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Abstract: In the present work we study the oscillatory behavior of three dimensional α-fractional
nonlinear delay differential system. We establish some sufficient conditions that will ensure all
solutions are either oscillatory or converges to zero, by using the inequality technique and generalized
Riccati transformation. The newly derived criterion are also used to establish a new class of systems
with delay which are not covered in the existing study of literature. Further, we constructed some
suitable illustrations.
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1. Introduction

In the literature there are many advanced strategies in the expansion of ordinary and partial
differential equations of fractional order and they have been used as excellent sources and tools in
order to model many phenomena in the different fields of engineering, science and technology. Further,
these tools are also used in fields such as chemical processes, polymer rheology, mathematical biology,
industrial robotics, viscoelasticity, and many more, see the monographs [1–7].

At the end of the nineteenth century, Henry Poincare initiated the method and used the qualitative
analysis of nonlinear systems of integer order differential equations. Since then, there has been
significant development in the theory of oscillation of integer order differential systems [8–18].

In a study [19], Vreeke et al. applied the differential systems in the application of physics in order
to solve the problem of a nuclear reactor which involved two temperature feedback. In the current
literature there are many established results in the oscillation theory of classical differential systems (see
[20–24]). However, in the nonlinear fractional differential system development is relatively slow due
to the occurrence of nonlocal behavior of fractional derivatives that possess weakly singular kernels.

In 2014, Khalil et al. introduced the idea of conformable fractional derivative as a kind of local
derivative with no memory (see [25–27]). By following the idea of Khalil, an interesting application of
the conformable fractional derivative in physics was discussed and the action principle for particles
under the frictional forces were formulated, see [28].

The idea of conformable fractional derivatives was generalized by Katugampola, and today it is
known as the Katugampola fractional derivative. Nowadays, many researchers have interest in this
type of derivative for their useful properties (see [29–31]). In this respect, we list the contributions of
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Spanikova [32], Sadhasivam [33] and Chatzarakis [34] where the oscillation of α-fractional nonlinear
three dimensional delay differential systems were also studied.

Now we study oscillatory behavior of the following system having the form

Dα (u(t)) = p(t)g (v(σ(t))) ,

Dα (v(t)) = −q(t)h (w(t))) , (1)

Dα (w(t)) = r(t) f (u(δ(t))) , t ≥ t0,

where 0 < α ≤ 1, Dα denotes the α-fractional derivative respect to t.

Based on the following assumptions:

(A1) p(t) ∈ C2α([t0, ∞),R+), q(t) ∈ Cα([t0, ∞),R+), r(t) ∈ C([t0, ∞),R+), p(t), q(t) and r(t) are
not identically zero on any interval of [T0, ∞), T0 ≥ t0, r(t) and q(t) are decreasing and positive;
(A2) g ∈ Cα(R,R), vg(v) > 0, Dαg(v) ≥ l

′
> 0, h ∈ Cα(R,R), wh(w) > 0, Dαh(w) ≥ m

′
> 0, f ∈

C(R,R), y f (y) > 0 and f (y)
y ≥ k > 0 for y 6= 0;

(A3) σ(t) ≤ t with Dασ(t) ≥ l > 0, δ(t) ≤ t and satisfies limt→∞ σ(t) = ∞, limt→∞ δ(t) = ∞;
(A4) The case will be considered as∫ ∞

t0

sα−1 1
b(s)

ds = ∞,
∫ ∞

t0

sα−1 1
a(s)

ds = ∞,

where b(t) = 1
q(t) , a(t) = 1

p(t) and c(t) = l2l
′
m
′
r(t), a(t), b(t) and c(t) are positive real-valued

continuous functions with b(t)t1−α < 1.
The solution implies that, it is a vector-valued function such that U(t) = (u(t), v(t), w(t)) with

T1 = min {δ(t1), σ(t1)} for some t1 ≥ t0 which has the property such that b(t)Dα (a(t)Dαu(t)) ∈
Cα([T1, ∞),R) and satisfies the system (1) on [T1, ∞). Denote by P, the set of all solutions U(t) of (1)
which exist on some half line [T1, ∞), T1 > t0. The researchers only focus to the nontrivial solutions
of system (1) and satisfy sup {|u(ξ)|+ |v(ξ)|+ |w(ξ)|, t ≤ ξ < ∞} > 0 for any t ≥ T1. We make a
standing hypothesis that (1) has such a solution.

A proper solution U(t) ∈ P for the system (1) is called oscillatory if all the components are
oscillatory, otherwise it is nonoscillatory. Further, the system (1) is said to be oscillatory if all proper
solutions oscillate.

The main goal of this paper is to establish some new oscillation criteria for the system (1) by
making use of the generalized Riccati transformation and inequality technique. The study is structured
as follows. In Section 2, we recall some preliminary concepts relative to the α- fractional derivative.
In Section 3, some new conditions for the oscillatory behavior of the solutions of system (1) were
presented. Illustrative examples are included in the final part of the paper in order to demonstrate the
efficiency of new theorems.

2. Preliminaries

We begin this section with the following definition of the operator Dα.

Definition 1. [30] Let y : [0, ∞)→ R, then α-fractional derivative of y is defined by

Dα(y)(t) := lim
ε→0

y(teεt−α
)− y(t)
ε

for t > 0 and α ∈ (0, 1]. (2)

If y is differentiable α-times in some (0, a) with a > 0, lim
t→0+

Dα(y)(t) exists, then we have

Dα(y)(0) := lim
t→0+

Dα(y)(t).
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α-fractional derivative satisfies the following properties. [30]
Let α ∈ (0, 1] and g, h be α- differentiable for t > 0. Then

(p1) Dα(tn) = ntn−α for all n ∈ R.
(p2) Dα(C) = 0 for all constant functions, g(t) = C.
(p3) Dα(gh) = gDα(h) + hDα(g).
(p4) Dα( g

h ) =
hDα(g)−gDα(h)

h2 .
(p5) Dα(g ◦ h)(t) = g

′
(h(t))Dαh(t), for g is differentiable at h(t).

(p6) If g is differentiable, then Dα(g)(t) = t1−α dg
dt (t).

Definition 2. [30] Let a ≥ 0, t ≥ a and a function y defined on (a, t] with α ∈ R. Then, α-fractional integral
as follows

Iα
a (y)(t) :=

∫ t

a

y(x)
x1−α

dx (3)

provided improper integral exists.

3. Main Results

In this section, the oscillatory behavior of solutions for the system (1) under certain conditions are
established. Next we give the following lemmas that will be used in our further discussion.

Lemma 1. If U(t) ∈ P is a nonoscillatory solution for (1), then the component function x(t) is always
nonoscillatory.

Lemma 2. Suppose that (A1) and (A4) holds. Then there exists a t1 ≥ t0 such that either
(I) u(t) > 0, Dαu(t) > 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1.
or
(I I) u(t) > 0, Dαu(t) < 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1 holds.

Proof. Let u(t) be an eventually positive solution for (1) on [t0, ∞). Now, system (1) will be reduced to
the following inequality

Dα

(
1

q(t)
Dα

(
1

p(t)
Dαu(t)

))
+ l2l

′
m
′
r(t) f (u(δ(σ(t)))) ≤ 0, t ≥ t1, (4)

which implies,

Dα (b(t)Dα (a(t)Dαu(t))) + c(t) f (u(δ(σ(t)))) ≤ 0, t ≥ t1. (5)

From (5), we get Dα(b(t)Dα(a(t)Dαu(t))) ≤ 0 for t ≥ t0. Then b(t)Dα(a(t)Dαu(t)) is decreasing on
(t0, ∞). Thus the proof completes on using the Lemma 3.2 in [34].

The following notations are employed in the sequel.

(Aα)∗ := lim inf
t→∞

t
∞∫

t

sα−1 Aα(s)ds and (Bα)∗ := lim inf
t→∞

1
t

t∫
t0

sα+1 Aα(s)ds, (6)

where Aα(t) = k
2

c(t)
a(t)

δ(σ(t))−T
t (δ(σ(t)))α.

d := lim inf
t→∞

tw(t) and D := lim sup
t→∞

tw(t). (7)
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Theorem 1. Suppose that (A1)− (A4) hold. Assume also that

∞∫
t2

c(s)(s− T)δ(σ(s))ds = ∞, (8)

there exists a positive function ρ ∈ Cα([0, ∞);R+) such that

lim sup
t→∞

t∫
t0

(
sα−1ρ(s)Aα(s)−

1
4
(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds = ∞. (9)

Then every solution of system (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution (u(t), v(t), w(t)) on [t0, ∞). From Lemma 1, u(t)
is always nonoscillatory. Without loss of generality, we shall assume that u(t) > 0, u(δ(t)) > 0 and
u(δ(σ(t))) > 0 for t ≥ T ≥ t0, since similar arguments can be made for u(t) < 0 eventually. Suppose
that Case (I) of Lemma 2 holds for t ≥ t1. Define

w(t) = ρ(t)
b(t)Dα(a(t)Dαu(t))

a(t)Dαu(t)
, t ≥ t1. (10)

Thus w(t) > 0, differentiating α times with respect to t, using (5) and (A2), we have

Dαw(t) ≤ Dαρ(t)
ρ(t)

w(t)− kρ(t)c(t)
a(t)

u(δ(σ(t)))
Dαu(t)

− 1
ρ(t)b(t)

w2(t). (11)

Now, let z1(t, T) = (t− T), z2(t, T) = (t−T)2

2 and define U(t) := (t− T)t1−αu(t)− z2(t, T)Dαu(t).
Then U(T) = 0 and differentiating the above, we get

DαU(t) = t1−α

(
t1−αu(t) + (t− T)(1− α)t−αu(t) + (t− T)t1−αu

′
(t)

− z
′
2(t, T)Dαu(t)− z2(t, T)(Dαu(t))

′
)

,

which implies

U
′
(t) ≥ t1−αu(t)− z2(t, T)(Dαu(t))

′
. (12)

By Taylor’s Theorem, we have

∫ t

T
s1−αu

′
(s)ds = z1(t, T)Dαu(T) +

∫ t

T
z1(t, s)(Dαu(s))

′
ds,

since Dα(a(t)Dαu(t)) is decreasing, we get

t1−αu(t) ≥ t1−αu(T) + z1(t, T)Dαu(T) + (Dαu(t))
′
∫ t

T
z1(t, s)ds.

Thus U
′
(t) > 0 on [T, ∞). From this we get U(t) > 0 on [T, ∞), which implies that

u(t)
Dαu(t)

>
z2(t, T)

(t− T)t1−α
=

t− T
2

t1−α, t ∈ [T, ∞). (13)
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Next, define V(t) := Dαu(t)− t(Dαu(t))
′
. In view of the fact that DαV(t) = −t2−α(Dαu(t))

′′
,

which implies V
′
(t) = −t2−α(Dαu(t))

′′
> 0 for t ∈ [T, ∞), therefore V(t) is strictly increasing on

[T, ∞).
We claim that there is a t1 ∈ [T, ∞) such that V(t) > 0 on [t1, ∞). Suppose not, V(t) < 0 on [t1, ∞).

Hence,

Dα

(
Dαu(t)

t

)
= − t1−α

t2 (t(Dαu(t))
′ − Dαu(t)),

which gives

(
Dαu(t)

t

)′
= − 1

t2 V(t) > 0, t ∈ [t1, ∞).

Choose t2 ∈ (t1, ∞), for t ≥ t2, δ(σ(t)) ≥ δ(σ(t2)). Since, Dαu(t)
t is strictly increasing,

Dαu(δ(σ(t)))
δ(σ(t))

≥ Dαu(δ(σ(t2)))

δ(σ(t2))
:= m > 0,

the Equation (13) implies that

u(δ(σ(t))) ≥ t− T
2

t1−αmδ(σ(t)). (14)

Now, integrating (5) from t2 to t, using (A2) and inequality in (14), we have

t∫
t2

(
(b(s)Dα(a(s)Dαu(s)))

′
+

km
2

c(s)(s− T)δ(σ(s))
)

ds ≤ 0.

Then

b(t2)Dα(a(t2)Dαu(t2)) ≥
km
2

t∫
t2

c(s)(s− T)δ(σ(s))ds,

which contradicts to (8). Hence V(t) > 0 on [t1, ∞). Accordingly,

t1−α

(
Dαu(t)

t

)′
= − t1−α

t2 (t(Dαu(t))
′ − Dαu(t)) = − t1−α

t2 V(t) < 0, t ∈ (t1, ∞),

which gives t(Dαu(t))
′
< Dαu(t). Then δ(σ(t)) ≤ δ(t) ≤ t,

Dαu(δ(σ(t)))
δ(σ(t))

≥ Dαu(t)
t

, (15)

since Dαu(t)
t is strictly increasing. Using (13) and (15) in (11), we get

Dαw(t) ≤ Dαρ(t)
ρ(t)

w(t)− kρ(t)c(t)
ta(t)

(δ(σ(t)))α(δ(σ(t))− T)
2

− 1
ρ(t)b(t)

w2(t). (16)

Therefore

Dαw(t) ≤ − kρ(t)c(t)
ta(t)

(δ(σ(t)))α(δ(σ(t))− T)
2

+
1
4

b(t)
(Dαρ(t))2

ρ(t)
,
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using (6) and (p6), we get

w
′
(t) ≤ −tα−1ρ(t)Aα(t) +

1
4
(ρ
′
(t))2

ρ(t)
t1−αb(t). (17)

Integrating,

t∫
t1

(
sα−1ρ(s)Aα(s)−

1
4
(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ w(t1),

which contradicts the hypothesis (9).

We now derive various oscillatory criteria on using the earlier results and we can generalize the
Philos type kernel. Let us define a class of functions Ω. Consider

D0 = {(t, s) : t > s ≥ t0} , and D = {(t, s) : t ≥ s ≥ t0} .

The function H ∈ C(D,R) belongs to the class Ω, if

(T1) H(t, t) = 0 for t ≥ t0, and H(t, s) > 0 for (t, s) ∈ D0.

(T2) The nonpositive partial derivative ∂H
∂s exist on D0 such that h(t, s) = H(t, s) ρ

′
(s)

ρ(s) + ∂H
∂s (t, s).

Theorem 2. Assume that (A1)− (A4) hold. Further there exists ρ ∈ Cα([0, ∞);R+) such that

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds = ∞. (18)

Then each solution of system (1) is oscillatory.

Proof. As we proceed in the proof of Theorem 1 and from (16), we have the inequality

w
′
(t) ≤ ρ

′
(t)

ρ(t)
w(t)− tα−1ρ(t)Aα(t)−

tα−1

ρ(t)b(t)
w2(t). (19)

Integrating,

t∫
t1

H(t, s)sα−1ρ(s)Aα(s)ds

≤
t∫

t1

H(t, s)
ρ
′
(s)

ρ(s)
w(s)ds−

t∫
t1

H(t, s)w
′
(s)ds−

t∫
t1

H(t, s)
sα−1

ρ(s)b(s)
w2(s)ds,

≤ H(t, t1)w(t1) +

t∫
t1

(
H(t, s)

ρ
′
(s)

ρ(s)
+

∂H
∂s

(t, s)
)

w(s)ds−
t∫

t1

H(t, s)
sα−1

b(s)ρ(s)
w2(s)ds,

≤ H(t, t1)w(t1) +

t∫
t1

(
w(s)h(t, s)− H(t, s)

sα−1

ρ(s)b(s)
w2(s)

)
ds,



Symmetry 2018, 10, 769 7 of 15

≤ H(t, t1)w(t1) +

t∫
t1

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)ds.

From this we conclude that

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ H(t, t1)w(t1).

Since 0 < H(t, s) ≤ H(t, t1) for t > s > t1, we have 0 < H(t,s)
H(t,t1)

≤ 1, hence

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ w(t1).

Letting t→ ∞,

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ w(t1).

Therefore assumption (18) is contradicted. Thus every solution of (1) oscillates.

We immediately obtain the following oscillation result for (1).

Theorem 3. Assume that (A1)–(A4) hold. Also assume that there exists a function ρ ∈ Cα([0, ∞);R+) such
that

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

H(t, s)(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds = ∞. (20)

Then every solution of system (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, multiplying inequality (17) by H(t, s) and integrating,
we get

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)−

1
4

H(t, s)(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ −

t∫
t1

H(t, s)w
′
(s)ds ≤ H(t, t1)w(t1).

Taking limsup as t→ ∞, and hence

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
sα−1ρ(s)Aα(s)H(t, s)− 1

4
H(t, s)(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ w(t1),

which contradicts the hypothesis in (20).

The following theorem is to be proved using the techniques employed in the previous theorems.
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Theorem 4. Suppose that the assumptions (A1)–(A4) and (8) hold. Further assume also that Case (I) of
Lemma 2 holds, then

(Aα)∗ ≤ d− tα−1 1
b(s)

d2, (21)

and

(Bα)∗ ≤ D− D2. (22)

Proof. Let u(t) be a nonoscillatory solution of (5) such that u(t) > 0, u(δ(t)) > 0 and
u(δ(σ(t))) > 0 for t ≥ T > t0, consider the case (I) of Lemma 2 holds, u(t) satisfies the inequality
Dα (b(t)Dα (a(t)Dαu(t))) ≤ 0, t ∈ [T, ∞). Define Riccati transformation

w(t) =
b(t)Dα(a(t)Dαu(t))

a(t)Dαu(t)
.

Thus w(t) > 0, differentiating α times with respect to t, using (5) and (A2), we have

Dαw(t) ≤ − kc(t)
a(t)

u(δ(σ(t)))
Dαu(t)

− 1
b(t)

w2(t).

By using (15), (13) and (6), we obtain the above inequality

w
′
(t) + tα−1 Aα(t) + tα−1 1

b(t)
w2(t) ≤ 0. (23)

Given that Aα(t) > 0 and w(t) > 0, which gives w
′
(t) ≤ 0 and

−b(t)(w
′
(t)t1−α/w2(t)) > 1.

which yields that

(
1

w(t)

)′
> tα−1 1

b(t)
.

Integrating the above inequality and denote tα−1
1

1
b(t1)

= M, we have

M(t− t1)w(t) < 1. (24)

which implies that

lim
t→∞

w(t) = 0, lim
t→∞

tw(t) = 0. (25)

From (9) and (24), 0 < d < 1 and 0 < D < 1. Even though if d = 0 and D = 0, there is nothing to
prove. Now, to claim (21). Integrating (23) from t to ∞ and use (25), we get

w(t) ≥
∞∫

t

sα−1 Aα(s)ds +
∞∫

t

sα−1 1
b(s)

w2(s)ds.
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Multiplying by t and taking liminf as t→ ∞, by (25), d ≥ (Aα)∗. For given ε > 0, there exists a
t2 ≥ t1 as

d− ε < tw(t) < d + ε and t
∞∫

t

sα−1 Aα(s)ds ≥ (Aα)∗ − ε, t ≥ t2. (26)

Again from (26),

tw(t) ≥ t
∞∫
t

sα−1 Aα(s)ds + t
∞∫
t

sα−1 1
b(s)w2(s)ds

≥ t
∞∫
t

sα−1 Aα(s)ds + tα 1
b(t)

∞∫
t

(sw(s))2

s2 ds

≥ t
∞∫
t

sα−1 Aα(s)ds + tα 1
b(t) (d− ε)2

∞∫
t

1
s2 ds

= t
∞∫
t

sα−1 Aα(s)ds + tα−1 1
b(t) (d− ε)2.

(27)

Therefore from (26) and (27), d ≥ (Aα)∗ − ε + (d− ε)2. Then

d ≥ (Aα)∗ + tα−1 1
b(t)

d2,

since ε is arbitrarily small. Next to prove that (22). Multiply (23) by s2, integrating from t1 to t,
and integration by parts follows that

t∫
t1

sα+1 Aα(s)ds ≤ −
t∫

t1

s2w
′
(s)ds−

t∫
t1

sα+1 1
b(s)

w2(s)ds

≤ −t2w(t) + t2
1w(t1) + 2

t∫
t1

sw(s)ds−
t∫

t1

sα+1 1
b(s)

w2(s)ds,

implies

t2w(t) ≤ t2
1w(t1)−

t∫
t1

sα+1 Aα(s)ds +
t∫

t1

(
2sw(s)− sα+1 1

b(s)
w2(s)

)
ds. (28)

Thus, we obtain

tw(t) ≤ t2
1w(t1)

t − 1
t

t∫
t1

sα+1 Aα(s)ds + 1
t

t∫
t1

s1−αb(s)ds,

≤ t2
1w(t1)

t − 1
t

t∫
t1

sα+1 Aα(s)ds + 1
t t1−αb(t)

t∫
t1

ds.
(29)

By (A4), (29) imply that

tw(t) ≤
t2
1w(t1)

t
− 1

t

t∫
t1

sα+1 Aα(s)ds +
1
t
(t− t1).
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Thus

lim sup
t→∞

tw(t) ≤ 1− lim inf
t→∞

1
t

t∫
t1

sα+1 Aα(s)ds.

Hence from (6), (7), D ≤ 1− (Bα)∗. For any ε > 0, there exists a t2 ≥ t1 such that

D− ε < tw(t) < D + ε and
1
t

t∫
t0

sα+1 Aα(s)ds > (Bα)∗ − ε, t ≥ t2. (30)

Now, from (28) and (30) we get

D ≤ −(Bα)∗ + ε(D + ε)(2− D + ε), t ≥ t2,

since ε is arbitrarily small, we have

(Bα)∗ ≤ D− D2,

which proves (22).

Lemma 3. Suppose that (A1)–(A4) and (8) hold. Also assume that Case (II) of Lemma 2 holds. If

∞∫
t2

ηα−1 1
a(η)

( ∞∫
η

∞∫
µ

sα−1c(s)dsdµ

)
dη = ∞. (31)

Then lim
t→∞

u(t) = 0.

Proof. We consider the Case (II) of Lemma 2, Dαu(t) < 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1. Since
u(t) is positive and decreasing, we have lim

t→∞
u(t) = d

′ ≥ 0. Suppose not, d
′
> 0. Given that

u(δ(σ(t))) ≤ δ(t) ≤ t, then u(δ(σ(t))) ≥ u(t) > d
′

for t ≥ t2 ≥ t1 sufficiently large, u(t) is decreasing.
Integrating (5) from t to ∞ and using u(δ(σ(t))) ≥ d

′
, we get

∫ ∞

t

(
b(s)Dα (a(s)Dαu(s))

)′
ds ≤ −

∫ ∞

t
ksα−1c(s)u(δ(σ(s)))ds ≤ −kd

′
∫ ∞

t
sα−1c(s)ds,

then,

b(t)Dα (a(t)Dαu(t)) ≥ kd
′
∫ ∞

t
sα−1c(s)ds.

By (A4), we get

(a(t)Dαu(t))
′
≥ kd

′ 1
b(t)t1−α

∫ ∞

t
sα−1c(s)ds ≥ kd

′
∫ ∞

t
sα−1c(s)ds.

Again integrating, we obtain

−a(t)Dαu(t) ≥ kd
′
∫ ∞

t

∫ ∞

µ
sα−1c(s)dsdµ,
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this implies that,

−u
′
(t) ≥ kd

′
tα−1 1

a(t)

∫ ∞

t

∫ ∞

µ
sα−1c(s)dsdµ.

By integrating, once again it is get as

u(t2) ≥ kd
′
∫ ∞

t2

(
ηα−1 1

a(η)

∫ ∞

η

∫ ∞

µ
sα−1c(s)dsdµ

)
dη,

which contradicts to (31). Thus d
′
= 0 and hence lim

t→∞
u(t) = 0.

From Theorem 4, Nehari type oscillation criteria for (1).

Theorem 5. Assume that (A1)− (A4), (8) and (31) hold. If

lim inf
t→∞

1
t

t∫
t0

(
ksα+1 c(s)

a(s)
u(δ(σ(s)))− T

s
(u(δ(σ(s))))α

)
ds >

1
2

, (32)

then u(t) is oscillatory or satisfies u(t) = 0 as t→ ∞.

4. Examples

In this section, we provide some examples in order to see the effect of the main results.

Example 1. Consider 1
2 -fractional delay differential system

D
1
2 (u(t)) =

1√
t
g(v(

t
2
))

D
1
2 (v(t)) = − 1√

t
h(w(t)), (33)

D
1
2 (w(t)) =

1√
t

f (u(
t
2
)), t ≥ t0,

where C1 = cos(ln 2), C2 = sin(ln 2), A1 = cos(ln 4), A2 = sin(ln 4).
Here α = 1

2 , p(t) = 1
a(t) =

1√
t
, q(t) = 1

b(t) =
1√

t
, r(t) = 1√

t
, f (u) = A1

√
(1− u2)− A2u, g(v) = v and

h(w) = w.
It is easy to see that

Dαg(v) =
1√

t
(C1 + C2) ≥ l

′
> 0,

Dαh(w) =
1√

t
(C1 − C2) ≥ m

′
> 0,

f (u)/u = A1

√
1
u2 − 1− A2 ≥ 0.2579 = k > 0,

since u2 < 1, σ(t) = δ(t) = t
2 and Dασ(t) =

√
t

2 ≥ l > 0, c(t) = C2
1−C2

2
4
√

t
, Aα(t) = 0.2579

16

t
4−T√

t
. Now it is

considered as,

∞∫
t2

c(s)(s− T)δ(σ(s))ds =
C2

1 − C2
2

4

∞∫
t2

(s− T)√
s

s
4

ds→ ∞ as t→ ∞.
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By taking ρ(t) = 16/k then ρ
′
(t) = 0. Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)−

1
4
(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

1
2

16
k

k( s
4 − T)
16

1√
s

)
ds

= lim sup
t→∞

1
4

t∫
t1

(
s− 4T

s

)
ds→ ∞ as t→ ∞.

Since, each of the conditions are verified in Theorem 1, all solutions of (33) are oscillatory. Thus
(u(t), v(t), w(t)) = (sin(ln t), C1 cos(ln t)− C2 sin(ln t), C1 sin(ln t) + C2 cos(ln t)) is one such solution.

Note: The decreasing condition imposed on q(t) and r(t) is only a sufficient condition, however
it is not a necessary one. The following example ensures the oscillatory behavior of the system (34)
even though q(t) and r(t) is nondecreasing.

Example 2. Consider 1
3 -fractional following differential system

D
1
3 (u(t)) =

t
2
3

1 + 3
4 cos

5
3 (t)

g(v(t− 2π)),

D
1
3 (v(t)) = −t

2
3 w(t), (34)

D
1
3 (w(t)) =

t
2
3

1 + cos2(t)
f (u(t− 3π

2
)), t ≥ t0.

Here α = 1
3 , p(t) = 1

a(t) = t
2
3

1+ 3
4 cos

5
3 (t)

, q(t) = 1
b(t) = t

2
3 , r(t) = t

2
3

1+cos2(t) , f (u) = u(1 + u2), g(v) =

v(1 + 3
4 v

5
3 ) and h(w) = w. It is easy to see that Dαg(v) = v

1
3 + 2v2 ≥ 1 = l

′
> 0 such that y2 > 1, y

′
> 1

3 ,
Dαh(w) ≥ 1 = m

′
> 0, f (u)/u = 1 + u2 ≥ 1 = k > 0, σ(t) = t− 2π, δ(t) = t− 3π

2 and Dασ(t) = t
2
3 ≥

l such that t1 = l
2
3 , t ≥ t1, c(t) = l2 t

2
3

1+cos2(t) , Aα(t) = l2

2
1+ 3

4 cos
5
3 (t)

1+cos2(t)
t− 3π

2 −T
t (t− 3π

2 )
1
3 . Now consider,

∞∫
t2

c(s)(s− T)δ(σ(s))ds =
∞∫

t2

l2 s
2
3

1 + cos2(s)
(s− T)(s− 3π

2
)ds

≥ l2

2

∞∫
t2

s
2
3 (s− T)(s− 3π

2
)ds→ ∞ as t→ ∞.
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If we take ρ(t) = 1 then ρ
′
(t) = 0. Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)−

1
4
(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

2
3 l2 s

2
3

1 + cos2(s)
1
2

1 + 3
4 cos

5
3 (s)

1 + cos2(s)
s− 3π

2 − T
s

(s− 3π

2
)

1
3

)
ds

≥ lim sup
t→∞

7l2

16

t∫
t1

(
(1−

3π
2 − T

s
)(s− 3π

2
)

1
3

)
ds→ ∞ as t→ ∞.

Theorem 1 are satisfying the new conditions arriving at the solution for (34) is oscillatory and it is given
as (u(t), v(t), w(t)) = (sin t, cos t, sin t).

Example 3. Consider the 1
2 -fractional differential system

D
1
2 (u(t)) = e2tt

1
2 g(v(t− 1)),

D
1
2 (v(t)) = −e−2tt

1
2 w(t), (35)

D
1
2 (w(t)) = (et)

1
2 f (u(t− 1

2
)), t ≥ t0.

Here α = 1
2 , 1

a(t) = p(t) = e2tt
1
2 , 1

b(t) = q(t) = e−2tt
1
2 , r(t) = (et)

1
2 , g(v) = v, h(w) = w and

f (u) = u. Now it is easy to check that Dαg(v) = v
1
2 = e−

t
2 = l

′
> 0, Dαh(w) = w

1
2 = e

t
2 = m

′
> 0,

f (u)/u = 1 = k > 0, σ(t) = t − 1, δ(t) = t − 1
2 and Dασ(t) = t

1
2 ≥ l such that t1 = l

1
2 for t ≥ t1,

c(t) = l2(et)
1
2 , Aα(t) = l2

2 e
1
2 e2t(t− 1

2 − T)(t− 1
2 )

1
2 . Now,

∞∫
t2

c(s)(s− T)δ(σ(s))ds =
∞∫

t2

l2(es)
1
2 (s− T)(s− 1

2
)ds = l2e

1
2

∞∫
t2

s
1
2 (s− T)(s− 1

2
)ds→ ∞.

Taking ρ(t) = 1

t
7
2 e2t

then ρ
′
(t) = − t

7
2

2t7e2t (4t + 7). Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)−

1
4
(ρ
′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

1
2

l2e
1
2

s
7
2 e2s

1
2

e2s(s− 1
2
− T)(s− 1

2
)

1
2 − (4s + 7)2

4s9e4s e4ss
7
2

)
ds

≤ lim sup
t→∞

t∫
t1

(
l2e

1
2

2s
7
2

s− s2

4s
11
2

)
ds ≤ lim sup

t→∞

t∫
t1

(
l2e

1
2

2s
5
2
− 1

4s
7
2

)
ds < ∞.

Here further the condition (9) of the above Theorem 1 seems to be not satisfied, in view of the fact that (A4)

fails to hold, and hence the system (35) is not oscillatory. In fact, (u(t), v(t), w(t)) = (et, e−t, et) it is a solution
for (35), and nonoscillatory.
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Remark 1. The results obtained in this article further can be extended to a neutral system with forced term

Dα (u(t) + p(t)u(δ(t))) = a(t)h1 (v(τ(t))) ,

Dα (v(t)) = −b(t)h2 (w(t))) ,

Dα (w(t)) = c(t)h3 (u(σ(t))) + e(t), t ≥ t0,

for the cases ∫ ∞

t0

a(s)dαs < ∞,
∫ ∞

t0

b(s)dαs = ∞,

and ∫ ∞

t0

a(s)dαs < ∞,
∫ ∞

t0

b(s)dαs < ∞.

5. Conclusions

Through this article, we have derived some new oscillation results for a certain class of nonlinear
three-dimensional α-fractional differential systems by using the Riccati transformation and inequality
technique. This work extends and also improves some classical results in the literature [16,18,32] to the
α-fractional systems and studied the oscillation criteria. Further, the present results are essentially new
and, in order to illustrate the validity of the obtained results, we have provided three examples.
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