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A B S T R A C T

Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, im-
pairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA
lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar
disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications
were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass
spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar
disorder (n=32) and healthy individuals (n=51). The expression of DNA repair enzymes OGG1 and NEIL1
were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were
measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of
patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels
in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker mal-
ondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients com-
pared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results
suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in
bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions
and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical
studies of bipolar disorder.

1. Introduction

Bipolar disorder (BD) is a chronic, severe and highly disabling
psychiatric disorder, which is considered as one of the leading causes of
disability amongst all medical and psychiatric conditions [1–3]. BD has
previously been associated with increased mortality and morbidity due

to general medical conditions such as cardiovascular, metabolic or in-
flammatory diseases [4–12]. Despite vast uncertainties about the un-
derlying molecular mechanisms, recent evidence has shown that in-
creased oxidatively-induced DNA damage may have a central role in the
pathophysiology of BD and increased cellular aging and comorbidity in
BD [13–15]. Oxygen-derived free radicals are constantly generated as
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by-products of aerobic metabolism. Oxidative stress occurs when en-
zymatic and non-enzymatic antioxidant defense systems are over-
whelmed by elevated levels of oxygen-derived free radicals [16]. Oxi-
dative stress damages biological molecules such as DNA, proteins and
lipids, causing multiple forms of DNA damage including base and sugar
modifications, strand breaks and DNA-protein cross-links [17]. Oxida-
tively-induced damage to DNA can initiate mutagenic processes and
early aging [18]. This type of DNA damage has been shown to play a
role in the pathophysiology of cardiovascular diseases, diabetes mel-
litus, various cancers and psychiatric disorders including BD [18–20].
Previous studies focusing on antioxidant enzymes and oxidatively-in-
duced damage to proteins and lipids in BD reported consistent and
significant alterations in antioxidant enzymes, lipid peroxidation and
nitric oxide levels [21–23]. Increased levels of DNA single- or double-
strand breaks have been shown in both postmortem brain tissues
[24–26] and lymphocytes of patients with BD [27]. Moreover, levels of
8-hydroxy-2′-deoxyguanosine (8-OH-dG) have been reported to be in-
creased in blood [28,29] and urine samples of patients with BD [30,31].
Despite a plethora of known oxidatively-induced DNA base lesions,
previous research in psychiatric disorders focused on 8-OH-dG only
[20]. Therefore, there are no data on the alterations of the levels of
DNA base lesions other than that of 8-OH-dG in BD.

Various DNA repair mechanisms exist to repair oxidatively-induced
DNA base damage. The base excision repair (BER) is the major me-
chanism for the repair of this type of DNA damage. It recognizes and
removes modified DNA bases by DNA glycosylases, followed by the
activity of other enzymes to complete DNA repair [32–34]. In BER,
OGG1 is a specific enzyme for the excision of 8-OH-Gua and 2,6-dia-
mino-4-hydroxy-5-formamidopyrimidine (FapyGua), whereas 4,6-dia-
mino-5-formamidopyrimidine (FapyAde) and FapyGua are removed by
NEIL1 and NEIL3, but not 8-OH-Gua [34]. Two studies showed that
increases in expression of OGG1 were associated with depressive
symptoms in cancer patients [35,36]. A decrease in BER capacity in
recurrent depressive disorder [37], and down regulated OGG1 levels in
rapid-cycling BD [38] have also been reported.

The objective of the present study was to investigate a more ex-
tensive set of markers of oxidatively-induced DNA damage and DNA
repair enzymes in DNA samples isolated from leukocytes of euthymic
patients with BP in comparison to healthy individuals.

2. Materials and methods

2.1. Participants

Patients with BD (n=32) and healthy individuals (n=51) were
included in this study. The patients who had been euthymic for at least
6 months were recruited from the Bipolar Disorders Outpatient Unit,
Department of Psychiatry, Dokuz Eylul University, Izmir, Turkey.
Diagnoses were confirmed using the Structured Clinical Interview for
the Diagnostic Manual of Mental Disorders [39] and clinical variables
were recorded by experienced clinicians of the research team. Patients
with neurological disorders, history of head trauma, chronic medical
condition (e.g., hypertension, diabetes mellitus) and substance use were
excluded. Other exclusion criteria included comorbid Axis I psychiatric
diagnosis, neurodegenerative diseases, epilepsy or previous brain sur-
gery, auditory or visual impairment, and being pregnant or breast-
feeding. Symptomatic severity was assessed using Young Mania Rating
Scale (YMRS) [40], Hamilton Depression Scale-17 (HAM-D) [41],
Clinical Global Impression Scale (CGI) [42] and Global Assessment of
Functionality (GAF) [43]. Healthy individuals with no known medical
problems, no family history of major psychiatric or no neurological
disorders, including dementia, mental retardation, cancer, cardiovas-
cular disease or diabetes mellitus in the first-degree relatives or psy-
chiatric history were enrolled in this study. Psychiatric conditions of the
healthy individuals were confirmed by the Structural Clinical Interview
for DSM-IV interview [38]. The study was approved by Dokuz Eylul

University Hospital Ethics Committee (Approval date: 12.07.2012;
protocol no: 2012/16-13). All participants provided written informed
consent.

2.2. Collection of the blood samples

Each participant provided 10mL blood sample collected in EDTA-
coagulated tubes (for leukocyte, RNA and plasma isolation) by veni-
puncture. At the day of the venipuncture, leukocytes were isolated from
blood samples by density gradient separation using Histopaque-1119
and total RNA was extracted from 500 μL blood samples using GeneJet
RNA Purification Kit (Fermentas, MA, USA). Leukocytes were frozen at
−80 °C until DNA isolation. The RNA samples were frozen at −80 °C
until they were converted to first-strand cDNA with an oligo-2′-deox-
ythymidine (dT) 18 primer. The RNA samples were converted to first-
strand cDNA using the First Strand cDNA Synthesis Kit (Fermentas, MA,
USA) and were frozen at −80 °C until quantitative real-time poly-
merase chain reaction (QRT-PCR) was performed.

2.3. DNA isolation and analysis

DNA was isolated from leukocytes by using salting-out/NaCl
method [44]. DNA concentration was measured by recording the UV
spectrum of each sample using an absorption spectrophotometer be-
tween the wavelengths of 200 nm and 350 nm. The absorbance at
260 nm was used to measure the DNA concentration. Subsequently,
50 μg aliquots of DNA samples were dried in a SpeedVac under vacuum.
According to a Material Transfer Agreement between Dokuz Eylul
University, Izmir, Turkey and National Institute of Standards and
Technology (NIST), Gaithersburg, MD, USA, DNA samples were sent to
NIST for analysis by gas chromatography-tandem mass spectrometry
(GC–MS/MS) and liquid chromatography-tandem mass spectrometry
(LC–MS/MS).

2.4. Gas chromatography-tandem mass spectrometry

GC–MS/MS with isotope dilution was used to identify and quantify
FapyAde, FapyGua, 8-OH-Gua, thymine glycol (ThyGly), 5-hydro-
xycytosine (5-OH-Cyt) and 5-hydroxy-5-methylhydantoin (5-OH-5-
MeHyd). Aliquots (50 μg) of DNA samples were supplemented with
aliquots of internal standards FapyAde-13C,15N2, FapyGua-13C,15N2, 8-
OH-Gua-15N5, ThyGly-2H4, 5-OH-Cyt-13C,15N2 and 5-OH-5-
MeHyd-13C,15N2. DNA samples were dissolved in 50 μL of an incubation
buffer consisting of 50mM phosphate buffer (pH 7.4), 100mM KCl,
1 mM EDTA, and 0.1mM dithiothreitol, and then incubated with 2 μg of
E. coli Fpg and 2 μg of E. coli Nth for 1 h at 37 °C to release DNA base
lesions from DNA. Subsequently, 100 μL ethanol were added to pre-
cipitate DNA. After centrifugation, supernatant fractions were sepa-
rated, lyophilized and trimethylsilylated. Derivatized samples were
analyzed by GC–MS/MS as described previously [45].

2.5. Liquid chromatography-tandem mass spectrometry

LC–MS/MS with isotope dilution was used to measure the levels of
(5′S)-8,5′-cyclo-2′-deoxyadenosine (S-cdA) and 8-OH-dG, which is the
2′-deoxynucleoside form of 8-OH-Gua. Aliquots of S-cdA-15N5 and 8-
OH-dG-15N5 as internal standards were added to an aliquot of 50 μg of
DNA samples, which were then dried in a SpeedVac. Subsequently,
DNA samples were hydrolyzed with a mixture of nuclease P1, phos-
phodiesterase I and alkaline phosphatase according to a published
procedure [45]. All samples were filtered using Millipore Microcon
Ultracel YM-3 ultrafiltration membranes (Millipore, Bedford, MA) with
molecular mass cutoff of 3 kDa by centrifugation at 12000xg for 30min.
LC–MS/MS analyses were performed using a Thermo-Scientific Fin-
nigan TSQ Quantum Ultra AM triple quadrupole MS/MS system with an
installed heated electrospray-ionization source, as described previously
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[46]. Hydrolyzed DNA samples (20 μL injection volume, no waste
mode) were analyzed using a Zorbax SB-Aq rapid resolution narrow-
bore LC column (2.1mm x 150mm, 3.5 μm particle size) (Agilent
Technologies, Wilmington, DE) with an attached Agilent Eclipse XDB-
C8 guard column (2.1mm×12.5 mm, 5 μm particle size). In all in-
stances, the autosampler and column temperature were kept at 5 °C and
40 °C, respectively. Mobile phases A and B were water and acetonitrile,
respectively, both containing 0.1% formic acid (v/v). A gradient ana-
lysis of 3% (v/v) of B/min starting from 98% A/2% B (v/v) was used.
After 6min, B was increased to 60% in 0.1min and kept at this level for
1min and then another 13min at 2% to equilibrate the column. The
flow rate was 0.5 mL/min and the total analysis time was 20min.
Analysis by LC–MS/MS was performed using selected-reaction mon-
itoring mode with the mass transitions m/z 284→m/z 168 and m/z
289→m/z 173 for 8-OH-dG and 8-OH-dG-15N5, respectively, and with
the mass transitions m/z 250→m/z 164 and m/z 255→m/z 169 for S-
cdA and S-cdA-15N5 respectively.

2.6. Measurement of the expression levels of DNA repair enzymes

The mRNA expression levels of human OGG1 and human NEIL1
were determined in samples of BD patients (n=17) and healthy in-
dividuals (n=19). Expressions of NEIL1 and OGG1 were measured by
QRT-PCR using Maxima Sybr Green qPCR Master Mix (2x) (Fermentas,
MA, USA) Kit. β-Actin was used as housekeeping gene. The amplifica-
tion was performed in Light Cycler 1.5 (Roche Applied Science,
Penzberg, Germany). Three independently prepared samples were used
for each data point. The difference of cycle of threshold (Ct) between
reference and target gene locus was observed by normalizing using
housekeeping gene and calculating ΔΔCt ratio (ΔΔCt= ΔCt
sample− ΔCt reference). Gene expression levels were calculated using
the formula 2–ΔΔCt [47,48].

2.7. Measurement of malondialdehyde

Malondialdehyde was extracted and analyzed according to a pre-
viously described method with slight modifications [49]. Briefly 40 μL
plasma was diluted with 100 μL of H2O and mixed with 20 μL of
2.8 mmol/L BHT in 95% ethanol, 40 μL of 81 g/L sodium dodecyl sul-
fate, and 600 μL of thiobarbituric acid (TBA) reagent consisting of 8 g/L
TBA diluted 1:1 with 200mL/L acetic acid adjusted to pH 3.5 with
NaOH. The mixture was immediately incubated in a 90 °C water bath
for 60min and cooled on ice; 200 μL of H2O and 1mL of butanol-pyr-
idine (15:1 by vol.) were then added. After vigorous mixing, the organic
layer was separated by centrifugation (10min at 10000 rpm). An ali-
quot (10 μL) was directly injected onto the high-performance liquid
chromatography (HPLC). Calibration curves were constructed using
1,1,3,3-tetraethoxypropane (0.75 μmol/L–40 μmol/L). The separation

of the extracts was performed on an automated Shimadzu HPLC system
(VP Series, Kyoto, Japan). The analytical column was a reverse phase
silica based C18 column (GL Sciences/Inertsil ODS-3), with column
dimensions of 150× 4.6mm, 5 μm. The mobile phase consisted of 70%
10mM KH2PO4, pH 7.0 and 30% MeOH. The sample run was 5min,
with a flow rate of 0.8mL/min, and fluorescence detection at 515 nm
(excitation) and 553 nm (emission).

2.8. Statistical analyses

The IBM SPSS Statistics 23.0 (Chicago IL, USA) for Windows was
used for data analysis. The Shapiro-Wilk’s test was used to confirm
normal distribution for continues variables. Where necessary, loga-
rithmic transformations were applied in order to improve normality.
Subsequently, transformed data were reassessed for normality. Group
differences on continuous variables regarding demographic and clinical
variables were evaluated with independent samples t-test. Chi-Square
test was used to examine categorical data.

The statistical analysis of the GC–MS/MS and LC–MS/MS data was
performed using the GraphPad Prism 7.01 software (La Jolla, CA, USA)
and the unpaired, two-tailed nonparametric Mann Whitney test with
Gaussian approximation and confidence level of 95%–99%. A p-
value < 0.05 was assumed to correspond to statistically significant
difference between medians.

3. Results and discussion

Sociodemographic and clinical characteristics of the BD patients and
healthy individuals are described in Table 1. The groups did not differ
from each other with regard to gender, age or smoking. One of the
patients was drug-free, 9 patients were on mood-stabilizers as mono-
therapy (lithium or valproate), 19 patients were receiving a mood-
stabilizer in combination with a second generation-antipsychotic, and
one patient was receiving a mood-stabilizer in combination with an
antidepressant. We identified and quantified six DNA base lesions by
GC–MS/MS and two modified 2′-deoxynucleosides by LC–MS/MS in
DNA samples from both BD patients and healthy individuals. The
structures of these lesions are given in Fig. 1. It should be noted that 8-
OH-dG is the 2′-deoxynucleoside form of 8-OH-Gua. Fig. 2A–H show the
levels of the lesions shown in Fig. 1. A large group of samples was used
for the measurements by GC–MS/MS. S-cdA and 8-OH-dG were mea-
sured in the remaining samples by LC–MS/MS. In various samples,
some lesions could not be quantified with certainty. Therefore, the
number of patient samples and that of healthy individual samples in the
figures somewhat differ from lesion to lesion. The number of samples in
each case is given in the legends of the figures. The levels of FapyAde,
FapyGua and 5-OH-5-MeHyd in BD patients were significantly greater
than those in healthy individuals. The confidence level was even 99%

Table 1
Demographic and clinical characteristics of the participants. Uncertaities are standard deviations.

BD patients (n=32) Healthy individuals (n=51) p-value

Gender (number of females; their percentage)a 20; 62.5% 30; 58.8% 0.74
Ageb 37.63 ± 9.96 36.28 ± 11.45 0.58
Smoking status (number of smokers; their percentage)a 15; 46.9% 16; 31.4% 0.16
Age of onset of illnessb 26.83 ± 10.21
Duration of illness (years)b 10.63 ± 8.72
Total number of episodesb 5.63 ± 4.34
Number of manic episodesb 3.20 ± 2.59
Number of depressive episodesb 2.20 ± 2.46
Clinical Global Impressions scaleb 1.23 ± 0.43
Global assessment of functionalityb 86 ± 6.21
Hamilton Depression Scaleb 1.17 ± 1.49
Young Mani Rating Scaleb 0.47 ± 0.97

a Chi-Square.
b independent samplest test.
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for the latter two lesions. No significant difference between the levels of
other lesions was observed when both groups were compared. Simi-
larly, patient and healthy individual groups did not differ significantly
with regard to the levels of malondialdehyde (Fig. 3). Fig. 4 illustrates
the expression levels of OGG1 and NEIL1. The expression level of OGG1
in BD patients was 43% lower than that in healthy individuals and the
difference between the two groups was significant after adjusting for
age, gender and smoking (F= 3.278, df= 4, p=0.007). On the other
hand, no significant difference was observed between the expression
levels of NEIL1 in both groups (p=0.49) (Fig. 4).

Our results show that oxidatively-induced DNA damage occurs in
DNA of BD patients compared to healthy individuals. Three out of the 8
DNA lesions measured in the present work exhibited significantly
greater levels in BD patients than those in healthy individuals. To the
best of our knowledge, this is the first study assessing different types of
DNA lesions, representing oxidatively-induced damage to all four DNA
bases in BD patients. The current knowledge on DNA base damage in
BD has been based on the levels of 8-OH-dG only, which has been
mostly measured as “the most prominent DNA base lesion” in biological
samples because of the limitations of the methodologies used.
Therefore, there were no available data on the lesions derived from
adenine, cytosine and thymine, and one other important lesion of
guanine, i.e., FapyGua. To this end, it is well known that hydroxyl ra-
dical attack on Gua produces both 8-OH-Gua and FapyGua by oxidation

and reduction of the same Gua–OH-adduct radical, respectively.
Moreover, the yields of these products depend on the reaction condi-
tions [50].

In the present work, 8-OH-Gua and 8-OH-dG were measured by two
different techniques. It is important to note that GC–MS/MS and
LC–MS/MS yielded almost identical levels of these compounds. In both
cases, the levels 8-OH-Gua and 8-OH-dG did not differ between BD
patients and healthy individuals. In contrast, the level of FapyGua was
found to be significantly greater in BD patients than in healthy in-
dividuals (p=0.006 with the confidence level of 99%). Thus, our re-
sults clearly show that the measurement of one DNA lesion such as 8-
OH-dG (or 8-OH-Gua) only does not necessarily prove whether DNA
damage in a given biological system occurs or not. Past published data
on 8-OH-dG in BD patients differed among the studies. For example, a
meta-analysis of the existing data [51] and more recent studies [29,30]
showed greater levels of 8-OH-dG in BD patients than in healthy in-
dividuals, whereas several other studies reported unchanged levels of 8-
OH-dG in both cases [28,30,52]. The discrepancy among these findings
may be due to the methodological differences between the studies, and
to the differences between clinical features of the study populations
including illness state, course of illness, medications, smoking status,
etc.

We also measured the expression levels of OGG1 and NEIL1 in both
BD patients and healthy individuals. The expression level of OGG1 was

Fig. 1. The structures of the DNA lesions measured in this work.
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Fig. 2. The levels of DNA lesions. A: FapyAde in healthy individuals (n=33) and BD patients (n=25); B: FapyGua in healthy individuals (n=32) and BD patients
(n=24); C: 8-OH-Gua in healthy individuals (n=36) and BD patients (n=27); D: 8-OH-dG in healthy individuals (n=11) and BD patients (n=7); E: 5-OH-5-
MeHyd in healthy individuals (n=25) and BD patients (n=16); F: 5-OH-Cyt in healthy individuals (n=35) and BD patients (n=21); G: ThyGly in healthy
individuals (n=28) and BD patients (n=16); H: S-cdA in healthy individuals (n=17) and BD patients (n=9). Uncertainties are standard deviations.
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found to be lower in BD patients than in healthy individuals. This is on
a par with the previously reported down-regulated OGG1 expression in
a rapid-cycling group of BD patients [38]. On the other hand, no ele-
vation of NEIL1 expression was observed in BD patients. OGG1 and
NEIL1 are bifunctional DNA glycosylases that are involved in the first
step of the BER pathway to remove modified DNA bases from damaged
DNA [32–34]. Their specificities differ from each other in that OGG1
removes FapyGua and 8-OH-Gua with similar excision kinetics,
whereas NEIL1 is mainly specific for FapyAde and FapyGua, and to a
lesser extent for 5-OH-5-MeHyd and ThyGly, but not for 8-OH-Gua
[34]. In general, DNA glycosylases possess broad specificities for re-
moval of DNA base lesions. For example, besides NEIL1, NTH1 and
NEIL3 are specific for FapyAde removal in mammalian cells. The latter
also removes FapyGua. NTH1 is the major DNA glycosylase that acts on
ThyGly and 5-OH-Cyt in mammalian cells [33,34]. Therefore, the cor-
relation of the levels of DNA base lesions with the expression levels of
DNA glycosylases is quite complex, and not well understood. Low ex-
pression level of OGG1 in BD patients may be one of the factors leading
to the greater level of FapyGua. On the other hand, similar levels of
NEIL1 in both groups did not seem to affect the significant accumula-
tion of FapyAde and 5-OH-5-MeHyd in BD patients. To this end, it is
well known that various polymorphic variants of NEIL1 exist in human
population such as NEIL1-Ser82Cys, NEIL1-Gly83Asp, NEIL1-Cy-
s136Arg, NEIL1-Asp252Asn and NEIL1-Pro208Ser (reviewed in
[33,34]). Among these variants, NEIL1-Gly83Asp and NEIL1-Cy-
s136Arg have been shown to be completely devoid of glycosylase ac-
tivity. Furthermore, NEIL1-Gly83Asp and NEIL1-Cys136Arg had sig-
nificantly reduced activity. Such polymorphic variants may affect their
binding, catalytic activity or protein–protein interaction with other
DNA repair proteins such as PARP1, XRCC1 and CSB. These effects may
cause the accumulation of typical substrates of NEIL1 such as FapyAde,
FapyGua and 5-OH-5-MeHyd, as was found in this work. Future studies
might include exomic sequencing of the NEIL1 gene to examine for such
polymorphisms in BD patients.

The increased levels of oxidatively induced DNA lesions observed
might be explained by increased oxidative stress in BD. Previous studies
reported several alterations in oxidative markers including lipid per-
oxidation markers, antioxidant enzymes and nitric oxide levels in BD
[53,54]. Malondialdehyde has been one of the most consistent lipid
peroxidation marker that was found to be elevated in BD [55].

However, our results demonstrated no significant alterations in mal-
ondialdehyde levels, implying unchanged levels of oxidative stress load
in the patient population compared to healthy individuals.

Several studies suggest that BD is associated with increased in-
cidence for several medical comorbidities including cardiovascular,
endocrine, inflammatory diseases [4–12], as well as various types of
cancers [56–59]. DNA damage and reduced DNA repair capacity have
been suggested to be one of the key mechanisms that underlie high
clinical comorbidity, vulnerability to several cancers, neurocognitive
decline and early aging in BD patients [13–15]. Some of the DNA base
lesions identified in this work are strongly mutagenic and thus may
contribute to those symptoms and others in BD patients. Thus, 8-OH-
Gua and FapyGua pair with non-cognate Ade and lead to G→ T
transversion mutations [60–64]. The level of 8-OH-Gua was not in-
creased in BD patients; however, 8-OH-Gua is readily oxidized, leading
to the formation of spiroiminohydantoin (Sp) and 5-guanidinohy-
dantoin (Gh), which exhibit mutagenic effects as well as cytotoxic ef-
fects [65]. Sp and Gh were not measured in the present work. Facile
oxidation of 8-OH-Gua may prevent its accurate measurement in vivo.
FapyAde leads to A→ T transversions and is mutagenic, albeit to a
lesser extent than FapyGua [66]. 5-OH-5-MeHyd can be a lethal or
mutagenic lesion, because it constitutes a replication block for some
DNA polymerases or is by-passed by low fidelity polymerases [67–70]
(for more information on the mutagenic effects of oxidatively-induced
DNA base lesions identified in this work, see reviews [33] and [71]).

Clinical characteristics of the patient population of this study needs
consideration while interpreting our results. It is important to note that
our study population consisted of only euthymic patients with BD.
Previously, manic or depressive patients were shown to have higher
levels of 8-OH-dG lesions than euthymic patients [28,31]. Further
studies are needed to identify different types of DNA lesions presenting
oxidatively-induced damage to all DNA bases measured in this study
and DNA repair enzyme profiles across different states of BD (mania,
depression and euthymia). Smoking status of participants might affect
the levels of DNA damage/repair [72,73]. In this work, however,
double comparisons between smokers and non-smokers did not show
any significant difference with respect to DNA lesions and DNA glyco-
sylases (Table 2).

Medication effect is the other parameter that requires attention
while studying DNA damage in any patient population. Our patient
population was predominantly on mood stabilizing medications (i.e.,
lithium or valproate). Previous evidence suggested that lithium and
valproate treatments may have antioxidant properties [74–79], and
may decrease DNA damage [24,74–79]. However, some studies showed
similarly higher 8-OH-dG levels in both unmedicated [29] and medi-
cated patient populations [27,28,30,31], leaving the effect of psycho-
tropic medications on DNA damage equivocal. Future prospective stu-
dies specifically designed to understand the effects of mood stabilizing
treatments on DNA damage/repair processes are needed.

In conclusion, our results show enhanced levels of several oxida-
tively-induced DNA base lesions and reduced levels of OGG1 in leu-
kocytes of patients with BD when compared with healthy individuals.
These findings suggest a defect in base excision repair in BD.
Measurement of oxidatively-induced DNA base lesions and expression
levels of DNA repair enzymes may be of great importance for large scale
basic research and clinical studies of BD, contributing to a compre-
hensive understanding of the DNA damage/repair mechanisms in BD.
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Table 2
Comparisons of markers between smokers and non-smokers. Uncertainties are
standard deviations.

Non-smoker
participants
(n=31)

Smoker
participants
(n=52)

p-valuea

DNA lesion (lesions/106 DNA bases)
FapyAde 1.06 ± 1.11 1.35 ± 1.26 0.249
FapyGua 0.90 ± 0.80 1.22 ± 1.10 0.234
8-OH-Gua 6.30 ± 4.44 5.15 ± 3.12 0.484
8-OH-dG 8.38 ± 3.77 8.32 ± 5.59 1.000
5-OH-5-MeHyd 4.38 ± 1.75 5.27 ± 1.94 0.140
5-OHeCyt 5.25 ± 2.03 5.85 ± 1.84 0.360
ThyGly 0.57 ± 0.39 0.67 ± 0.47 0.788
S-cdA 0.03 ± 0.02 0.03 ± 0.02 0.357

Malondialdehyde
(μmol/L)

3.06 ± 1.25 3.08 ± 1.11 0.843

DNA glycosylases
OGG1 (ΔCt) 6.31 ± 0.83 6.46 ± 0.89 0.566
NEIL1 (ΔCt) 2.76 ± 0.47 2.77 ± 0.51 0.986

Ct: cycle of threshold; ΔCt: the difference of Ct between target gene and β-actin
(housekeeping) gene.

a Mann-Whitney U test.
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