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Abstract: In this paper, the problem of the spread of a non-fatal disease in a population is solved
by using the Hermite collocation method. Mathematical modeling of the problem corresponds to
a three-dimensional system of nonlinear ODEs. The presented scheme reduces the problem to a
nonlinear algebraic equation system by expanding the approximate solutions by using Hermite
polynomials with unknown coefficients. These coefficients of the Hermite polynomials are computed
by using the matrix operations of derivatives together with the collocation method. Maple software
is used to carry out the computations. In addition, comparison of our method with the Homotopy
perturbation method (HPM) and Laplece-Adomian decomposition method (LADM) proves accuracy
of solution.

Keywords: SIR model; Hermite collocation method; approximate solution; Hermite polynomials and
series; collocation points

1. Introduction

Systems of ordinary differential equations are useful in representing some real life problems in
terms of the mathematical expressions, which abound in the fields of biological, physical, engineering,
financial or sociological fields. It is well known that many nonlinear problems in these fields can
be well modeled by systems of ordinary differential equations. However, finding exact solutions of
systems of ordinary differential equations involving nonlinear terms can be extremely difficult in
most of the situations. In addition, we know that exact solutions of most realistic systems of ordinary
differential equations cannot be found, so we need numerical and approximate methods for finding
approximate solutions.There are a lot of methods that have been studied by many researchers to solve
the systems of ordinary differential equations. Some of these methods are the multi-step method
proposed by Hojjati et al. [1], the collocation method presented by Mastorakis [2], the Adomian
decomposition method improves [3], the exponential Galerkin method introduced by Yüzbaşı and
Karaçayır [4], the exponential collocation method proposed by Yüzbaşı [5], the Galerkin finite element
method given by Al-Omari et al. [6].

In this study, we are interested in the SIR model, a model of an epidemic of an infectious disease
in a population. This model comprises three types of individuals: those who might be susceptible to
the disease, those who might be infected with the disease , and those who might have recovered or be
immune from the disease. The model thus has three classes or states.

The following system determines the progress of the disease [7]:
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dS
dt

= −βS(t)I(t)

dI
dt

= βS(t)I(t)− γI(t) (1)

dR
dt

= γI(t)

with initial conditions

S(0) = NS, I(0) = NI , R(0) = NR. (2)

NS = the number of susceptible individuals in the population at time t.
NI = the number of infected individuals in the population at time t.
NR = the number of recovered individuals in the population at time t.
N = the population size.
β = the transmissivity rate.
γ = is the recovery rate. Note that, at any given time, an individual can only be in one of the three
groups. Thus, NS + NI + NR = N.

Finding exact solutions of SIR models is important because biologists could use it to design and
run experiments to observe the spread of infectious diseases by introducing natural initial conditions.
Through these experiments, as well as through mathematical modelling, one can learn the ways on
how to control the spread of epidemics. It is extremely difficulty to obtain the exact solutions for
such problems that actually represented such phenomena. It is a big task for scientific community to
search for appropriate methods. Within two decades, to obtain approximate solutions of Equation (1),
some authors have studied this model using different methods. For Equation (1), Argub and El-Ajou
used Homotopy Analysis Method for different parameter values [7], Awawdeh et al. used Homotopy
Analysis Method [8], Biazar used the Adomian decomposition method [9], Rafei et al. applied
homotopy perturbation method [10], Ibrahim et al. applied Differential Transformation Approach [11].
In [12], this system was solved using Laplace-Adomian decomposition method. In [13], Harman
and Johnston solved the epidemic model using stochastic Galerkin method. Equation (1) was solved
using 4th order Runge-Kutta method by Kousar et al. [14] and using Euler, Runge Kutta-2 and Runge-
Kutta-4 methods by Hussain et al. [15].

The collocation method has become progressively favourite to solve differential equations.
This method can reduce the complexity of solving the systems of ordinary differential equations for
epidemic models with high dimensions and it is very useful in contributing highly accurate solutions
to differential equations. In this study, Hermite polynomials, a class of the orthogonal polynomials
{H0(t), H1(t), . . . , HL(t)} that are orthogonol on (−∞, ∞), are used. Hermite polynomials have
advantages over other orthogonal polynomials. Hermite collocation method (HCM) has been used to
solve systems of nonlinear ordinary differential equations with special initial conditions. The most
important advantage of the presented method is that it transforms this system (1) into a nonlinear
system of algebraic equations which can be easily solved. Until recently, HCM has been used to
obtain solutions to a higher-order linear Fredholm integro differential equations in [16], to linear
fractional order Systems of differential equations in [17], to differential difference equations in [18],
to fractional order differential equations in [19] and to the neutral functional-differential equations
with proportional delays in [20].

2. The Hermite Collocation Method (HCM)

In this section, we present the Hermite collocation method to obtain approximate solutions to
Equation (1) in the truncated Hermite series form
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S(t) =
L

∑
l=0

c1,l Hl(t), I(t) =
L

∑
l=0

c2,l Hl(t) and R(t) =
L

∑
l=0

c3,l Hl(t). (3)

Here, c1,l , c2,l , and c3,l (l = 0, 1, 2, . . . , L) are the unknown Hermite coefficients, L is any positive
number where L ≥ m (m is the number of equations in the system), and Hl(t), l = 0, 1, 2, . . . , L are the
Hermite polynomials. The Hermite polynomials are identified by

Hl(t) = l!
L

∑
m=0

(−1)m

m!(l − 2m)!
(2t)l−2m, l ∈ N, 0 ≤ t ≤ ∞ (4)

where L = l/2 if l is even and L = (l − 1)/2 if l is odd.
We represent Equation (1) in the form of matrices. Firstly, we write the approximate solutions of

Equation (1):

S(t) = H(t)C1

I(t) = H(t)C2 (5)

R(t) = H(t)C3

where

H(t) =
[

H0(t) H1(t) . . . HL−1(t) HL(t)
]

, C1 =
[
c1,0 c1,1 . . . c1,L

]T

C2 =
[
c2,0 c2,1 . . . c2,L

]T
, C3 =

[
c3,0 c3,1 . . . c3,L

]T

If L is an odd number,


H0(t)
H1(t)

...
HL−1(t)

HL(t)


︸ ︷︷ ︸

HT(t)

=



20 0 . . . 0 0
0 21 . . . 0 0
...

...
. . .

...
...

(−1)(
L−5

2 ) 20

0!
(L−1)
( L−1

2 )!
. . . 2L−1 0

0 (−1)(
L−1

2 ) 21

1!
(L)

( L−1
2 )!

0 . . . 0 2L


︸ ︷︷ ︸

F


1
t
...

tL−1

tL

 .

︸ ︷︷ ︸
XT(t)

(6)

If L is an even number,


H0(t)
H1(t)

...
HL−1(t)

HL(t)


︸ ︷︷ ︸

HT(t)

=



20 0 . . . 0 0
0 21 . . . 0 0
...

...
. . .

...
...

0 (−1)(
L−2

2 ) 21

1!
(L−1)
( L−2

2 )!
. . . 2L−1 0

(−1)(
L−4

2 ) 20

0!
(L)
( L

2 )!
0 . . . 0 2L


︸ ︷︷ ︸

F


1
t
...

tL−1

tL


︸ ︷︷ ︸

XT(t)

(7)

where X(t) =
[
1 t t2 . . . tL

]
.



Mathematics 2018, 6, 305 4 of 11

Therefore, we can write the following equations:

S(t) = X(t)FTC1

I(t) = X(t)FTC3 (8)

R(t) = X(t)FTC3.

The relation between the matrix X(t) and its derivative X(1)(t) is

X(1)(t) = X(t)BT (9)

where

BT =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . L
0 0 0 . . . 0

 .

From Equations (8) and (9), we obtain the following equations:

S(1)(t) = X(t)BT FTC1, I(1)(t) = X(t)BT FTC2, R(1)(t) = X(t)BT FTC3. (10)

Thus, we can construct the matrices v(t) and v(1)(t) as follows:

v(t) = X FC and v(1)(t) = X B FC (11)

where

v(t) =

S(t)
I(t)
R(t)

 , v(1)(t) =

S(1)(t)
I(1)(t)
R(1)(t)

 , X(t) =

X(t) 0
0 X(t) 0
0 0 X(t)

 , F =

FT 0
0 FT 0
0 0 FT


and

B =

BT 0 0
0 BT 0
0 0 BT

 , C =

C1

C2

C3

 .

We can express Equation (1) in the matrix form

v(1)(t)− Kv(t)−Mv1,2(t) = g (12)

where

g =

0
0
0

 , K =

0 0 0
0 −γ 0
0 γ 0

 , M =

−β

β

0

 , v1,2 =
[
S(t)I(t)

]
.

Now let us determine the unknown coefficients c1,l , c2,l , and c3,l . We can use the collocation points
defined by

ti = a +
b− a

L
i, i = 0, 1, . . . , L (13)

for an interval a ≤ t ≤ b.
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By using the collocation points in Equation (12), we obtain the following system of
matrix equations:

v(1)(ti)− Kv(ti)−Mv1,2(ti) = g. (14)

V(1) =


v(1)(t0)

v(1)(t1)
...

v(1)(tL)

 , K =


K 0 · · · 0
0 K · · · 0
...

...
. . .

...
0 0 · · · K


(L+1)×(L+1)

, v =


v(t0)

v(t1)
...

v(tL)

 , G =


g
g
...
g


(L+1)×1

Ṽ =


v1,2(t0)

v1,2(t1)
...

v1,2(tL)

 , M =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M


(L+1)×(L+1)

.

By aid of the upper matrices, Equation (1) can be written in the following matrix form:

V(1) − KV −M V = G. (15)

By putting the collocation points of Equation (13) in Equation (11), because we can write
recurrence relations

v(ti) = X(ti)FC and v(1)(ti) = X(ti) B FC,

we can write

V = XFC and V(1) = XBFC (16)

so that

X =
[

X(t0) X(t1) · · · X(tL)
]T

, X(ti) =

X(ti) 0 0
0 X(ti) 0
0 0 X(ti)

 .

Let us put the collocation points into the v1,2(t). We then obtain the matrix form

Ṽ =


v1,2(t0)

v1,2(t1)
...

v1,2(tL)

 =


I(t0) 0 · · · 0

0 I(t1) · · · 0
...

...
. . .

...
0 0 · · · I(tL)




S(t0)

S(t1)
...

S(tL)

 = I S (17)

where

I = X̃ F̃ C2, and S = ˜̃T˜̃FC (18)

so that
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X̃ =


X(t0) 0 · · · 0

0 X(t1) · · · 0
...

...
. . .

...
0 0 · · · X(tL)

 , C2 =


C2 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · C2


(L+1)×(L+1)

F̃ =


FT 0 · · · 0
0 FT · · · 0
...

...
. . .

...
0 0 · · · FT


(L+1)×(L+1)

˜̃X =


X(t0)

X(t1)
...

X(tL)

 , ˜̃F =
[

FT S S
]

, S =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(L+1)×(L+1)

.

From Equations (16)–(18), we obtain the fundamental matrix equation

{XB F− KXF−MX̃ F̃C2
˜̃X ˜̃F}C = G. (19)

Shortly, Equation (19) can be written as

WC = G or [W; G] (20)

W = XB F− KXF−MX̃ F̃C2
˜̃X ˜̃F. (21)

Equation (21) subtends a system of 3(L + 1) nonlinear algebraic equations with the unknown
Hermite coefficients c1,l , c2,l , and c3,l . By placing t→ 0 in Equation (5), the matrix forms of the initial
conditions can be expressed by

S(t) = H(0)C1 = [NS]

I(t) = H(0)C2 = [NI ] (22)

R(t) = H(0)C3 = [NR].

That is, these matrix forms can be expressed by

U1 = S(0) =
[
c1,0 c1,1 · · · c1,L

]
U2 = I(0) =

[
c2,0 c2,1 · · · c2,L

]
(23)

U3 = R(0) =
[
c3,0 c3,1 · · · c3,L

]
.

When the rows in the matrices in Equation (23) are replaced with any three rows of the matrix
in Equation (20), we obtain the solution to Equation (1) under initial conditions. Thereby, we get the
augmented matrix

W̃C = G̃, (24)
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which is an algebraic system. To determine the coefficients, this system must be solved. The determined
coefficients ci,0, ci,1, · · · , ci,L, (i = 1, 2, 3) are substituted into Equation (3), and we can then obtain
approximate solutions.

3. Error Estimate for the Solution

We can here check the accuracy of the proposed method. Since the SL(t), IL(t), RL(t) is an
approximate solution to Equation (1), once these functions and their first derivative are substituted
into Equation (1), the obtained equations should satisfied approximately, in short, for t = tr ∈
[0, R], r = 0, 1, ...

E1,L(tr) = |S′(tr) + βS(tr)I(tr)|=̃0

E2,L(tr) = |I′(tr)− βS(tr)I(tr) + γI(tr)|=̃0 (25)

E3,L(tr) = |R′(tr)− γI(tr)|=̃0,

and Ei,L ≤ 10−kr , i = 1, 2, 3 (kr any positive contant). If max10−kr = 10−k is prescribed, the truncation
limit L is increased until the difference Ei,L(tr), (i = 1, 2, 3) at each of the points becomes smaller than
the prescribed 10−k [21,22].

4. Illustrative Example

In this section, to show the accuracy and efficiency of the presented method, the SIR model of
epidemics, given in Equation (1), is solved with it. For the SIR model, the following parameter values
that given in [9] are used. Numerical calculations were performed using Maple software.

NS = 20, NI = 15, NR = 10, β = 0.01, γ = 0.02.

In interval 0 ≤ t ≤ 1, we obtain approximate solutions for L = 5 using the presented method;
in turn, approximate solutions with five terms:

S(t) = 20.00000000− 2.999999999t− 0.04499957685t2 + 0.02804671200t3

+ 0.0008058035642t4 − 0.0003329149155t5

I(t) = 15.00000000 + 2.699999999t + 0.01799970470t2 − 0.02816759777t3 − 0.0006626352597t4

+ 0.0003329022387t5

R(t) = 10.00000000 + 0.3000000000t + 0.2699987216t2 + 0.0001208857706t3 − 0.0001431683045t4

+ 0.126768711610−7t5.

The approximate solutions of this system were presented by Rafei et al. using the homotopy
perturbation method (HPM) [10]. The homotopy perturbation method is a efficient method for
finding solutions of ordinary/partial differential equations without the need for a linearization process.
The obtained approximate solutions with five terms:

S(t) = 20− 3t− 0.045t2 + 0.02805t3 + 0.0007953750t4 − 0.0003165502t5

I(t) = 15 + 2.7t + 0.018t2 − 0.02817t3 − 0.0006545250t4 + 0.0003191683t5

R(t) = 10 + 0.3t + 0.027t2 + 0.00012t3 − 0.0001408500t4 − 0.0000021681t5.
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The approximate solutions of this system were also presented by Dogan and Akin using
Laplace-Adomian decomposition method (LADM) [12]. The LADM provides us with an approximate
solution in the form of infinite series. The obtained approximate solutions with five terms:

S(t) = 20− 3t− 0.045t2 + 0.02805t3 + 0.000795375t4 − 0.00031655t5

I(t) = 15 + 2.7t + 0.018t2 − 0.02817t3 − 0.000654525t4 + 0.000319168t5

R(t) = 10 + 0.3t + 0.027t2 + 0.00012t3 − 0.00014085t4 − 0.000002168t5.

We know that Equation (1) has no exact solution. So, we compared the obtained results using
Hermite collocation method with the obtained results using HPM presented [10] and the obtained
results using LADM presented [12].

From Figures 1–3, it is clear that the results obtained using HCM is very efficient.

Figure 1. Comparison of the error function E1,5(t) for S(t).

Figure 2. Comparison of the error function E2,5(t) for I(t).
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Figure 3. Comparison of the error function E3,5(t) for R(t).

5. Conclusions

In this study, the Hermite Collocation Method was applied to obtain the approximate solutions of
SIR model. We showed the accuracy and efficiency of the presented method with an example. To show
the correctness of the obtained approximate solutions, we put the obtained approximate solutions
back into Equation (1) with the aid of Maple software. Thus, it gives extra measure for confidence
of the obtained approximate solutions. The obtained approximate results and the error values are
compared with the error values and the approximate solutions obtained with homotopy perturbation
method (HPM) [10] and Laplace-Adomian decomposition method [12]. These comparisons reveal
that our method is more efficient and useful to find approximate solution the SIR model of epidemics.
From Tables 1–3, it is seen that the numerical solutions of the HPM [10] and the LADM [12] are almost
same. Therefore, it is observed that the presented method is an alternative way for the solution of
nonlinear ODEs system that have no analytic solution. The greatest advantage of the presented method
is that all of above computations can be computed easily in very shorter time by using the computer
code written in Maple software.

Table 1. The values of S(t), and the residual errors ERS for HPM, HCM and LADM.

t S(t) (HPM) ERS (HPM) S(t) (HCM for L = 5) ERS (HCM for L = 5) S(t) (LADM) ERS (LADM)

0.2 19.39842557 2.241556564× 10−8 19.39842556 1.007967528× 10−9 19.39842557 2.241715696× 10−8

0.3 19.09671302 1.639339936× 10−7 19.09671301 5.224692456× 10−9 19.09671302 1.639420311× 10−7

0.4 18.79461232 6.642448998× 10−7 18.79461227 1.020070225× 10−9 18.79461232 6.642702518× 10−7

0.5 18.49229607 1.945779417× 10−6 18.49229590 4.808788220× 10−9 18.49229607 1.945841205× 10−6

0.6 18.18993727 4.638804798× 10−6 18.18993677 1.036285111× 10−9 18.18993727 4.638932739× 10−6

0.7 17.88770892 9.586736659× 10−6 17.88770774 2.046575227× 10−9 17.88770892 9.586973403× 10−6

0.8 17.58578366 1.783241468× 10−5 17.58578115 1.056548098× 10−9 17.58578366 1.783281825× 10−5

0.9 17.28433338 3.058543511× 10−5 17.28432849 2.255631029× 10−8 17.28433338 3.058608116× 10−5

1.0 16.98352883 4.917070631× 10−5 16.98352001 1.991812037× 10−7 16.98352883 4.917169073× 10−5

Table 2. The values of I(t), and the residual errors ERI for HPM, HCM and LADM.

t I(t) (HPM) ERI (HPM) I(t) (HCM for L = 5) ERI (HCM for L = 5) I(t) (LADM) ERI (LADM)

0.2 15.54049369 2.037288852× 10−8 15.54049370 1.007967528× 10−9 15.54049369 2.037528176× 10−8

0.3 15.81085489 1.484224142× 10−7 15.81085488 5.224692456× 10−9 15.81085489 1.484345163× 10−7

0.4 16.08106363 5.988792320× 10−7 16.08106367 1.020070225× 10−9 16.08106363 5.989174454× 10−7

0.5 16.35094781 1.746299230× 10−6 16.35094797 4.808788220× 10−9 16.35094781 1.746392455× 10−6

0.6 16.62033527 4.142434258× 10−6 16.62033570 1.036285111× 10−9 16.62033527 4.142627465× 10−6

0.7 16.88905418 8.513884329× 10−6 16.88905522 2.046575227× 10−9 16.88905418 8.514242143× 10−6

0.8 17.15693346 1.574071331× 10−5 17.15693567 1.056548098× 10−9 17.15693345 1.574132364× 10−5

0.9 17.42380311 2.681612132× 10−5 17.42380741 2.255631029× 10−8 17.42380310 2.681709896× 10−5

1.0 17.68949465 4.278734031× 10−5 17.68950236 1.991812037× 10−7 17.68949464 4.278883073× 10−5
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Table 3. The values of R(t), and the residual errors ERR for HPM, HCM and LADM.

t R(t) (HPM) ERR (HPM) R(t) (HCM for L = 5) ERR (HCM for L = 5) R(t) (LADM) ERR (LADM)

0.2 10.06108073 1.55732288× 10−9 10.06108073 1.780152× 10−12 10.06108073 1.5573248× 10−9

0.3 10.09243209 2.71342062× 10−9 10.09243209 2.99878840× 10−9 10.09243209 2.7134352× 10−9

0.4 10.12432405 7.76566784× 10−9 10.12432405 3.55561× 10−12 10.12432405 7.7656064× 10−9

0.5 10.15675613 5.88551875× 10−8 10.15675613 2.9916773× 10−9 10.15675613 5.88550000× 10−8

0.6 10.18972750 2.047705402× 10−7 10.18972751 5.3304× 10−12 10.18972750 2.047700736× 10−7

0.7 10.22323698 5.326273240× 10−7 10.22323703 6.997166× 10−9 10.22323698 5.32626315× 10−7

0.8 10.25728304 1.170101371× 10−6 10.25728317 7.109× 10−12 10.25728304 1.170099405× 10−6

0.9 10.29186379 2.293088789× 10−6 10.29186411 6.2910522× 10−8 10.29186379 2.293085246× 10−6

1.0 10.32697698 4.133366× 10−6 10.32697760 4.548599737× 10−7 10.32697698 4.13336× 10−6

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved
the final manuscript.
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