ ¼ z/ðxÞ � az3 /ðxÞ þ dwðxÞ
dx

� �

wðx; zÞ ¼ w0ðxÞ ð40Þ
where a ¼ 4=ð3h2Þ. By using the Eq. (40), the strain-

displacement relations of the RBT are given by

exx ¼ du
dx

¼ z
d/
dx

� az3
d/
dx

þ d2w0

dx2

 !

cxz ¼
du
dz

þ dw
dx

¼ /þ dw0

dx
� bz2 /þ dw0

dx

� � ð41Þ

where b ¼ 3a ¼ 4=ðh2Þ.
The virtual strain energy of the beam can be written as,

dU ¼
Z L

0

Z
A
ðrxxdexx þ rxzdcxzÞdAdx ð42Þ

The usual bending moment and the shear force

Mxx ¼
Z
A
zrxxdA;Qx ¼

Z
A
rxzdA ð43Þ

and Pxx and Rx are the higher order stress resultants can be written
respectively

Pxx ¼
Z
A
z3rxxdA;Rx ¼

Z
A
z2rxzdA ð44Þ

By using Eq. (41), Eq. (43) and Eq. (44) one can rewrite the Eq.
(42) as,

dU¼
Z L

0
ðMxx�aPxxÞdd/dx �aPxx

d2dw0

dx2
þðQx�bRxÞ d/þddw0

dx

� �" #
dx

ð45Þ
In the RBT there is no need to use a SCF unlike the TBT. The

virtual potential energy of the transverse load qðxÞ is given by
dV ¼ �
Z L

0
qðxÞdw0dx ð46Þ

The constituve equations can be written as follows

rxx ¼ Eðx;zÞexx

¼ ðE1�E2Þ 1� x
2L

� �px 1
2
þ z
h

� �pz

þE2

� �
z
d/
dx

�az3
d/
dx

þd2w0

dx2

 !" #

rxz ¼Gðx;zÞcxz
¼ ðG1�G2Þ 1� x

2L

� �px 1
2
þ z
h

� �pz

þG2

� �
/þdw0

dx
�bz2ð/þdw0

dx
Þ

� �

The governing equations of the RBT are obtained in terms of
displacements / and w0 as follows,

� d
dx

�Dxx
d/
dx

� aF̂xx
d2w0

dx2

 !
þ Âxz /þ dw0

dx

� �
¼ 0 ð47Þ

�a d2

dx2
F̂xx

d/
dx

� aHxx
d2w0

dx2

 !
� d
dx

Âxzð/þ dw0

dx
Þ

� �
¼ qðxÞ ð48Þ

where

Âxz ¼ Âxz � bD̂xz; �Dxx ¼ D̂xx � aF̂xx

D̂xx ¼ Dxx � aFxx; F̂xx ¼ Fxx � aHxx

Âxz ¼ Axz � bDxz; D̂xz ¼ Dxz � bFxz

ðDxx; Fxx;HxxÞ ¼
Rþh=2
�h=2 ðE1 � E2Þ 1� x

2L

� 	px 1
2 þ z

h

� 	pz þ E2

h i
ðz2; z4; z6Þdz

ðAxz;Dxz; FxzÞ ¼
R þh=2
�h=2 ðG1 � G2Þ 1� x

2L

� 	px 1
2 þ z

h

� 	pz þ G2

h i
ð1; z2; z4Þdz

ð49Þ
4.4. Representation of the governing equations by the SSPH method

Based on the EBT, the governing equation of the problem can be
presented as algebraic equations by using the SSPH basis function
given in Eq. (9) and replacing f ðxÞ with w0ðxÞ as follows,

Dxx;xx

XM
J¼1

2K3JWJ þ Dxx;x

XM
J¼1

12K4JWJ þ Dxx

XM
J¼1

24K5JWJ

¼ q0 for 0 < x < L ð50Þ

where Dxx;xx ¼ d2Dxx

dx2
and Dxx;x ¼ dDxx

dx .

The governing equations of the problem based on the TBT can
be written in a similar way by replacing f ðxÞ given in Eq. (9)
with w0ðxÞ and /ðxÞ and by using the SSPH basis functions as
follows,

XM
J¼1

jsAxzK2JWJ þ
XM
J¼1

½jsAxzK1J � Dxx;xK2J � 2DxxK3J�UJ ¼ 0 ð51Þ

�
XM
J¼1

½jsAxz;xK2J þ 2jsAxzK3J �WJ �
XM
J¼1

½jsAxz;xK1J þ jsAxzK2J �UJ ¼ q0

ð52Þ
where Axz;x ¼ dAxz

dx . The SCF is assumed to be constant as js ¼ 5=6 for
the rectangular cross section,

By using RBT and the SSPH basis function the governing
equations can be written by replacing f ðxÞ given in Eq. (9) with
w0ðxÞ and /ðxÞ as follows,
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XM
J¼1

½ÂxzK2J þ2aF̂xx;xK3J þ6aF̂xxK4J �WJ þ
XM
J¼1

½ÂxzK1J � �Dxx;xK2J �2�DxxK3J �UJ ¼0

XM
J¼1

½��Axz;xK2J �2ÂxzK3J þ2a2Hxx;xxK3J þ12a2Hxx;xK4J þ24a2HxxK5J �WJ

þ
XM
J¼1

½��Axz;xK1J � ÂxzK2J �aF̂xx;xxK2J �4aF̂xx;xK3J �6aF̂xxK4J �UJ ¼ q0

ð53Þ

where Âxz ¼ dAxz
dx ; F̂xx;x ¼ dF̂xx

dx ; F̂xx;xx ¼ d2 F̂xx
dx2

;Hxx;x ¼ dHxx
dx and Hxx;xx ¼ d2Hxx

dx2

The SSPH formulation of the boundary conditions for the
studied problems is given below.

4.4.1. Simply supported (SS) two-directional FGB
The boundary conditions regarding to the EBT are given as

follows;

x ¼ 0;
XM
J¼1

2K3JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

2K3JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð54Þ

The boundary conditions regarding to the TBT are given as
follows;

x ¼ 0;
XM
J¼1

K2JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K2JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð55Þ

The boundary conditions regarding to the TBT are given as
follows;

x ¼ 0;
XM
J¼1

D̂xxK2JUJ �
XM
J¼1

2aFxxK3JWJ ¼ 0; and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

D̂xxK2JUJ �
XM
J¼1

2aFxxK3JWJ ¼ 0; and
XM
J¼1

K1JWJ ¼ 0 m

ð56Þ
4.4.2. Clamped simply supported (CS) two-directional FGB
The boundary conditions based on the EBT are given by;

x ¼ 0;
XM
J¼1

K2JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

2K3JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð57Þ

The boundary conditions based on the TBT are given by;

x ¼ 0;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K2JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð58Þ

The boundary conditions based on the RBT are given by;

x ¼ 0;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

D̂xxK2JUJ �
XM
J¼1

2aFxxK3JWJ ¼ 0; and
XM
J¼1

K1JWJ ¼ 0 m

ð59Þ
4.4.3. Clamped clamped (CC) two-directional FGB
The boundary conditions based on the EBT are given by;

x ¼ 0;
XM
J¼1

K2JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K2JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð60Þ

The boundary conditions based on the TBT are given by;

x ¼ 0;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð61Þ

The boundary conditions based on the RBT are given by;

x ¼ 0;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

ð62Þ
4.4.4. Cantilever (CF) two-directional FGB
The boundary conditions based on the EBT are given by;

x ¼ 0;
XM
J¼1

K2JWJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

2K3JWJ ¼ 0 and
XM
J¼1

½2Dxx;xK3J þ 6DxxK4J �WJ ¼ 0

ð63Þ

The boundary conditions regarding to the TBT are given as
follows;

x ¼ 0;
XM
J¼1

K1JUJ ¼ 0 and
XM
J¼1

K1JWJ ¼ 0 m

x ¼ L;
XM
J¼1

K2JUJ ¼ 0 and
XM
J¼1

K1JUJ þ
XM
J¼1

K2JWJ ¼ 0

ð64Þ

The boundary conditions regarding to the RBT are given as
follows;

x¼0;
XM
J¼1

K1JUJ ¼0 and
XM
J¼1

K1JWJ ¼0m

x¼ L;
XM
J¼1

D̂xxK2JUJ �
XM
J¼1

2aFxxK3JWJ ¼0; and
XM
J¼1

K1JUJ þ
XM
J¼1

K2JWJ ¼0

ð65Þ
5. Numerical results

The elastostatic behaviour of the FGBs are investigated by using
various beam theories which are the EBT, TBT and RBT. The numer-
ical solutions are obtained by using the SSPH method for various
gradation exponents, aspect ratios and boundary conditions. Since
there is no available previous results for the bending analysis of
two-directional FGBs with power law rule, as the first, the devel-
oped code is verified by solving a simply supported conventional
FGB problem subjected to uniformly distributed load. The com-
puted results are compared with the results from previous studies
[82] along with the analytical solutions. The dimensionless maxi-
mum transverse deflections, axial and shear stresses are calculated
for the comparison purpose. After the verification of the developed
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code, the number of nodes to be used in the problem domain for
the numerical calculations is determined.

For each problem studied here, the physical parameters of the
beam are L = 1 m and b = 0.1 m. Two different two aspect ratios,
L/h = 5 and 20, are considered. The distributed load q0 is set to
10,000 N/m. The material properties of the two constitutes are
given as

Ceramic ðAl2O3Þ : E1 ¼ 380 GPa and m1 ¼ 0:3

Metal ðAluminiumÞ : E2 ¼ 70 GPa and m2 ¼ 0:3

The following non-dimensional quantities are used for the rep-
resentation of the results;

Non-dimensional maximum transverse deflection of the beam:

�w ¼ 100E2h
3

q0L
4 w0

L
2
; z

� �
for SS;CS and CC beams

�w ¼ 100E2h
3

q0L
4 w0ðL; zÞ for CF beam

ð66Þ

Non-dimensional axial and shear stresses of the beam:

�rx ¼ h
q0L

rx
L
2
; z

� �

�rxz ¼ h
q0L

rxzð0; zÞ
ð67Þ
5.1. Verification, comparison and convergence studies

To verify the developed code, a simply supported FGB under
uniformly distributed load is considered. For numerical calcula-
tions to be performed by the SSPH method uniformly distributed
21, 41, 81 and 161 nodes are used in the problem domain x 2
[0,1]. The Revised Super Gauss Function (RSGF) is employed as a
weight (kernel) function.

Wðx; nÞ ¼ G

ðh ffiffiffiffi
p

p Þk
ð64� d2Þe�d2 0 6 d 6 8
0 d > 8

( )
d ¼ jx� nj=h

ð68Þ
where d is the radius of the CSD, h is the smoothing length. G and k
are the parameters which are eliminated from the both side of the
equations by the formulation of the SSPH method.
Table 1
Verification and convergence studies of the code for S-S FGB, dimensionless maximum tra

Theory Gradation exponent ðpzÞ Number of nodes

21 41

EBT 0 2.8783 2.8783
0.5 4.1296 4.1296
1 4.8611 4.8611
2 5.6378 5.6378
5 6.8975 6.8975

TBT 0 3.1657 3.1657
0.5 4.5243 4.5243
1 5.3464 5.3464
2 6.2679 6.2679
5 7.7951 7.7951

RBT 0 3.1657 3.1657
0.5 4.5175 4.5175
1 5.3464 5.3464
2 6.3109 6.3109
5 7.9760 7.9759
The numerical calculations are performed according to the fol-
lowing meshless parameters; the radius of the support domain
(d) is chosen as 8 and the smoothing length (h) equals to 1:3D
where D is the minimum distance between two adjacent nodes.
The meshless parameters, d and h, are selected to obtain the lowest
error.

The maximum non-dimensional transverse deflections, axial
and shear stresses obtained from different beam theories for vari-
ous node distributions, aspect ratios and gradation exponents are
given in Tables 1–6 along with the results from previous studies
and the analytical solution of the problem. It is clear that the
results obtained by using the SSPH method agree completely with
those of previous paper [82] and the analytical solution. As it is
seen in Tables 1–6, the transverse deflections, axial and transverse
shear stresses computed by the SSPH method are almost the same
with the analytical solutions for the EBT and TBT. The numerical
results based on the RBT are compared with the results given in
[82] where the analytical solution of a third order beam theory is
presented. Tables 1–6 show that the results from RBT are in excel-
lent agreement with the results presented in [82]. Due to this
agreement, the verification of the developed code is established.
For the studies to be presented below, the number of nodes to be
used for the numerical calculations of the problems is determined
as 161 for the sake of accuracy.

5.2. Elastostatic analysis of two-directional FGBs

Four different boundary conditions, SS, CS, CC and CF are con-
sidered respectively for the bending analysis of two directional
FGBs subjected to uniformly distributed load. The maximum trans-
verse deflections, axial and shear stresses are computed based on
the various beam theories, gradation exponents and aspect ratios.

5.2.1. SS two-directional FGB
As the first example, simply supported two directional FGB

under uniformly distributed load is studied. The maximum dimen-
sionless transverse deflections and stresses are computed from dif-
ferent beam theories for various gradation exponents and aspect
ratios. As it is seen form Tables 7 and 8, the minimum deflection
value is obtained from the formulation of EBT, as expected. The dif-
ference between the EBT and the other two theories is significant
for thick beam (L/h = 5), however for thin beam (L/h = 20), it is neg-
ligible. The computed results by RBT are slightly higher than the
results from TBT. With the increasing of the gradation exponents
in both directions, the deflection values are increasing.
nsverse deflections for different number of nodes and gradation exponents, L/h = 5.

Analytical solution/⁄Li et al. [82]

81 161

2.8783 2.8783 2.8783
4.1296 4.1296 4.1296
4.8611 4.8611 4.8611
5.6378 5.6378 5.6378
6.8975 6.8975 6.8975

3.1657 3.1657 3.1657
4.5243 4.5243 4.5243
5.3464 5.3464 5.3464
6.2679 6.2679 6.2679
7.7951 7.7951 7.7951

3.1657 3.1657 ⁄3.1657
4.5175 4.5177 ⁄4.5183
5.3464 5.3464 ⁄5.3464
6.3109 6.3109 ⁄6.3002
7.9760 7.9760 ⁄7.9268



Table 2
Verification and convergence studies of the code for S-S FGB, dimensionless maximum transverse deflections for different number of nodes and gradation exponents, L/h = 20.

Theory Number of nodes Number of nodes Analytical solution/⁄Li et al. [82]

21 41 81 161

EBT 0 2.8783 2.8783 2.8783 2.8783 2.8783
0.5 4.1296 4.1296 4.1296 4.1296 4.1296
1 4.8611 4.8611 4.8611 4.8611 4.8611
2 5.6378 5.6378 5.6378 5.6378 5.6378
5 6.8975 6.8975 6.8975 6.8975 6.8975

TBT 0 2.8962 2.8962 2.8962 2.8962 2.8962
0.5 4.1543 4.1543 4.1543 4.1543 4.1543
1 4.8914 4.8914 4.8914 4.8914 4.8914
2 5.6773 5.6773 5.6773 5.6773 5.6773
5 6.9536 6.9536 6.9536 6.9536 6.9536

RBT 0 2.8962 2.8962 2.8962 2.8962 ⁄2.8962
0.5 4.1538 4.1538 4.1538 4.1538 ⁄4.1539
1 4.8914 4.8914 4.8914 4.8914 ⁄4.8914
2 5.6799 5.6799 5.6799 5.6799 ⁄5.6793
5 6.9649 6.9649 6.9649 6.9649 ⁄6.9619

Table 3
Verification and convergence studies of the code for S-S FGB, dimensionless axial stress �rx

L
2 ;

h
2

� 	
for different number of nodes and gradation exponents, L/h = 5.

Theory Number of nodes Number of nodes Analytical solution/⁄Li et al. [82]

21 41 81 161

EBT 0 3.7500 3.7500 3.7500 3.7500 3.7500
0.5 5.3803 5.3803 5.3803 5.3802 5.3803
1 6.3333 6.3333 6.3333 6.3333 6.3333
2 7.3454 7.3454 7.3454 7.3453 7.3454
5 8.9865 8.9865 8.9865 8.9864 8.9865

TBT 0 3.7500 3.7500 3.7500 3.7500 3.7500
0.5 5.3803 5.3803 5.3803 5.3803 5.3803
1 6.3333 6.3333 6.3333 6.3333 6.3333
2 7.3454 7.3454 7.3454 7.3454 7.3454
5 8.9865 8.9865 8.9865 8.9865 8.9865

RBT 0 3.8020 3.8020 3.8020 3.8020 ⁄3.8020
0.5 5.4525 5.4525 5.4525 5.4525 ⁄5.4526
1 6.4212 6.4212 6.4212 6.4212 ⁄6.4212
2 7.4601 7.4601 7.4601 7.4601 ⁄7.4583
5 9.1544 9.1544 9.1544 9.1544 ⁄9.1467

Table 4
Verification and convergence studies of the code for S-S FGB, dimensionless axial stress �rx

L
2 ;

h
2

� 	
for different number of nodes and gradation exponents, L/h = 20.

Theory Number of nodes Number of nodes Analytical solution/⁄Li et al. [82]

21 41 81 161

EBT 0 15.0000 15.0000 15.0000 15.0000 15.0000
0.5 21.5210 21.5210 21.5211 21.5209 21.5210
1 25.3333 25.3333 25.3334 25.3332 25.3333
2 29.3814 29.3815 29.3815 29.3813 29.3814
5 35.9459 35.9460 35.9460 35.9457 35.9459

TBT 0 15.0000 15.0000 15.0000 15.0000 15.0000
0.5 21.5210 21.5210 21.5211 21.5210 21.5210
1 25.3333 25.3333 25.3334 25.3332 25.3333
2 29.3814 29.3815 29.3815 29.3813 29.3814
5 35.9459 35.9460 35.9460 35.9460 35.9459

RBT 0 15.0130 15.0130 15.0130 15.0130 ⁄15.0130
0.5 21.5391 21.5391 21.5391 21.5391 ⁄21.5391
1 25.3553 25.3553 25.3553 25.3553 ⁄25.3553
2 29.4101 29.4101 29.4101 29.4101 ⁄29.4097
5 35.9879 35.9879 35.9879 35.9879 ⁄35.9860
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In Figs. 3 and 4, the axial and shear stresses for various theories
and gradation exponents in z and x directions are plotted, the
aspect ratio is set to L/h = 20. It is found that the axial stresses com-
puted for each theory are almost same, the difference is negligible.
It is clear that the maximum shear stress increases by increasing of
gradation exponent in z direction whereas the maximum axial
stress decreases for TBT. However, the same results are not
obtained for RBT. When the gradation exponent pz is set to 5, the



Table 5
Verification and convergence studies of the code for S-S FGB, dimensionless transverse shear stress �rxzð0;0Þ for different number of nodes and gradation exponents, L/h = 5.

Theory Number of nodes Number of nodes Analytical solution/⁄Li et al. [82]

21 41 81 161

TBT 0 0.6000 0.6000 0.6000 0.6000 0.6000
0.5 0.6272 0.6272 0.6272 0.6272 0.6272
1 0.6000 0.6000 0.6000 0.6000 0.6000
2 0.5106 0.5106 0.5106 0.5106 0.5106
5 0.3930 0.3930 0.3930 0.3930 0.3930

RBT 0 0.7500 0.7500 0.7500 0.7500 ⁄0.7500
0.5 0.7662 0.7662 0.7662 0.7662 ⁄0.7676
1 0.7500 0.7500 0.7500 0.7500 ⁄0.7500
2 0.6897 0.6897 0.6897 0.6897 ⁄0.6787
5 0.6067 0.6067 0.6067 0.6067 ⁄0.5790

Table 6
Verification and convergence studies of the code for S-S FGB, dimensionless transverse shear stress �rxzð0;0Þ for different number of nodes and gradation exponents, L/h = 20.

Theory Number of nodes Number of nodes Analytical solution/⁄Li et al. [82]

21 41 81 161

TBT 0 0.6000 0.6000 0.6000 0.6000 0.6000
1 0.6272 0.6272 0.6272 0.6272 0.6272
2 0.6000 0.6000 0.6000 0.6000 0.6000
5 0.5106 0.5106 0.5106 0.5106 0.5106
10 0.3930 0.3930 0.3930 0.3930 0.3930

RBT 0 0.7500 0.7500 0.7500 0.7500 ⁄0.7500
1 0.7662 0.7662 0.7662 0.7662 ⁄0.7676
2 0.7500 0.7500 0.7500 0.7500 ⁄0.7500
5 0.6897 0.6897 0.6897 0.6897 ⁄0.6787
10 0.6067 0.6067 0.6067 0.6067 ⁄0.5790

Table 7
Dimensionless maximum transverse deflections of the S-S FGB for different beam theories and gradation exponents, L/h = 5.

Theory pz px

0 0.5 1 2 5

EBT 0 2.8783 3.2437 3.6487 4.5720 7.8224
0.5 4.1296 4.5955 5.0960 6.1772 9.4607
1 4.8611 5.3703 5.977 7.0356 10.2286
2 5.6378 6.1810 6.7436 7.8916 10.9342
5 6.8975 7.4699 8.0458 9.1719 11.8976

TBT 0 3.1657 3.5714 4.0238 5.0595 8.6549
0.5 4.5243 5.0400 5.5961 6.8004 10.3999
1 5.3464 5.9113 6.5087 7.7623 11.2435
2 6.2679 6.8719 7.4972 8.7657 12.0524
5 7.7951 8.4266 9.0584 10.2806 13.1706

RBT 0 3.1658 3.5714 4.0237 5.0596 8.6546
0.5 4.5177 5.0327 5.5887 6.7924 10.3939
1 5.3464 5.9110 6.5085 7.7623 11.2433
2 6.3111 6.9154 7.5397 8.8052 12.0793
5 7.9761 8.5963 9.2143 10.4114 13.2574

Table 8
Dimensionless maximum transverse deflections of the S-S FGB for different beam theories and gradation exponents, L/h = 20.

Theory pz px

0 0.5 1 2 5

EBT 0 2.8783 3.2437 3.6487 4.5720 7.8224
0.5 4.1296 4.5955 5.0960 6.1772 9.4607
1 4.8611 5.3703 5.977 7.0356 10.2286
2 5.6378 6.1810 6.7436 7.8916 10.9342
5 6.8975 7.4699 8.0458 9.1719 11.8976

TBT 0 2.8963 3.2642 3.6721 4.6024 7.8742
0.5 4.1543 4.6232 5.1272 6.2161 9.5193
1 4.8915 5.4041 5.9452 7.0809 10.2919
2 5.6773 6.2241 6.7907 7.9462 11.0038
5 6.9536 7.5296 8.1090 9.2412 11.9770

RBT 0 2.8962 3.2641 3.6721 4.6023 7.8742
0.5 4.1538 4.6228 5.1267 6.2156 9.5189
1 4.8914 5.4041 5.9452 7.0808 10.2918
2 5.6799 6.2268 6.7933 7.9486 11.0055
5 6.9649 7.5402 8.1187 9.2493 11.9824
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Fig. 3. Dimensionless axial stress �rx
L
2 ; z
� 	

through the thickness of the S-S FGB for different beam theories and pz = 1, L/h = 20.

Fig. 4. Dimensionless transverse shear stress �rxzð0; zÞ through the thickness of the S-S FGB for different beam theories and px = 1, L/h = 20.

Table 9
Dimensionless maximum transverse deflections of the C-S FGB for different beam theories and gradation exponents, L/h = 5.

Theory pz px

0 0.5 1 2 5

EBT 0 1.1972 1.3301 1.4733 1.7845 2.7279
0.5 1.7176 1.8872 2.0643 2.4296 3.3975
1 2.0219 2.2072 2.3975 2.7791 3.7281
2 2.3450 2.5426 2.7419 3.1311 4.0432
5 2.8689 3.0772 3.2817 3.6642 4.4918

TBT 0 1.5275 1.6915 1.8695 2.2591 3.4454
0.5 2.1713 2.3794 2.5980 3.0524 4.2647
1 2.5797 2.8082 3.0440 3.5191 4.7064
2 3.0691 3.3145 3.5624 4.0457 5.1784
5 3.9005 4.1567 4.4065 4.8710 5.8706

RBT 0 1.5883 1.7549 1.9357 2.3312 3.5308
0.5 2.2436 2.4542 2.6758 3.1360 4.3615
1 2.6823 2.9146 3.1540 3.6363 4.8378
2 3.2683 3.5193 3.7722 4.2632 5.4062
5 4.3637 4.6197 4.8680 5.3283 6.3107
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maximum shear stress is lower than the stress obtained for the one
obtained by pz = 2. As it is expected, the shear stress is zero at the
top and the bottom surface of the beam for RBT.

5.2.2. CS two-directional FGB
In this example, the static behaviour of a clamped-simply sup-

ported two directional FGB under uniformly distributed load is
considered. The results are given in Tables 9 and 10 and Figs. 5
and 6 for different beam theories, gradation exponents and aspect
ratios. It is clear from Tables 9 and 10 that, the EBT underestimates
the transverse deflections for a thick beam, as expected it acts
Table 10
Dimensionless maximum transverse deflections of the C-S FGB for different beam theorie

Theory pz px

0 0.5

EBT 0 1.1972 1.3301
0.5 1.7176 1.8872
1 2.0219 2.2072
2 2.3450 2.5426
5 2.8689 3.0772

TBT 0 1.2178 1.3527
0.5 1.7460 1.9179
1 2.0568 2.2447
2 2.3903 2.5908
5 2.9334 3.1448

RBT 0 1.2217 1.3568
0.5 1.7506 1.9227
1 2.0634 2.2515
2 2.4030 2.6039
5 2.9631 3.1744

Fig. 5. Dimensionless axial stress �rx
L
2 ; z
� 	

through the thickness o
more stiff than the other two beam models. However, for a thin
beam (L/h = 20), the difference is negligible. The computed results
by RBT are again slightly higher than the results from TBT. As the
gradation exponents in both directions increase, the transverse
deflections increase.

The axial and shear stresses for various theories and gradation
exponents in z and x directions are given in Figs. 5 and 6, as the
aspect ratio is set to L/h = 20. Again, it is observed that the com-
puted axial stresses are almost same for each beam theory. The dif-
ferences in terms of computed results can be ignored. As gradation
exponent in x direction increases the maximum axial stress
s and gradation exponents, L/h = 20.

1 2 5

1.4733 1.7845 2.7279
2.0643 2.4296 3.3975
2.3975 2.7791 3.7281
2.7419 3.1311 4.0432
3.2817 3.6642 4.4918

1.4981 1.8142 2.7728
2.0977 2.4686 3.4518
2.4376 2.8254 3.7894
2.7932 3.1883 4.1142
3.3520 3.7398 4.5779

1.5023 1.8187 2.7782
2.1026 2.4739 3.4580
2.4449 2.8329 3.7978
2.8066 3.2021 4.1287
3.3815 3.7689 4.6059

f the C-S FGB for different beam theories and pz = 1, L/h = 20.



Fig. 6. Dimensionless transverse shear stress �rxzð0; zÞ through the thickness of the C-S FGB for different beam theories and px = 1, L/h = 20.

Table 11
Dimensionless maximum transverse deflections of the C-C FGB for different beam theories and gradation exponents, L/h = 5.

Theory pz px

0 0.5 1 2 5

EBT 0 0.5757 0.6526 0.7352 0.9111 1.4013
0.5 0.8259 0.9238 1.0250 1.2279 1.7179
1 0.9722 1.0791 1.1871 1.3972 1.8722
2 1.1276 1.2414 1.3541 1.5664 2.0180
5 1.3795 1.4992 1.6139 1.8199 2.2239

TBT 0 0.8630 0.9793 1.1054 1.3781 2.1431
0.5 1.2206 1.2206 1.5203 1.8316 2.5887
1 1.4576 1.4576 1.7832 2.1056 2.8313
2 1.7576 1.7576 2.1029 2.4249 3.0947
5 2.2770 2.2770 2.6228 2.9182 3.4756

RBT 0 0.9349 1.0616 1.1988 1.4952 2.3135
0.5 1.3081 1.4666 1.6324 1.9694 2.7793
1 1.5789 1.5789 1.9332 2.2820 3.0541
2 1.9786 1.9786 2.3546 2.6978 3.3912
5 2.7652 2.7652 3.1075 3.3916 3.9198

Table 12
Dimensionless maximum transverse deflections of the C-C FGB for different beam theories and gradation exponents, L/h = 20.

Theory pz px

0 0.5 1 2 5

EBT 0 0.5757 0.6526 0.7352 0.9111 1.4013
0.5 0.8259 0.9238 1.0250 1.2279 1.7179
1 0.9722 1.0791 1.1871 1.3972 1.8722
2 1.1276 1.2414 1.3541 1.5664 2.0180
5 1.3795 1.4992 1.6139 1.8199 2.2239

TBT 0 0.5936 0.6731 0.7583 0.9403 1.4477
0.5 0.8506 0.9515 1.0559 1.2656 1.7724
1 1.0003 1.1128 1.2244 1.4415 1.9322
2 1.1670 1.2845 1.4009 1.6200 2.0854
5 1.4356 1.5589 1.6770 1.8886 2.3022

RBT 0 0.5981 0.6782 0.7642 0.9477 1.4586
0.5 0.8561 0.9577 1.0629 1.2743 1.7845
1 1.0101 1.1213 1.2338 1.4526 1.9463
2 1.1808 1.2993 1.4166 1.6371 2.1040
5 1.4661 1.5894 1.7072 1.9182 2.3299
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decreases. It is found that the maximum shear stress value is
obtained based on TBT for pz = 5, however RBT yields the maxi-
mum for pz = 2.

5.2.3. CC two-directional FGB
The dimensionless maximum transverse deflections and the

axial and shear stresses of the clamped-clamped FGB are investi-
gated in the third example. The computed results are given in
Tables 11 and 12 and Figs. 7 and 8. It is clear in that the transverse
deflections increase as the power low index increases. When the
RBT and TBT are employed, the difference is significant for the
aspect ratio which is set to L/h = 5.

In Figs. 7 and 8, the axial and shear stresses for various theories
and gradation exponents in z and directions are given for a
clamped-clamped FGB where the aspect ratio is set to L/h = 20. It
is found that the computed axial and shear stresses are almost



Fig. 7. Dimensionless axial stress �rx
L
2 ; z
� 	

through the thickness of the C-C FGB for different beam theories and pz = 1, L/h = 20.

Fig. 8. Dimensionless transverse shear stress �rxzð0; zÞ through the thickness of the C-C FGB for different beam theories and px = 1, L/h = 20.

Table 13
Dimensionless maximum transverse deflections of the C-F FGB for different beam theories and gradation exponents, L/h = 5.

Theory pz px

0 0.5 1 2 5

EBT 0 27.6324 28.9040 30.2570 33.1881 43.3767
0.5 39.6381 41.2764 42.9833 46.5753 58.0487
1 46.6597 48.4570 50.3113 54.1526 65.9210
2 54.1156 56.0402 58.0056 62.0128 73.8132
5 66.2063 68.2476 70.2990 74.3814 85.7472

TBT 0 28.7811 30.1520 31.6085 34.7720 45.7606
0.5 41.2228 42.9784 44.8109 48.6733 60.9781
1 48.6080 50.5371 52.5297 56.6592 69.2494
2 56.6437 58.7142 60.8281 65.1309 77.6954
5 69.8064 71.9918 74.1824 78.5227 90.4724

RBT 0 29.3220 30.6968 32.1525 35.3590 46.4132
0.5 41.9632 43.8175 45.5368 49.4849 61.7540
1 49.5423 51.4136 53.4684 57.5021 70.1904
2 58.1429 60.2877 62.3212 66.7952 79.2699
5 72.9688 75.2389 77.1708 81.4229 93.1938
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same with the CS FGB. As the power lax index increases in z direc-
tion, the dimensionless axial stress �rx decreases.

5.2.4. CF two-directional FGB
Finally, the results of elastostatic analysis of the CF FGB under

uniformly distributed load are given in this example for various
beam theories, gradation exponents and aspect ratios. As it is
seen from Tables 13 and 14, the transverse deflections increase
as the gradation exponent increases. Due to the higher stiffness,
the dimensionless maximum transverse deflections values com-
puted based on the EBT are smaller than the ones obtained by
TBT and RBT for the aspect ratio set to 5. However, the computed
results are very close to each other when the aspect ratio is set to
20.
Table 14
Dimensionless maximum transverse deflections of the C-F FGB for different beam theorie

Theory pz px

0 0.5

EBT 0 27.6324 28.9040
0.5 39.6381 41.2764
1 46.6597 48.4570
2 54.1156 56.0402
5 66.2063 68.2476

TBT 0 27.7034 28.9853
0.5 39.7427 41.3876
1 46.7880 48.5927
2 54.2813 56.2140
5 66.4406 68.4900

RBT 0 27.7394 29.0211
0.5 39.7882 41.4327
1 46.8487 48.6546
2 54.3809 56.3139
5 66.6396 68.6859

Fig. 9. Dimensionless transverse deflection values of the C-FFGB for diffe
In Fig. 9, the dimensionless transverse deflections of the CF FGB
are plotted for various beam theories. The gradation exponent in z
direction pz is set to 1. The effect of the varying gradation exponent
in x direction px is observed for the transverse deflections. As the
gradation exponent in x direction increases, the deflections
increase. Again, smaller deflections are obtained by using the EBT
formulation.

It is observed that the dimensionless axial stress values com-
puted by using EBT, TBT and RBT formulation are almost same,
as shown in Fig. 10. The dimensionless shear stress values are
shown in Fig. 11. As it is seen, the shear stress value obtained by
the TBT is higher than the RBT. However, the computed shear
stress values at the top and the bottom surface are zero, as
expected based on the RBT formulation.
s and gradation exponents, L/h = 20.

1 2 5

30.2570 33.1881 43.3767
42.9833 46.5753 58.0487
50.3113 54.1526 65.9210
58.0056 62.0128 73.8132
70.2990 74.3814 85.7472

30.3443 33.2894 43.5279
43.1017 46.7100 58.2355
50.4551 54.3137 66.1338
58.1881 62.2130 74.0616
70.5494 74.6473 86.0501

30.3809 33.3261 43.5644
43.1474 46.7562 58.2821
50.5149 54.3753 66.1949
58.2881 62.3121 74.1563
70.7424 74.8339 86.2201

rent beam theories and gradation exponents in x direction, L/h = 20.



Fig. 10. Dimensionless axial stress �rx
L
2 ; z
� 	

through the thickness of the C-F FGB for different beam theories and pz = 1, L/h = 20.
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Fig. 11. Dimensionless transverse shear stress �rxzð0; zÞ through the thickness of the C-F FGB for different beam theories and px = 1, L/h = 20.
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6. Conclusion

The SSPH basis functions are employed to analyze the elasto-
static behaviour of the two directional functionally graded beams
subjected to different sets of boundary conditions and uniformly
distributed load by using strong formulation of the problem. The
EBT, TBT and RBT formulations are used to evaluate the transverse
deflections, axial and shear stresses of two directional FGBs. The
developed code is verified by using the results form previous stud-
ies and the analytical solutions. The numerical calculations are per-
formed by using 161 nodes uniformly distributed in the problem
domain and by employing 7 terms in the TSEs.

It is found that the SSPH method provides satisfactory expected
results at least for the problems studied here. Based on the results
of four numerical examples it is recommended that the SSPH
method can be applied for solving linear two directional function-
ally graded beam problems by employing different shear deforma-
tion theories.
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