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Abstract: In this article, we obtain new fractional solutions of the general class of non-Fuchsian
differential equations by using discrete fractional nabla operator ∇η(0 < η < 1). This operator
is applied to homogeneous and nonhomogeneous linear ordinary differential equations. Thus,
we obtain new solutions in fractional forms by a newly developed method.
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1. Introduction

The history of fractional mathematics dates back to Leibniz (1695). This field of work is rapidly
increasing and, nowadays, it has many applications in science and engineering [1–4]. Heat transfer,
diffusion and Schrödinger equation are some fields where fractional analysis is used.

A similar theory was started for discrete fractional analysis and the definition and properties
of fractional sums and differences theory were developed. Many articles related to this topic have
appeared lately [5–18].

In 1956 [5], differences of fractional order was first introduced by Kuttner. Difference of fractional
order has attracted more interest in recent years.

Diaz and Osler [6], defined the notion of fractional difference as follows

∆ςΦ(t) =
∞

∑
k=0

(−1)k
(

ς

k

)
Φ(t + ς− k)

where ς is any real number.
Granger and Joyeux [19] and Hosking [20], defined notion of the fractional difference as follows

∇ςΦ(t) = (1− q)ςΦ(t)
∞

∑
k=0

(−1)k Γ(ς + 1)
Γ(k + 1)Γ(ς− k + 1)

qkΦ(t)

=
∞

∑
k=0

(−1)
(

ς

k

)
Φ(t− k),

where ς is any real number and qΦ (t) = Φ (t− 1) is the shift operator. Gray and Zhang [21], Acar and
Atici [10] studied on a new definition and characteristics of the fractional difference.

2. Preliminary and Properties

In this section, we first present sufficient fundamental definitions and formulas so that the article
is self-contained.
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The rising factorial power tm (t to the m rising, m ∈ N) is defined by

tm = t (t + 1) (t + 2) ... (t + m− 1) , t0 = 1.

Let σ be any real number. Then “t to the σ rising” is defined to be

tσ =
Γ (t + σ)

Γ (t)
, t ∈ R− {...,−2,−1, 0} , 0σ = 0. (1)

Also, the ∇ operator of Equation (1) is given by

∇(tσ) = ∇Γ(t + σ)

Γ(t)

=
Γ(t + σ)

Γ(t)
− Γ(t− 1 + σ)

Γ(t− 1)

=
(t− 1 + σ)Γ(t− 1 + σ)

Γ(t)
− Γ(t− 1 + σ)

Γ(t− 1)

=
Γ(t− 1 + σ)

Γ(t− 1)

(
t− 1 + σ

t− 1
− 1

)

= σ
Γ(t− 1 + σ)

Γ(t)

= σtσ−1

(2)

where ∇u (t) = u (t)− u (t− 1) .
Let η ∈ R+ such that m− 1 ≤ η < m, m ∈ N. The ηth-order fractional nabla sum of g is given by

∇−η
b g (t) =

1
Γ (η)

t

∑
s=b

(t− δ (s))η−1 g (s) , (3)

where t ∈ Nb = {b}+N0 = {b, b + 1, b + 2, ...} , b ∈ R, δ (s) = s− 1 is backward jump operator. Also,
we define the trivial sum by ∇−0

b g (t) = g (t) for t ∈ Nb.
The ηth-order Riemann-Liouville type nabla fractional difference of g is defined by

∇η
b g (t) = ∇m

[
∇−(m−η)g (t)

]
(4)

= ∇m

[
1

Γ(m− η)

t

∑
s=b

(t− δ(s))m−η−1g(s)

]
,

where g : N+
b −→ R [10].

Theorem 1 ([16]). Let f and g : N+
0 −→ R, γ, φ > 0. Then

∇−γ∇−φ f (t) = ∇−(γ+φ) f (t) = ∇−φ∇−γ f (t) , (5)

∇γ [h f (t) + kg (t)] = h∇γ f (t) + k∇γg (t) , h, k ∈ R (6)

∇∇−γ f (t) = ∇−(γ−1) f (t) , (7)

∇−γ∇ f (t) = ∇(1−γ) f (t)−
(

t + γ− 2
t− 1

)
f (0) . (8)
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Lemma 1 (Power Rule [10]). Let v > 0 and η be two real numbers so that Γ(η+1)
Γ(η+v+1) is defined. Then,

∇−v
b (t− b + 1)η̄ =

Γ (η + 1)
Γ (η + v + 1)

(t− b + 1)η+v , t ∈ Nb.

Lemma 2 (Leibniz Rule [10]). For any η > 0, ηth-order fractional difference of the product f g is given in
this form

∇η
0 ( f g) (t) =

t

∑
m=0

(
η

m

) [
∇η−m

0 f (t−m)
]
[∇mg (t)] , (9)

where (
η

m

)
=

Γ (η + 1)
Γ (m + 1) Γ (η −m + 1)

and f , g are defined on N0, and t is a positive integer.

Lemma 3 (Index Law). Let g (t) is single-valued and analytic. Then

(gγ)η = gγ+η =
(

gη

)
γ

(
gγ 6= 0; gη 6= 0; γ, η ∈ R; t ∈ C

)
. (10)

3. Main Results

We start by considering the following differential equation(
1 +

`

x

)
d2y
dx2 +

[
a +

b
x

(
1 +

`

x

)]
dy
dx

+

[
c +

d
x
+

ε

x2

(
1 +

`

x

)]
y (x) = ψ (11)

where ψ is a given function, x ∈ C\ {0,−`} , and a, b, c, d, ε and ` are parameters.
Let

y (x) = xτeκxw (x) (12)

so that
dy
dx

= xτ−1eκx
[

x
dw
dx

+ (τ + κx)w (x)
]

(13)

and
d2y
dx2 = xτ−2eκx

[
x2 d2w

dx2 + 2 (τ + κx) x
dw
dx

+
{

κ2x2 + 2τκx + τ (τ − 1)
}

w (x)
]

. (14)

By substituting (12)–(14) into the (11), we have

x2 (x + `)
d2w
dx2 +

[
(2τ + b) `+ (2τ + 2κ`+ b) x + (2κ + a) x2

]
x

dw
dx

+ [{τ (τ + b− 1) + ε} `+ {τ (τ + 2κ`+ b− 1) + κb`+ ε} x

+
{

κ2`+ (2τ + b) κ + τa + d
}

x2 +
(

κ2 + κa + c
)

x3
]

w (x)

= x3−τe−κxψ (x) , x ∈ C\ {0,−`} . (15)

Finally, we find it to be suitable to restrict the different parameters involved in (11) and (15) by
means of the following equalities;

2τ + b = 0,

τ (τ + b− 1) + ε = 0, (16)

κ2 + κa + c = 0,
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so that

τ = −1
2

b =
−1±

√
1 + 4ε

2
, (17)

and

κ =
−a±

√
a2 − 4c

2
. (18)

Under the parametric constraints given by (16), the Equation (15) will immediately decrease to a
simpler form

(x + `)
d2w
dx2 + [2κ`+ (2κ + a) x]

dw
dx

+
(

κ2`+ τa + d
)

w (x) = x1−τe−κxψ (x) (19)

where τ and κ are given by (17) and (18), respectively.

Theorem 2. Let w, ψ ∈
{

w, ψ : 0 6=
∣∣wη (x)

∣∣ ,
∣∣ψη (x)

∣∣ < ∞
}

, and η ∈ R. Then the nonhomogeneous linear
differential equation

w2 (αx + β) + w1 (γx + να + δ) + νγw (x) = ψ (x) , x 6= − β

α
, α 6= 0, ν ∈ R (20)

has particular solutions in the below forms:

wI (x) =
{[

ψ−q−1ν (αx + β)(δα−γβ−α2)/α2
e

γ
α x
]
−1

(αx + β)(γβ−δα)/α2
e−

γ
α x
}
−1+q−1ν

(21)

wII (x) = (αx + β)
−(γx+δ)

α −ν+1

×
({[

ψ (αx + β)
γx+δ

α +ν−1
]

q−1ν

(αx + β)
−δα+γβ

α2 +1 e−
γ
α x

}
−1

× (αx + β)
δα−γβ

α2 −2 e
γ
α x
)
−1−q−1ν

(22)

where wn = dnw
dxn (n = 0, 1, 2), w0 = w = w(x), α, β, γ, ν, δ are given constants.

Proof. For ψ (x) 6= 0,
(i) When we operate ∇η to the both sides of (20), we have

∇η [w2 (αx + β)] +∇η [w1 (γx + να + δ)] +∇η (wνγ) = ∇ηψ (23)

by using (9) and (10) we obtain

∇η [w2 (αx + β)] = w2+η (αx + β) + qηαw1+η (24)

∇η [w1 (γx + να + δ)] = w1+η (γx + να + δ) + qηγwη (25)

where q is a shift operator which is defined by w(t− 1) = qw(t). By substituting (24), (25) into the (23),
we have

w2+η (αx + β) + [(ηq + ν) α + γx + δ]w1+η + (qηγ + νγ)wη = ψη . (26)

We choose η such that
qηγ + νγ = 0, η = −q−1ν.

Then we obtain
w2−q−1ν (αx + β) + w1−q−1ν (γx + δ) = ψ−q−1ν (27)
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from (26).
Therefore, setting

w1−q−1ν = u
(

w = u−1+q−1ν

)
(28)

we have

u1 + u
(

γx + δ

αx + β

)
= ψ−q−1ν (αx + β)−1 (29)

from (27). A particular solution of a first order ordinary differential Equation (29):

u =
[
ψ−q−1ν (αx + β)(δα−γβ−α2)/α2

e
γ
α x
]
−1

(αx + β)(γβ−δα)/α2
e−

γ
α x. (30)

Thus we obtain the solution (21) from (28) and (30).
(ii) Set

w = (αx + β)σ W (x) (31)

The first and second derivations of (31) are acquired as follows:

w1 = σ (αx + β)σ−1 αW + (αx + β)σ W1 (32)

w2 = σ (σ− 1) (αx + β)σ−2 α2W + 2σ (αx + β)σ−1 αW1 + (αx + β)σ W2. (33)

Substitute (31)–(33) into (20), we have

W2 (αx + β) + W1 (2σα + γx + να + δ) (34)

+W
(

α2σ (σ− 1) + ασ (γx + να + δ)

αx + β
+ νγ

)
= ψ (αx + β)−σ .

Here, we choose σ such that

ασ (ασ− α + γx + να + δ) = 0

that is σ = 0, σ = −(γx+δ)
α − ν + 1.

In the case σ = 0, we have the same results as i.
Let σ = −(γx+δ)

α − ν + 1. From (31) and (34)

w = (αx + β)
−(γx+δ)

α −ν+1 W (35)

and
W2 (αx + β) + W1 [α (2− ν)− δ− γx] + νγW = ψ (αx + β)

γx+δ
α +ν−1 (36)

respectively.
Applying the operator ∇η to both members of (36), we have

W2+η (αx + β) + W1+η [α (2− ν + ηq)− δ− γx] + Wη (−γηq + νγ) (37)

=

[
ψ (αx + β)

γx+δ
α +ν−1

]
η

.

Choose η such that
−γηq + νγ = 0, η = q−1ν
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we have then

W2+q−1ν (αx + β) + W1+q−1ν [2α− (γx + δ)] =

[
ψ (αx + β)

γx+δ
α +ν−1

]
q−1ν

(38)

from (37).
Therefore, setting

W1+q−1ν = ϑ, W = ϑ−1−q−1ν (39)

we have

ϑ1 + ϑ

[
2α

αx + β
− γx + δ

αx + β

]
=

[
ψ (αx + β)

γx+δ
α +ν−1

]
q−1ν

(αx + β)−1 (40)

from (38). A particular solution of ordinary differential Equation (40) is given by

ϑ =

{[
ψ (αx + β)

γx+δ
α +ν−1

]
q−1ν

(αx + β)
−δα+γβ

α2 +1 e−
γ
α x

}
−1

(αx + β)
δα−γβ

α2 −2 e
γ
α x. (41)

Thus we obtain the solution (22) from (35), (39) and (41).

Furthermore, we can prove for the homogen part such that the homogeneous linear ordinary
differential equation

w2 (αx + β) + w1 (γx + να + δ) + νγw (x) = 0, x 6= − β

α
, α 6= 0, ν ∈ R (42)

has solutions of the forms

wI (x) = h
[
(αx + β)(γβ−δα)/α2

e−
γ
α x
]
−1+q−1ν

, (43)

wII (x) = h (αx + β)
−(γx+δ)

α −ν+1
[
(αx + β)

δα−γβ

α2 −2 e
γ
α x
]
−1−q−1ν

(44)

where h is an arbitrary constant.
Now, in Theorem 1, we further set

α = 1, β = `, γ = 2κ + a, δ = 2κ`− ν, ν =
κ2`+ τa + d

2κ + a
(45)

and let
ψ (x)→ x1−τe−κxψ (x) .

We thus find that the nonhomogeneous differential Equation (19) has a particular solution given by

wI (x) =

({[
x1−τe−κxψ (x)

]
−q−1ν

(x + `)−ν−a`−1 e(2κ+a)x
}
−1

(x + `)ν+a` e−(2κ+a)x
)
−1+q−1ν

, (46)

wII (x) = (x + `)−(2κ+a)x−2κ`+1

×
({[

x1−τe−κxψ (x) (x + `)(2κ+a)x+2κ`−1
]

q−1ν
(x + `)ν+a`+1 e−(2κ+a)x

}
−1

× (x + `)−ν−a`−2 e(2κ+a)x
)
−1−q−1ν

(47)
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and that the corresponding homogeneous linear differential equation

(x + `)
d2w
dx2 + [2κ`+ (2κ + a) x]

dw
dx

+
(

κ2`+ τa + d
)

w (x) = 0 (48)

has solutions of the forms

wI (x) = h
[
(x + `)ν+a` e−(2κ+a)x

]
−1+q−1ν

, (49)

wII (x) = h (x + `)−(2κ+a)x−2κ`+1
[
(x + `)−ν−a`−2 e(2κ+a)x

]
−1−q−1ν

(50)

where h is an arbitrary constant.
Therefore, the linear differential Equation (11), has a particular solution in the following forms

yI (x) = xτeκxw (x)

= xτeκx
({[

x1−τe−κxψ (x)
]
−q−1ν

(x + `)−ν−a`−1 e(2κ+a)x
}
−1

(x + `)ν+a` e−(2κ+a)x
)
−1+q−1ν

x ∈ C\ {0,−`} , v ∈ R (51)

and

yII (x) = xτeκx (x + `)−(2κ+a)x−2κ`+1

×
({[

x1−τe−κxψ (x) (x + `)(2κ+a)x+2κ`−1
]

q−1ν
(x + `)ν+a`+1 e−(2κ+a)x

}
−1

× (x + `)−ν−a`−2 e(2κ+a)x
)
−1−q−1ν

(52)

and that the corresponding homogeneous linear differential equation(
1 +

`

x

)
d2y
dx2 +

[
a +

b
x

(
1 +

`

x

)]
dy
dx

+

[
c +

d
x
+

ε

x2

(
1 +

`

x

)]
y (x) = 0 (53)

has solutions given by
yI (x) = hxτeκx

[
(x + `)ν+a` e−(2κ+a)x

]
−1+q−1ν

, (54)

yII (x) = hxτeκx (x + `)−(2κ+a)x−2κ`+1
[
(x + `)−ν−a`−2 e(2κ+a)x

]
−1−q−1ν

(55)

where h ∈ R, the parameters τ, κ and ν are given by (17), (18) and (45).

Remark 1. First of all, when ` = 0, the differential Equation (11) reduces to the following version of the
Tricomi equation:

d2y
dx2 +

(
a +

b
x

)
dy
dx

+

(
c +

d
x
+

ε

x2

)
y = ψ (x) .

By setting

` = 0, a = b = 0, c = k2, d = n, ε =
1
4
−m2,

in the Equation (11), we readily obtain the following Hydrogen atom equation:

d2y
dx2 +

(
k2 +

n
x
+

1
4 −m2

x2

)
y = ψ (x) .
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Example 1. In the case α = 1, β = γ = v = 0, δ = 2 and ψ(x) = x, we have

w(x) +
2
x

w1 = 1 (x 6= 0) (56)

from (20). Solution of Equation (56) is obtained as

w(x) =

{
[x2]−1x−2

}

=

{
x3

3
x−2

}

=
1
6

x2

(57)

by using (21). The function obtained in (57) provide the Equation (56).

4. Conclusions

In this article, we use the discrete fractional operator for the homogeneous and non-homogeneous
non-Fuchsian differential equations. This solution of the equation has not been obtained before by
using ∇ operator. We can obtain particular solutions of the same type linear singular ordinary and
partial differential equations by using the discrete fractional nabla operator in future works.
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